Volume 2 - Annexes

Document Number
162-20190916-WRI-01-01-EN
Parent Document Number
162-20190916-WRI-01-00-EN
Document File

INTERNATIONAL COURT OF JUSTICE
DISPUTE OVER THE STATUS AND USE OF THE
WATERS OF THE SILALA
(CHILE v. BOLIVIA)
ADDITIONAL PLEADING OF THE
REPUBLIC OF CHILE
ANNEX 100 TO THE ADDITIONAL PLEADING AND
ANNEXES XV - XVI TO THE EXPERT REPORT
VOLUME 2 OF 2
16 SEPTEMBER 2019

VOLUME 2
LIST OF ANNEXES
ANNEX Nº TITLE PAGE Nº
ANNEX TO THE ADDITIONAL PLEADING
Annex 100 100.1 Note from the Agent of the Republic of Chile
to the Agent of the Plurinational State of
Bolivia, 27 May 2019
(Original in English)
3
100.2 Note from the Agent of the Plurinational State
of Bolivia to the Agent of the Republic of
Chile, 17 June 2019
(Original in English)
5
ANNEXES TO THE EXPERT REPORT
Annex XV Muñoz, J.F., Suárez, F., Sanzana, P. and
Taylor, A., 2019. Assessment of the Silala River
Basin Hydrological Models Developed by DHI
7
Annex XVI SERNAGEOMIN (National Geology and
Mining Service), 2019. A Brief Review of the
Geology presented in Annexes of the Rejoinder
of the Plurinational State of Bolivia
187
i

Annex 100
100.1 Note from the Agent of the Republic of Chile to the Agent
of the Plurinational State of Bolivia, 27 May 2019
100.2 Note from the Agent of the Plurinational State of Bolivia
to the Agent of the Republic of Chile, 17 June 2019
(Originals in English)
1
2
3
Annex 100.1
His Excellency
REPUBLICA DE CHILE
MINISTERIO DE RELACIONES EXTERIORES
Mr. Eduardo Rodriguez Veltze
Agent
Plurinational State of Bolivia
Sir,
27 May 2019
On behalf of the Government of the Republic of Chile, and with reference to the
Dispute over the Status and Use of the Waters of the Silala (Chile v. Bolivia), I have
the honour to refer to the Rejoinder filed by the Plurinational State of Bolivia on 15
May 2019 and, in particular, the sensitivity analysis conducted by the Danish
Hydraulic Institute ("DHI") as reported in Annex 25 of the Rejoinder.
After consulting with its expert Prof. Howard Wheater, my Government wishes to
convey that, in Prof. Wheater's expert opinion, the DHI sensitivity analysis model
runs cannot be fully scrutinized without the relevant modelling data, including all
model set-up, input and output files for all model runs that were reported in Annex 25
of the Rejoinder.
My Government requests submission of these modelling data that are essential to the
analysis of DHI's recent results. It also requests that a copy of the data shall be
formally deposited with the Registrar and be considered part of the record of the case.
Finally, my Government suggests that the requested data shall be submitted promptly
and no later than two weeks following receipt of this Note, to ensure their timely
analysis by Chile's experts.
Attached you will find a letter from expert Prof. Howard Wheater, indicating the need
for the requested information in order to complete the analysis of DHl's results.
Accept, Sir, the assurances ofmy highest consideration,
l\f ~'(. l
Ximena Fuentes Torrijoj
Agent of the Republic of Chile
4
5
Annex 100.2
I '.:--ccllc11c _v
EMBASSY OF Tm: l'UIIUNA'l'IONAL STATE OF BOLIVIA
The Hague - The Nrthc!rlands
FH.NI .. -C's- ll n Ol<J
l'IH: llagu<.\ I'/ .l1111l' 2019
Mrs. Ximc11a Fuentes ·1 orrijo
/\gent ol'lhc Republic ol'C'hilc
Madam,
With reference to the case concerning the Dispute over the Status and Use of°J hc Waters
of the Silala (Chile v. Bolivia) and !<.)I lowing my note dated 7.lune2019 regarding your request
or !he modelling dala used by the Danish I lydraulic lnstilulc (DI II) in !he "llpdaling or the
mathematical hydrological model scenarios ol'thc Si I ala spring waters with: Sensitivity analysis
or the model boundaries", submitted in !he R1.:joinder of the Plurinalional Slate or Bolivia as
Annex 25, I hereby attach a USB containing the requested information.
Accept, Madam, the assurances of my highest consideration.
Eduardo Rodriguez Vcltzc
Agent of the Plurinational State or Bolivia
Nassauplein 2, 2585 EA - The Hague - Netherlands/ Tel: (+31 70) 3616707 - Fax: (+31 70) 362 0039
E-mail: embolneili!ternbd~W fholiv·a nl
6
Annex XV
Muñoz, J.F, Suárez, F., Sanzana, P. and Taylor, A., 2019.
Assessment of the Silala River Basin Hydrological Models
Developed by DHI
7
8
Annex XV
9
ASSESSMENT OF THE SILALA RIVER BASIN HYDROLOGICAL MODELS
DEVELOPED BY DHI
José Francisco Muñoz (PhD)
Professor, Pontificia Universidad Católica de Chile
Francisco Suárez (PhD)
Associate Professor, Pontificia Universidad Católica de Chile
Pedro Sanzana (PhD)
Project Manager, DICTUC S.A.
Adam Taylor (MSc)
Director, Groundwater Modelling Solutions Ltd., UK
María José Fuenzalida, Civil Engineer
Magdalena Lagos, Civil Engineer, MSc
Gonzalo Yáñez, Civil Engineer, MSc
August 2019
10
Annex XV
Annex XV
11
TABLE OF CONTENTS
1. INTRODUCTION ..................................................................................................... 1
1.1 Objectives...................................................................................................... 4
1.2 Structure of the report .................................................................................... 4
2. REVIEW OF BACKGROUND INFORMATION USED BY BOLIVIA
FOR THE SILALA RIVER BASIN .......................................................................... 5
2.1 Geological interpretation ............................................................................. 12
3. WATER BALANCE MODEL (WBM) ................................................................... 20
3.1 Conceptual model ........................................................................................ 20
3.2 Numerical model ......................................................................................... 20
3.2.1 Boundary conditions .............................................................................. 21
3.2.2 Water balance results ............................................................................. 22
3.3 Main conclusions from the review of the WBM ........................................... 23
4. NEAR FIELD MODEL (NFM) ............................................................................... 24
4.1 Conceptual model ........................................................................................ 24
4.2 Numerical model ......................................................................................... 27
4.2.1 Topography of the NFM ........................................................................ 28
4.2.2 Steady-state verification ......................................................................... 34
4.2.3 Boundary conditions .............................................................................. 35
4.2.4 Inconsistency between the Water Balance Model and the Near
Field Model ........................................................................................... 36
4.2.5 Initial Potential Head of the Near Field – MIKE-SHE model ................. 39
4.2.6 Surface water modelling ........................................................................ 42
4.2.6.1 Surface flow calculation in the baseline scenario – MIKE-11 .......... 46
4.2.6.1.1 Downstream boundary condition ................................................ 48
4.2.6.1.2 Manning coefficient and flow conditions .................................... 48
4.2.6.1.3 Channel geometry ....................................................................... 52
4.2.6.1.4 Numerical instability in MIKE-11 model .................................... 56
4.2.6.2 Surface flow calculation in the No Canal and Undisturbed
scenarios – MIKE-SHE Overland flow .................................................. 58
4.2.7 Water balance results of the different scenarios modelled by DHI
(2018) .................................................................................................... 59
4.2.8 Summary of unreported differences between the DHI scenarios ............. 63
5. CONCLUSIONS ..................................................................................................... 65
6. REFERENCES ........................................................................................................ 69
Appendix A
Appendix B
Appendix C
Appendix D
12
Annex XV
Annex XV
13
1
1. INTRODUCTION
The National Director of Borders and Boundaries (DIFROL) of the Ministry of Foreign
Affairs, Mrs. Ximena Fuentes, asked professors José F. Muñoz and Francisco Suárez to
review the study “Study of the Flows in the Silala Wetlands and Springs System”,
commissioned by the Bolivian counterpart to the Danish Hydraulic Institute (DHI), and
presented in the Bolivia’s Counter-Memorial (BCM) in 2018.
It was only after two requests that Bolivia provided Chile with the files used by DHI for
the modelling reported in Bolivia’s Counter-Memorial, and these were received after
Chile’s Reply (CR) of 15 February 2019 had been finalized. This report is based on the
analysis of those files and complements and extends the previous analysis of DHI
modelling, presented in Wheater and Peach, 2019 (CR, Vol.1, pp 85-154).
The focus of the DHI study was the surface water flow crossing the Chile-Bolivia
international border in the Silala River, including the impacts of historical
channelization. To analyze the hydrological behavior of the Silala River basin, DHI
divided the study area into the Far Field and the Near Field:
• “The Near Field area covers all surface water features and immediate
surroundings including springs, wetlands and canals” (BCM, Vol. 2, p. 367).
• The Far Field “is the full area contributing to the discharge through the springs
and canals on the Bolivian territory” (BCM, Vol. 2, p. 328). The boundaries of
the Far Field are uncertain, but a hydrological catchment was delineated by DHI
(BCM, Vol. 2, p. 328; Figure 1-1). The Far Field catchment is roughly
equivalent to the groundwater catchment described in the Chilean Reply (CR,
Vol. 1, p. 105).
14
Annex XV
2
Figure 1-1. Hydrological catchment and Silala Near Field area defined in DHI (2018) (BCM,
Vol. 2, p. 328).
DHI (2018) built three hydrological models: a Water Balance Model (WBM), a Near
Field Model (NFM) and a Near Border Model (NBM). Each of these consists of a
numerical model based on a conceptual model of the hydrological/hydrogeological
processes. For the numerical models, DHI used an integrated groundwater/surface water
model based on the MIKE-SHE model for coupled surface and groundwater flows. For
one of the scenarios investigated (the Baseline scenario, representing current
channelization) they also used the MIKE-11 modelling system for 1D open water flows.
The domain of each model is presented in Figure 1-2. The Water Balance Model covers
the whole groundwater catchment of the Silala River upstream of the international
border, excluding the area immediately adjacent to the wetlands. The excluded area is
simulated in the Near Field Model. The Near Border Model covers the area of the Near
Field Model between the confluence of the Orientales and Cajones tributaries and the
international border. The NBM is not directly relevant to the main issues that remain in
dispute between the parties and is therefore not considered further in this report.
Geological faulhl
Road
International border
Sllala canal
Annex XV
15
3
Figure 1-2. Domains covered by the three different DHI models.
The WBM was mainly used to estimate recharge and the available water resources in
the Silala River Basin but was not used to assess surface or groundwater flow changes
across the Chile-Bolivia international border. The NFM was used to compare scenarios
with and without channelization and to quantify the influence of the channelization on
the Silala River flow. The NBM was used by DHI to investigate infiltration from
surface water to groundwater close to the border (between the confluence of the spring
tributary channels and the border).
The NFM has been used to simulate various scenarios, in which the configuration of the
model, and its inputs, are changed to evaluate the impact of the channelization. Three
scenarios were used:
i) Baseline: represents the current situation with channelization.
ii) No Canal: represents the situation without channels.
0
Kilometers
Mercator Projection, WGS84
Laguna
Blanca
Laguna
Chica
NEAR BORDER MODEL (NBM)
WATER
BALANCE
MODEL
(WBM)
lnacallrl Police
Station 10,0 H1to 1
, 1/foS•
CODELCO Intake
----NEAR FIELD MODEL (NFM)
VolalnAl>a!lado
(Cem,Slla/ii Gnlnde)
5703111
1
PERU
A,..,
>: Enlarged
~ I
'-' CHILE i f
l j)
~GUAY
ARGENTINA L
16
Annex XV
4
iii) Undisturbed: represents a ‘restored’ situation without channels and with
assumed long-term development of wetland peat soils.
After the submission of the Bolivia's Counter-Memorial in 2018, Chile requested the
data files of the three models. Two requests from Chile were necessary before DHI
provided the requested files, which were received after Chile’s Reply had been
finalized. In this report, we review the DHI hydrological/hydraulic modelling in the
light of this new information, in particular those aspects that deal with channelization
impacts. The files provided by the Bolivian counterpart are specified in Appendix A.
Given its relevance to the continuing dispute between the Parties, the main focus of this
report is a critical review of the Near Field Model, in which the impact of the
channelization is evaluated using the three scenarios defined above. Additionally, we
assess the consistency between the WBM and the NFM.
1.1 Objectives
The objectives of this study are therefore:
- To review the configuration, inputs, results and water balances of the Far Field
and Near Field models.
- To carry out a critical review of the Near Field Model. Specifically, to evaluate
whether the modelling approach is consistent with the available data and
conceptual understanding of the Silala River basin and whether the scenarios
selected are appropriate to represent the impacts of channelization.
1.2 Structure of the report
The structure of the remainder of this report is as follows: Section 2 presents relevant
background information obtained from the Bolivian Counter-Memorial. Section 3
presents a brief review of the Water Balance Model, and in Section 4 the Near Field
Model is analyzed in detail. In Section 5 the main conclusions are summarized and in
Section 6 the references are presented.
Annex XV
17
5
2. REVIEW OF BACKGROUND INFORMATION USED BY BOLIVIA
FOR THE SILALA RIVER BASIN
The background information collected by Bolivia and DHI for the hydrogeological
study of the Silala River basin is presented in the BCM and associated annexes.
A geological map of the entire basin is presented (BR, Complete Copies of Certain
Annexes Vol.2, Annex 23.5 Appendix a, p.69, reproduced here as Figure 2-1). Also, the
hydrological catchment delimitation is provided (BCM, Vol.2, p. 328, reproduced here
as Figure 1-1), along with a Digital Elevation Model.
18
Annex XV
6
Figure 2-1. Geologic Map of the Silala Study Area (BR, Complete Copies of Certain Annexes, Vol. 2, Annex 23.5 Appendix a, p. 69). See also
Figure 2-9 for larger legend
-·--:-..-. -·- 1
-....,,.. "fflWJ& 1(o,
m
!.
t:~ -r
j
}
. .,~
-i ~e ·
- ·,t
' \ .
'"'o "'.'J, A ""~f-... 1
I
/
_=(\)~...-~ ,,, ',.
't-,., ..,__, . ~ ,.
+ ~ "' "' ~ ~ I!,~) - 6 ),1 f,/l5 '" '"
_,.,.✓
- ...- ~ Q,.11._,
' ..;.:. - - -;o.. ~ t-
Nlllfflt:U..1-<'k':N'('IJ. -"' -~--- ~..,,..,. ....... :
li,o. l'-.i h .. (w
""ci' J L '
,; -~ 1iP
,~¥-'."' -. - -l- .:.;-+
'lf.,..., ., LAGUNA KHAR,
'f .1 i:
I
..0...
- ( -; r --r':r,,-- \ .
,..,__,
'
'" u,,.,..
- 2'.11.!'IT
""~ a
.,__<,~
.......
•\{~
.! I I
' ·1_
C
C
A
T
C C
R
• "h
R
S I
0
I N
£
0
C G I
~ 0
0 0
'
..-:::---=--
...::.... ==--
=-- . -----
==.:-..:--
r-1
~) "H" Jl_ I.J1! ,. ~I '11 Y.1 tll~•
,.,. ..... A'
MAPA No.1
MAPA GEOLOGIA GENERAL
DEL MANANTIAL DEL SILALA
PRDVINCIA SUR LIPEZ DEL OEPARTAMENTO OE
POTOSI
Annex XV
19
7
The Bolivian counterpart collected an extensive amount of field data in the Silala Near
Field, including hydrogeological drilling and testing, surface flow, surface geological
mapping, soil sampling in the wetlands and geophysical transect investigations.
For the hydrogeology study, presented in Annex F to the DHI Report (2018) (BCM,
Vol. 4), wells and piezometers were drilled in the Silala Near Field. The locations of the
boreholes and piezometers drilled are presented in Figure 2-2.
Figure 2-2. “Location of the boreholes and piezometers in the Silala Near Field” [Original
Caption]. (BCM, Vol. 4, p. 25).
Water level monitoring was carried out by the Bolivian counterpart in these boreholes
by taking manual measurements, typically on a daily basis. Groundwater level contours
in the Silala Near Field, interpolated from piezometer wells, spring elevations, and
wetland excavations for soil sampling, are presented in Figure 2-3, which is reproduced,
together with the figure caption, from BCM, Vol.2, p. 293.1 According to DHI (BCM,
Vol. 4, p. 95) “[t]he contours reflect the interpretation of significant discharge to the
Southern Wetlands from the north and northeast areas of the catchment as well as from
recharge on Volcán Silala Grande”.
1 The same figure, without the arrow, is also presented in BCM, Vol.4, p. 97.
OS ti!:
,s, 'os..- 11
OS..1B
20
Annex XV
8
Figure 2-3. “Borehole locations and groundwater level contours in the Silala Near Field,
interpolated from Piezometer wells spring elevations and wetlands excavations for soil
sampling. N.B. the contouring away from the wetlands and the boreholes are uncertain”
[Original Caption]. (BCM, Vol. 2, p. 293).
The surface flow study was presented in Annex C to the DHI Report, 2018 (BCM,
Vol. 2, Annex 17). Its key objective was to quantify the flows in the Silala Near Field.
For this study, simultaneous stream flow measurements were made at 21 locations and
continuous flow records were collected at seven weirs (Figure 2-4).
Spring
• Piezometers (Groundwater Elevation, masl)
--De<:ember 2017 Weter Levels
- - ·-- lntematlonal Border
Annex XV
21
9
Figure 2-4. “Overview of flow measurement locations” [Original Caption].
(BCM, Vol. 2, p. 381).
The DHI analysis of these measurements resulted in a conceptual understanding of the
Near Field groundwater flows, which is reproduced in our Figure 2-5 and Figure 2-6.
Figure 2-5 shows the conceptual model of the groundwater flows, where the overall
flow directions proposed by DHI are shown by gray and blue arrows.
Additionally, the estimation of the diffuse groundwater inflow into the Silala River is
presented in Table 2-1, which shows that an important part of the Silala River flow
comes from diffuse groundwater inflows (as opposed to discrete spring flows).
Specifically, an important diffuse inflow is observed between C-4 and C-5, which is a
narrow gorge.
6005(10 601000 601500 002000 602600 803000
Leyenda
N ·-- A . ",.,,.~
. ... '"°""""'" ....... tc,Jo.' I _ ...,., I ,_ __
-
S-13
S-12~ ·
s.g
I s.,o
I : , ...
;Ii
c.s~S-11
Ojo., (C•n•I Serr)
► .......~
..._ • C-6 S•19-,.".$ C-7 C-1 ,·
§ .J·" §
~ .lf-s-20 ~
, ·s.21
~~
600500 801000 .. , ... 602000 602600 803000
22
Annex XV
10
Figure 2-5. Southern (upper picture) and Northern (lower picture) wetlands “overview map
showing extent (red polygon), canal network (blue line), springs (yellow dots) and overall flow
directions by gray and blue arrows. Drained and drier wetland area with clear signs of
vegetation changes are highlighted by orange circles” [part of the original caption]. (BCM,
Vol. 2, p. 371).
Annex XV
23
11
Figure 2-6. “Mapping of flows and net inflows based on simultaneous mean canal flow
measurements (in l/s)” [Original Caption]. (BCM, Vol. 2, p. 391).
Table 2-1. “Canal flows by section, accumulated upstream spring inflows and derived diffuse
inflows [Difference, canal-springs]. The flows represent the average of all 10 measurement
campaigns” [Original Caption]. (BCM, Vol. 2, p.386).
Section
C1 , springs 1-12 (Zone 2)
C2, springs 1-20 (Zone 2)
C3, springs 1-21 (Zone 2)
C4, springs 1-22 (Zone 3)
C5, springs 1-32 (Zone 4)
C6, springs 33-64 (Zone 1)
C5+C6, springs 1-64
59 1/s
C-4
4 ~~-o.ioe..JIO,UAS
t1 C81"111 lnllow
Measured spring
flow (1/s)
23.8
41.2
41.2
45.2
56.9
46.1
103.0
el
38 1/s
25%
Measured Canal
Flow (Ifs)
27.8
36.7
38.0
59.5
97.0
56.9
154.0
l'::-::::1281/s~
31 1,.v v
C-1
24 %
18%
Difference, canalsprings
(1/s)
4.0
-4.5
-3.2
14.3
40.1
10.8
51 .0
24
Annex XV
12
2.1 Geological interpretation
The Near Field modelling is based on the hydrogeological map generated by DHI
(2018) (BCM, Vol. 4, p. 67), which is presented in Figure 2-7, and the definition of the
hydrogeological units is presented in Table 2-2. In turn, the hydrogeological map is
based on Bolivia’s interpretation of the geology of the Silala River system, which is
flawed in several respects. A detailed examination of the geological reports supporting
the Bolivian Counter Memorial and presented in the Bolivian Rejoinder is available in
SERNAGEOMIN (2019b) (Chile’s Additional Pleading (CAP), Vol.2, Annex XVI).
Bolivian geologists (SERGEOMIN, 2017) have determined that in Bolivia the
Ignimbrite succession can be divided into three distinct geological units (Nis-1, Nis-2
and Nis-3) (BR, Vol. 4, pp. 43-61), whereas in Chile only two ignimbrite units have
been identified, in surface outcrops and borehole cores (SERNAGEOMIN 2017, 2019b
and Arcadis, 2017). In the area of the Bolivian wetlands there may be, at depth, further
ignimbrite units, but these have not been found in Chile.
Figure 2-7. “Delineation of hydrogeological units (HGUs) in the Silala area” [part of the
original caption]. (BCM, Vol 4, p. 67).
N A -- -- '111!Ntior,o!Sonltr - H:>U1 - HGl/2 - H:il/3 - H:>U4 - !-GU~ HGUll - KlU1
Annex XV
25
13
Table 2-2. Bolivian defined ”Hydrogeological Units” [Original Caption] (BCM, Vol. 4, p. 65).
Hydrogeological Unit Basic Lithology Approximate Thickness (m)
HGU1 Colluvial and alluvial deposits 1 to 10 m
HGU2 Glacial deposits, sandy loams 1 to 10 m
HGU3 Weathered lava flows 1 to 30 m
HGU4 Felsic volcanic sequences Up to 600 m
HGU6 Upper lgnimbrite deposits with a high degree of welding Up to 150 m
HGU5 lgnimbrite deposits with a low degree of welding 10 to 120 m
HGU6 Lower lgnimbrite deposits with a high degree of welding Up to 300 m; assumed to be
300 m in the model
HGU7
Fault zones believed important for groundwater 50 to 100 m wide, depth to
flow base of ignimbrite (assumed)
HGU8 Volcanic neck of Silala Chico
650 to 760 m diameter;
depth to base of ignimbrite
26
Annex XV
14
SERNAGEOMIN (2019a) (CR, Vol. 3, Annex XIV) have carried out a detailed analysis
of the age and stratigraphic relationships of the Ignimbrites and Miocene volcanics that
are found outcropping in the area of the Silala ravine in Bolivia and Chile. This work,
without doubt, shows that the ignimbrite units defined in Chile, which can be traced
northeast into Bolivia up the Silala ravine, are younger than the Miocene Volcanics that
form the Silala Chico (Bolivian name) (Cerrito de Silala in Chile) and the small
volcanic dome to the north of the Bofedales Norte (Cajones) wetland in Bolivia. These
ignimbrite deposits overlie the less permeable Miocene volcanics. These ignimbrite
deposits (Nis) and the Miocene volcanics (Nevsch) are clearly shown on the geological
map of SERGEOMIN (2003) (reproduced here as Figure 2-1). In contrast, DHI (2018)
shows, in pink on their figure, outcrops of “weathered lava flows” of thickness less than
30 m (see Table 2-2 and Figure 2-7) (BCM, Vol. 4, p. 67). Bolivia’s hydrogeological
map and Bolivia’s geological map are compared in Figure 2-8. These weathered lava
flows (HGU3) have been defined by DHI as “Chemically and mechanically weathered
lava flows (see Table 3, DS-09). Characterized by areas where lavas extruded from the
Inacaliri volcano (~1.5 Ma)” (BCM, Vol. 4, p. 65). Whereas the volcanic sequences of
the Miocene (HGU4), which are called “Felsic volcanic sequences” by DHI (2018) (up
to 600m thick) (see Table 2-2) (BCM, Vol. 4, p. 65), are compacted and of low
permeability and considerably older. The area coloured pink on Figure 2-7 does not
comprise weathered lava flows, so should not be assigned to HGU 3. Instead, the pink
outcrop to the north of the Cajones ravine is a Miocene volcanic dome equivalent to
what DHI (2018) calls Felsic Volcanic sequences and should be assigned to HGU 4.
The remainder of the pink area on Figure 2-7 comprises outcrops of colluvial or alluvial
deposits or is a part of the Miocene volcanic dome that makes up the Silala Chico (Bol)
hill and should be assigned to HGU1 and HGU4 (see Figure 2-8). There are clearly
errors in interpretation of the geological map, which have resulted in incorrect
assignment of hydrogeological units.
These inconsistencies and errors in geological interpretation are in part demonstrated in
the cross section at the bottom of Bolivia’s geological map (Figure 2-1), presented in
Figure 2-9, which shows that SERGEOMIN (2003) interprets the Ignimbrite deposits
(“Nis” shown in orange red) as extensively underlying (and therefore older than) the
Miocene Volcanics (“Nevsch” shown in beige). The legend from this map, also
presented in Figure 2-9, confirms this interpretation. According to the dating work
undertaken by SERNAGEOMIN (2019a), this is clearly incorrect.
Annex XV
27
15
Figure 2-8. Comparison of (A) Bolivia’s hydrogeological units (HGUs) (BCM, Vol 4, p. 67) and
(B) surface geology in the Silala area. (BR, Complete Copies of Certain Annexes, Vol. 2, Annex
23.5 Appendix a, p. 69).
A
Miocene volcanics (Nevsch} and
colluvlal and alluvial deposits (Qc, Qaa)
HGU4 and HGUl not HGU3
Q,. .
;
Qo g

...
\ CttULIAS
28
Annex XV
16
Figure 2-9. (A) Expanded view of the cross section and (B) legend from Bolivia’s geological
map reproduced at Figure 2-1. (BR, Complete Copies of Certain Annexes, Vol. 2, Annex 23.5
Appendix a, p. 69).
A
QJa. Silal,., ...
m
[!]
C
E
N
0
z
0
I I
C
0
t i
I
C
u
A
p
L
T E
E
R
N T
0 A C
R E
I N
0 0
p
L
I
0
C
E
N
N 0
E M
0
G I
E
N 0
0 C
E
N
0
CORTli GEOLOGICO A ·A'
A'
ilala
REFERENCIAS GEOLOGICAS
E -=------
::::...~ ........
~biogb!W -.-"."_--" _-"-_--_-- ---
...... li#..,.l.t ._.._.. _.__.. ._...l,.j. _
""' -
- ----
~ i..._ .... . $Wo(;t;c,i,,
e
v...,~rc....,..-
,., ~SiAnnex
XV
29
17
The importance of such errors and inconsistencies in the development of both a
conceptual understanding of the hydrogeology and its representation in a numerical
model is explained below.
The two ignimbrite units (named Silala (upper) and Cabana (lower) in Chile) are found
beneath the Silala River ravine, but SERGEOMIN (Bolivia) (2003) does not recognize
these units despite the fact that they occur close to the international border, where they
have been observed by SERNAGEOMIN (Chile) (SERNAGEOMIN 2017, 2019b,
Arcadis, 2017), the former in outcrop and both at depth in borehole core. The Silala
Ignimbrite can be seen to cross the border in continuous outcrop and can be traced on
satellite imagery upstream in the walls of the Silala ravine to the confluence of the
Cajones and Orientales ravines.
These ignimbrite deposits are constrained by the (older) Miocene volcanics on each side
(northwest and southeast) and at some depth (currently unknown). The surface gradient
(as well as the ‘dip’ of the formations) changes from being relatively gentle upstream of
this pinch-point, to noticeably steeper downstream. This supports the interpretation of
the flow which deposited the ignimbrites being constrained by a narrow gap in the
Miocene volcanics. This restriction in the cross-sectional area of the main ignimbrite
aquifer will clearly impact the permeability and transmissivity distribution in any
numerical groundwater flow model and the area where groundwater flow will be
focused down-gradient into Chile. Groundwater flow to the south west into Chile will
therefore be restricted to this narrow zone, rather than the much wider area shown by
Bolivia in their conceptual cross-section (BCM, Vol. 4 p. 88). Since the permeability of
the Miocene volcanics is much lower than that of the ignimbrite aquifer, it is unlikely
that part of the groundwater flow bypasses the Near Field in the surrounding geological
strata, as was modelled by DHI (2018). Figure 2-10 shows the groundwater level map
used in definition of the boundary conditions of the Near Field Model. We have added a
red arrow representing the implied flow direction; the HGU4 unit is shown by grey
hatching. The piezometric contours in this figure, drawn by DHI, indicate groundwater
in the ignimbrites flowing beneath the Miocene Volcanic (red arrow), whereas in reality
this would not happen because the ignimbrites overlie the Miocene volcanics and
groundwater flow would be funnelled through the narrow constriction delimited by the
presence of the low permeability Miocene volcanics. This constriction must be taken
into account in order to accurately represent the domain of groundwater flow,
conceptually, or more pertinently in the construction of DHI’s NFM, or other models.
30
Annex XV
18
From experience from recent geological mapping (SERNAGEOMIN (Chile) 2017,
2019b), drilling and groundwater level measurements (Arcadis, 2017) Chile interprets
two aquifer systems. One is a shallow aquifer found perched in Alluvial deposits and
shallow weathered lavas and a second at depth in the Silala Ignimbrite (Chilean defined)
but mostly found in the less welded and more permeable Cabana Ignimbrite (Chilean
defined). The upper levels of the Silala Ignimbrite (Chilean defined) are highly welded
and represent a confining or semi-confining layer above the Cabana Ignimbrite. It is
therefore more appropriate to assess piezometric levels in the shallow aquifer and the
deeper aquifer separately. A correct understanding of the hydrogeology leads to
differences in the interpolation of the groundwater level data, and hence the current
boundary conditions used for the NFM are incorrect.
Annex XV
31
19
Figure 2-10. “Groundwater level maps used in definition of groundwater component boundary conditions” [Original Caption]. Black lines
represent the piezometric contours, the polygons filled with grey lines represent the HGU4 unit. The added red arrow represents the implied
groundwater flow through the HGU4 unit. (BCM, Vol. 5, p.19).
(meter)
7566800
7566600
7566400
7566200
7566000
7565800
7565600
7565400
7565200
Initial potential head in the saturated zone
• ...
-z.i ..
___ ;:' _____________i r. .--~---~--~----~--~---------~------:-~ ~~--~-----------~--------------~-::' . ......... ~
f L- '
,.
---~--------·····
7565000-+l':...t..,.,~,~~~~~~~~~~~~~~~~~~,.........,~~~~~~~~~.....,.........,.........,.........,....~~~~~~......,
600000 600500 601000 601500 602000 602500 603000 603500
(meter)
[meter,
!!!II Above«30
«20-4430
,U10-U20
E3 «00 -«10
4390-«00
-- 4380 - 4390
4370-4380
4360-4370
4350-4360
4340-4350
I :~::!4~
4310- 4320
4300 - 4310
4290-4300
Below 4290
Undefined Vakle
32
Annex XV
20
3. WATER BALANCE MODEL (WBM)
3.1 Conceptual model
To develop a conceptual model of the Far Field, limited data were available. Data from
the Far Field area comprise a surface geology map, a single water level measurement in
a borehole located approximately 2 km upstream of the Orientales wetland and soil
sample analyses from six locations. According to DHI (BCM, Vol. 3, p. 471) the
conceptual model of the Far Field (WBM) considered that groundwater recharge is
driven by short-term precipitation events, often separated by long dry periods. And as
noted by DHI (BCM, Vol. 3, p. 471), to correctly reproduce the recharge produced in
this area, long-term dynamic simulation is necessary2.
The hydrogeological conceptual model developed by DHI (BCM, Vol. 3, p. 472)
considered that the main processes that affect the recharge and the available water
resources in the Silala River basin are determined by precipitation, soil evaporation,
infiltration and snow processes. The extent of the WBM was defined as the groundwater
catchment (defined by DHI as the hydrological catchment) of the Silala River and was
delineated using NASA’s SRTM digital elevation model. Since the studied area is very
dry, evaporation from the soil and infiltration through the upper soils and unsaturated
zone of the aquifer to the underlying groundwater table are the main processes that
determine the recharge to the catchment.
3.2 Numerical model
DHI’s WBM is a transient numerical model that covers the Silala River hydrological
catchment upstream of the Orientales and Cajones wetlands (Bolivian wetlands). The
main purpose of developing this model was to estimate the overall recharge available to
the Silala River basin and its groundwater catchment. This model covers an area of
228.7 km2 (5,717 active cells of 200 x 200 m (BCM, Vol 3, p. 476)) (note that this
differs from the area of 231.5 km2 quoted in Section 2.2 of Annex E to the DHI (2018)
report (BCM, Vol. 3, pp. 472-473)) and simulates the period between 01/02/1969 and
31/12/2016 (17,500 days) (not 1/1/1969 to 31/12/2016 as quoted in Section 2.5 of
Annex E to the DHI report (BCM, Vol. 3, p. 477)).
Several versions of the WBM were provided (see Appendix A). The base case of the
WBM model is described as “Silala_model_200m_v24.she” and does not include a
saturated groundwater flow component. Only two versions of the WBM that simulate
saturated groundwater flow as well as recharge were provided by DHI:
2 We note that DHI’s 48 year simulations do not represent the long-term for these groundwater systems.
DHI (BCM, Vol.3, p. 491) estimate average groundwater travel times to be 1500 years.
Annex XV
33
21
• Silala_model_gw_200m_v12_final.she
• Silala_model_gw_200m_v12_final_tracer.she
In this report we review the first version because the second one was focused on
estimating residence time for groundwater in the saturated zone, which is beyond the
scope of this report.
3.2.1 Boundary conditions
The boundary conditions used to model the groundwater flow (saturated zone) in the
WBM are presented in Figure 3-1. The model was constructed using a no-flow
boundary condition across most of the model boundaries, with the exception of a fixed
head boundary condition that permits water to exit the model domain towards the
Bolivian wetlands (and to Chile). Thus, this fixed head boundary condition is located at
the boundary of the NFM. The value of this boundary condition was defined as equal to
the initial potential head at that boundary, therefore it is constant in time but it varies in
space. It is important to mention that the southwestern no-flow boundary condition is
not based on the DHI interpretation of the hydrogeology of the study area. Because the
southwestern no-flow boundary condition is near the zone of interest, it is likely that it
will have an impact on the simulated flows from the WBM towards the Bolivian
wetlands. This issue was not assessed by DHI.
34
Annex XV
22
Figure 3-1. Boundary conditions of the “Water Balance Model”.
3.2.2 Water balance results
The water balance from the WBM, version Silala_model_gw_200m_v12_final.she, is
presented in Table 3-1. This balance in cumulative millimeters was calculated using the
water balance module of the MIKE-SHE model. The flows in mm/year and l/s were
calculated using the simulation period (17,500 days, or just less than 48 years) and the
area of the model’s active cells. This table shows that 198 l/s of groundwater exits the
model through the fixed head boundary.
0
lnacaliri Police
Kilomete~
Mercc1m1 Projection, WGS 84
Statio,n ~b ,o s 10,~ l
CODELCO Intake
6
Laguna
Blanca
Laguna
Chica
---Fixed Head
WATER
BALANCE
MODEL
(WBM)
(Initial potential head)
BRAZIL
PARAGUAY
ARGENTIN~ -
Annex XV
35
23
Table 3-1. Water balance from the “Water Balance Model” -
Silala_model_gw_200m_v12_final.she version.
The contributions from storage releases shown in Table 3-1 (which are consistent
throughout the model period) indicate that the model has not reached a dynamic steady
state (i.e. without long-term upward or downward trends in groundwater levels), which
means that the model results are therefore still being influenced by the initial conditions
and the estimated recharge is also affected by changes in storage. We also note that in
DHI’s Provisional Report 3, Water balance of the basin and groundwater aquifer and
update of measured flow (DHI 2017a, received by Chile in February 2019), recharge
using the same model is estimated to be 56 mm/year (instead of the 24 mm/year shown
in Table 3-1). No explanation has been provided by DHI for why the estimate was
reduced in their final report. This Provisional Report 3 is attached to the present report
as Appendix D.
3.3 Main conclusions from the review of the WBM
In this section a limited review of the main configuration of the WBM has been
presented, primarily to set the context for the discussion of the NFM. The main
conclusions of the review of the WBM are that the model has not reached steady state,
so that the water balance is affected by changes in storage, and that the southwestern noflow
boundary condition is not based on DHI’s interpretation of the hydrogeology of the
study area, instead it seems to be based, at least in part, on the geopolitical boundary
between Bolivia and Chile.
Cumulative water
depth (mm)
Average depth rate
(mm/year)
Average flow rate
(l/s)
Precipitation -6023 -126 -911
Evapotranspiration 4854 101 734
Recharge (prec.–evap.) -1170 -24 -177
Total storage change -170 -4 -26
Net groundwater boundary
outflow 1309 27 198
Error -30 -1 -5
36
Annex XV
24
4. NEAR FIELD MODEL (NFM)
4.1 Conceptual model
The Silala NFM covers the area immediately adjacent to the Bolivian wetlands
upstream of the Chile-Bolivia international border (see Figure 4-1).
Figure 4-1. The area of Bolivia’s Near Field Model. The green color represents Fixed Head
boundary conditions, the black color represents No-Flow boundary conditions and the grey
color represents Fixed Gradient boundary conditions.
Using the available piezometric information, DHI (BCM, Vol. 4, p. 97) proposed a
piezometric map of the Silala Near Field area (see Figure 2-3). Analysis of DHI’s
piezometric map allows the direction of groundwater flow to be determined
(groundwater flow directions are by definition perpendicular to the groundwater level
contour lines). These directions are shown by our blue arrows in Figure 4-2A.
DHI’s (2018) conceptual understanding of the groundwater system, as illustrated in
their BCM figures reproduced in Figure 4-2B and C, shows that the groundwater flow
0
Fixed Gradien
(-0.0S) t
400 BOO
Metl'IS
- PIOjK!ion,WGS84
1200
WATER B~IL~NCE
[1Wil1MJ MODEL
Annex XV
37
25
into the Cajones wetland (Bolivia’s “northern wetland”) comes from the North-North-
West, North-West, North-East and South-East, and the flow into the Orientales wetland
(Bolivia’s “southern wetland”) comes from the North-East and the South-East. In
contrast, according to their piezometric map, water is entering the Near Field Model
mainly through the North-East and is exiting the model through the South-West (see
Figure 4-2A). Note that from interpretation of DHI’s contours some of the water should
also be exiting the Near Field Model through the southern No-Flow boundary of the
model, a problem discussed further in section 4.2.3. The piezometric contours and the
corresponding flow directions (Figure 4-2A) should be consistent with the groundwater
flow directions presented in Figure 4-2B and C. However, when comparing the flow
directions derived from Bolivia’s piezometric contours and Bolivia’s conceptual
understanding, the flow directions obtained from DHI’s groundwater level map do not
correspond to those presented in Figure 4-2B and C. Therefore, the conceptual model of
the NFM is based on conflicting interpretations of the data.
38
Annex XV
26
Figure 4-2. A) Groundwater level contours in the Silala NFM, interpolated from piezometer
wells, spring elevations, and wetlands excavations for soil sampling (Adapted from BCM,
Vol. 4, p. 97). The NFM domain is delimited by the polygon with a black and white border that
shows in black the DHI no-flow boundaries and in white the boundaries through which water
can pass. The blue arrows represent the direction of groundwater flow interpreted from the
contour lines. B) Northern and C) Southern wetlands overall flow directions. (Adapted from
BCM, Vol. 2, p. 371). Note: The text in the lower label of panel C is: “Drained part of wetland
with signs of vegetation changes” (Muñoz et al., 2019).
Spring
<Ii Piezometers (Groundwater Elevation, mast)
--December 2017 Waler Levels
--·-- lnternallonal Border
4482.8
\'.
Annex XV
39
27
Interpretation of the sparse groundwater level data is inevitably subject to uncertainty.
However, given the existence of two distinct aquifers, a more realistic interpretation of
the groundwater data would use two different piezometric maps, one for the shallow
surficial aquifer and one for the deeper ignimbrite aquifer, and include adjustments to
take into account the effects of gaining and losing reaches of the river and the presence
of the low permeability formations, as discussed above. This more detailed approach
would result in contours that are in places very different to those produced by DHI and
would result in the definition of markedly different boundary conditions for the NFM.
4.2 Numerical model
DHI’s NFM, as described in Annex G to DHI (2018) (BCM, Vol. 5, p. 13), is a transient
model but with constant (steady-state) inputs. It covers the area immediately adjacent to
the Orientales and Cajones wetlands (Bolivia’s southern and northern wetlands,
respectively), upstream of the Chile-Bolivia international border. The main purpose of
this model was to determine the impacts of channelization on the Silala River flow. This
model covers an area of 2.56 km2 (25,632 active cells of 10 x 10 m) and was run for a
period of 91 days.
The representation of the system was developed with the MIKE-SHE and MIKE-11
modelling software, for three scenarios, defined in Annex H to DHI (2018) (BCM, Vol.
5, pp. 67-70):
Baseline Scenario: The “Baseline” model represents the current configuration of the
river system, including the historical wetland drainage channels and main river
channelization. It includes coupled flow components for groundwater (3-D), unsaturated
zone (1-D), evapotranspiration, overland flow (2-D) and channel flow (1-D).
No Canal Scenario: The “No Canal” scenario model is identical to the baseline model
except that the 1-D channel flow (i.e. the MIKE-11 model) has been removed from the
setup. The “No Canal” model thus includes coupled flow components for groundwater
(3-D), unsaturated zone (1-D), evapotranspiration and overland flow (2-D).
Undisturbed Scenario: The “Undisturbed” scenario model3 is identical to the “No
Canal” scenario model but the surface topography and unsaturated soil profile
descriptions have been modified to represent the possible long term development of peat
soils (of up to 60cm depth). The “Undisturbed” scenario model includes coupled flow
3 Variously referred to as the “Wetland restoration” scenario (BCM, Vol. 2, p. 303), the “Restored
wetland” scenario (BCM, Vol. 5, p. 70), the “Wetland restoration (undisturbed)” scenario (BR, Vol. 5,
p. 73), and the “Undisturbed” scenario (BR, Vol. 5, p. 73).
40
Annex XV
28
components for groundwater (3-D), unsaturated zone (1-D), evapotranspiration and
overland flow (2-D).
The Baseline scenario was modelled using the MIKE-11 model (1D Surface water flow
model) to represent the channel flow coupled with the MIKE-SHE model (integrated
hydrological and groundwater model). The No Canal and Undisturbed scenarios were
modelled using only the MIKE-SHE model. The lack of a MIKE-11 component for the
No Canal and Undisturbed scenarios implies that there would be no surface water flow
channels if the channelization was removed, which is incorrect. This conclusion has not
been justified by DHI. In addition, the MIKE-SHE model is based on a coarser spatial
resolution, which means that the routing of flow (as overland flow) in the No Canal and
Undisturbed scenarios is not directly comparable to that of MIKE-11 used for the
Baseline scenario.
4.2.1 Topography of the NFM
To study the comparability of the three scenarios developed by DHI (2018), a very basic
requirement is to review the topography, or ground surface elevation, used in each of
them. From this review, it was found that each of the three scenarios uses a different
topography, and that the two models used in the Baseline scenario – MIKE-SHE and
MIKE-11 – also use different topographies. The DHI (2018) report states that there is a
change in topography between the No Canal and Undisturbed scenarios, and some small
differences would be expected, given that long term growth of wetland peat soils is
included. However there is no mention of differences between the topographies in the
Baseline and No Canal scenarios.
For the Baseline scenario, the channel sections’ topography (i.e., the Baseline MIKE-11
model) was constructed combining SENAMHI channel dimension surveys and digital
surface model (DSM), which allows reference to this discretization as the closest to the
real topography in the catchment. The Baseline scenario topography used by DHI
(2018) in the Baseline MIKE-SHE model (which is different from the Baseline MIKE-
11 topography), was obtained from a high resolution DEM “based on measurements
taken during a drone flight in the last half of 2016 (IGM, 2016)” (BCM, Vol. 2, p. 325).
Additionally, in both the No Canal and Undisturbed scenarios the topography of the
natural terrain was also obtained by DEM data, but it was altered to remove the channel
sections. The original files that contain the three MIKE-SHE topographies are:
• Baseline: xxx_topo_5m.dfs2
• No Canal: xxx_topo_5m_adj_v2.dfs2
• Undisturbed: xxx_topo_5m_undisturbed.dfs2
We extracted various cross sections from the MIKE-SHE topographies for comparison.
The locations of these cross sections correspond to those used in the Baseline MIKE-11
Annex XV
41
29
model, so it is possible to compare the topography from both the Baseline MIKE-11 and
the three MIKE-SHE models. Figure 4-3 and Figure 4-4 each show the ground surface
elevation of two cross sections from the three scenarios modelled using MIKE-SHE and
the ground elevation of the same sections in the Baseline MIKE-11 model. For an
appropriate definition of topography, the three MIKE-SHE model cross sections should
coincide, except where a small elevation difference (with a maximum of 0.6 m) is
created due to assumed peat soil development. The MIKE-SHE model cross sections
should also approximate the MIKE-11 cross sections, but with a coarser resolution. For
all the cross sections presented in Figure 4-3 and Figure 4-4 and most of the reviewed
cross sections, the Undisturbed scenario always overestimates the river bottom
elevation. While it was expected that the Undisturbed topography would be higher than
the others due to the assumed peat growth, the observed differences are much larger
than expected. For example, the topography of the Undisturbed scenario in cross
sections no. 3560 and 3370, shown in Figure 4-3, presents differences of almost 7
meters compared to the Baseline MIKE-11 channel bottom (cross section no. 3560) and
of 3 meters compared to the Baseline MIKE-SHE topography (cross section 3370). The
observed differences show that these three scenarios represent totally different
topographies. The same issue is illustrated with the cross sections in Figure 4-4. These
should be seen in the context of DHI’s aim to show firstly the effect of the channels (the
wetland drainage channels are generally less than 0.5 m deep, and the main channel
depths less than 1 meter (see BCM, Vol.5, pp. 32-39)), and secondly, the scenario of
peat growth, which increases existing peat depths by a maximum of 0.6 m (BCM Vol.
5, p. 70). The large and unrealistic topographic differences used by DHI are therefore
much greater than the small changes to be studied, which indicates that the simulations
of the different scenarios are neither equivalent nor comparable.
42
Annex XV
30
Figure 4-3. Ground surface elevations used in the Bolivian NFM model scenarios compared at
two cross sections of the main channel near the international border.
Cross section no. 3S60 Cross section no. 3370
4396 4304
4394
4392
4290
4288
4286
4284
g
C t-r~ //-
>
QJ
uJ
~ --- --- ---- ---- 'l
I ,, -- ~ ..... ~
Distance (m)
4302
4300
4298
4296
4294
4292
I
I
1 ,
C: ,....
~O
'.;;
>
~ QJ
uJ
~-··· ....... /
i-,,...__ I /
I L.J
Distar ce(m)
2 4 6 8 10 12 14 16 2 4 6 8 10 12
- Baseline MIKE-11 - Undisturbed MIKE-SHE • • • No Canal MIKE-SHE Baseline MIKE-SHE
Annex XV
43
31
Figure 4-4. Ground surface elevations used in the Bolivian NFM model scenarios compared at
two cross sections of the main channel in the Orientales wetland. Specifically, in these cross
sections the Baseline and the No Canal topographies from the MIKE-SHE model coincide and
the black dotted line obscures the yellow line.
4387.8
4387.6
4387.4
4387.2
4387
4386.8
4386.6
4386.4
4386.2
0
Area
_"'- Enlarged
...,.,a.1-
□-
Cross section no.1110
Dista ce (m)
2 4 6 8 10 12
4392.8
4392.61--
c I
4392.4 .Q : "~' ---------------
Cross section no. 890
4392.2.-w_ ___ ,....,-t----t----t------+-------.r--+-----1
4391.8
4391.6 f-------+--....... -+---+--+---+-----,
4391 .4 ~-----~--D~s_ta_n_c_e_(~ l--~--~-~
0 2 4 6 8 10 12 14
- Baseline MIKE-11 - Undisturbed MIKE-SHE • • • No Canal MIKE-SHE Baseline MIKE-SHE
44
Annex XV
32
Figure 4-5 shows the difference between the No Canal and the Undisturbed scenarios
topographies. Here, differences between 0 and 0.4 meters are noted, which are
reasonable and expected given that the scenario represents possible long term peat
development.
Figure 4-5. Difference between No Canal and Undisturbed model topographies.
Figure 4-6 shows, in plan view, the differences between the topography of the Baseline
MIKE-SHE and the No Canal scenario in the NFM. As can be seen from this figure,
differences in elevation (mostly over 1.5 m higher in the No Canal scenario) are large in
comparison with the depths of the channels (typically 0.3 to 0.8 m). A plan view of the
difference between Baseline MIKE-11 topography and any version of the MIKE-SHE
topography has not been included because the MIKE-11 topographic information is
linear, while the MIKE-SHE information is provided as a gridded digital elevation
model (DEM). However, our analysis of individual MIKE-11 cross sections indicates
that the differences are substantial (see Figure 4-3 and Figure 4-4).
300 600
Meters
PAercator Prt1ject100, WGS 84
900
CJ
0
Topography difference: Undisturbed versus No Canal
Topography difference Im)
D D CJ
0.05 0.1 0.15 0.2 -0.25 --- 0.3 0.35 0.4
Annex XV
45
33
Figure 4-6. Difference between No Canal MIKE-SHE and Baseline MIKE-SHE topographies.
The very large differences between the topography used in the Baseline MIKE-SHE and
Baseline MIKE-11 models, on the one hand, and the No Canal MIKE-SHE model, on
the other, are not described in the DHI report. These differences, especially the
differences of up to 7 m between the Baseline MIKE-11 and No Canal MIKE-SHE
topographies shown at the downstream end of the catchment in Figure 4-3, mean that
the No Canal scenario is not simply representing the removal of the channels, it also
represents an increase in the level of the land surface on the Bolivian side of the border.
This is an enormous change in ground level, equivalent to a structure the height of a
two-story building spanning the width of the river valley and extending at least 200 m
along the river.
BOLIV-IA --
Topography
difference (m)
-2'1.5
0 1
D 0.5
DO
□ -o.s
□ -1
- s -1.5
D Wetlands
46
Annex XV
34
Raising the ground surface in this way would reduce the amount of water that would be
able to enter the surface water system from groundwater and increase the amount that
would leak from the surface water system into groundwater.
In terms of the boundary conditions used by DHI in their model, the dramatic raising of
the ground surface would also have the effect of increasing the groundwater heads at the
inflow and outflow boundaries, which would in turn reduce the groundwater inflows to
the model (from the fixed head boundaries), and increase the groundwater outflows
(through the fixed gradient boundaries), leaving less water available to appear as surface
water flow in their model.
As DHI’s comparison of flows with and without the channels only refer to the surface
water component of flow, artificially diverting from the surface water system to the
groundwater system in this way gives a false impression of the influence of the
channels.
These major differences between the Baseline and No Canal and Undisturbed scenarios
are not described in any way in the DHI report. The failure to present this information in
the Bolivia’s Counter-Memorial leads to a comparison that is unjustified and incorrect,
and exaggerates the effects that Bolivia is attempting to prove. At best, therefore, this is
highly misleading for the Court.
4.2.2 Steady-state verification
The water balance from the Baseline scenario was examined to see if the model had
reached a steady state. This is important as otherwise the model results will be
influenced by the initial conditions, and the estimated flows will be affected because the
water balance includes unrealistic changes in storage. A steady state condition means
that the sum of the inflows is equal to the sum of the outflows, and any changes in
groundwater storage should be negligible (i.e., groundwater levels have reached an
equilibrium).
Figure 4-7 shows the flow rates to and from groundwater storage over time in the
Baseline scenario. By the end of the simulation, there are still significant flows (4 l/s)
coming out from groundwater storage. Therefore, the model had not reached a steady
state at the end of the simulation period and the simulated flows are influenced by the
model initial conditions and an associated error in the water balance.
Annex XV
47
35
Figure 4-7. Flows into groundwater storage in the NFM, indicating that steady state has not
been reached.
4.2.3 Boundary conditions
The distribution of boundary condition types is the same for the three scenarios of the
NFM and is shown in Figure 4-8. Note that the NFM comprises three layers with depth
(called by DHI in its NFM files Near Surface, Upper Silala Ignimbrite (Bol), and Lower
Silala Ignimbrite (Bol))4. The same distribution of boundary condition types is used in
each layer. Specifically, Figure 4-8 shows the boundary conditions of the Near Surface
layer. The DHI model boundary conditions consist of three types (BCM, Vol. 5, p. 18):
• Fixed head: constant in time and equal to the Initial Potential Head (variable in
space) in two borders, one at the eastern border and another at the northern
border.
• No-Flow: one at the northern border and the whole southern border.
• Fixed gradient: equal to -0.05 at the western border. This gradient was obtained
from Arcadis (2017).
DHI defined the boundary conditions using the piezometric map presented in Figure 2-3
(BCM, Vol. 2, p. 293). In Annex G to DHI (2018) (BCM, Vol. 5, p. 18), it is explained
that a no-flow boundary is imposed where the head contour lines are perpendicular to
the model boundary. Thus, the only flows entering the numerical model should be
located where the piezometric lines are not perpendicular to the model borders.
However, the boundary conditions are not consistent with the piezometric map
presented by DHI (2018) in their conceptual model. As can be seen in Figure 4-2A,
there should be flow exiting the model through the southern boundary, but instead, DHI
4 Note that the three scenarios of the NFM are not to be confused with the three depth layers in the model.
r--
30
-;;;- ::::,. 25
QJ
Oil 20 !ti
.0..,
VI ... 15 .Q..J,
!ti
~ 10 -0
C:
:::,
0 5 L.
Oil
.0..,
C: 0
~ 01/01/2016 _Q
LL -5
29/01/2016 12/02/2016 26/02/2016 11/03/2016 25/03 2016
-10 SubSurt .St or.Change
48
Annex XV
36
(2018) imposes a no-flow condition at that boundary. Additionally, the no-flow
condition imposed on two boundaries of the model is an artificial condition, since there
are no impermeable or very low permeability rocks at those boundaries (except where
the Miocene volcanics outcrop to the southeast of the Cajones, but this is Chile’s
interpretation of the Geology, not Bolivia’s). Consequently, both the conceptual and the
numerical models are incorrect. The numerical model is not only based on a conceptual
model that does not represent correctly the reality of the data presented, but also is not
consistent with DHI’s own conceptual model.
Figure 4-8: Near Field Model boundary conditions of the Near Surface layer. The same
distribution of boundary condition types is used in each layer, but the Fixed Head boundary
values change between layers. All three scenarios have the same boundary conditions.
4.2.4 Inconsistency between the Water Balance Model and the Near Field
Model
Figure 4-9 shows the boundary conditions and the initial potential head contour lines of
both the Water Balance Model and the Near Field Model (Baseline and No Canal
scenarios). In both models the boundary conditions are shown by colour coding on the
model boundary, and for the WBM they are also illustrated with arrows showing flow
directions. The head contour lines are different for the two models. Also, when the head
contours from the WBM are compared to the NFM boundary conditions, it is observed
that there is an outflow from the WBM that should flow into the NFM through the
northern No-Flow boundary (black arrow). Additionally, it is observed that a part of the
WBM outflow is exiting the WBM model across the international border without
JOO 600 900
Meters
Mercato, Pr1Jjl'(tioo, WGS S4
-
Fixed Head
(initial potential head) I
Initial potential head (masl)
DD D -
,;;4280 4320 4360 4400 .,4440
(
Annex XV
49
37
entering the NFM model (black arrow). Therefore, there is an inconsistency between the
boundary conditions and the groundwater flow directions of the two models.
In addition to the inconsistencies between the flow directions at the boundaries of the
two models, there are also inconsistencies between the flow rates. The 198 l/s that
leaves the WBM (see Table 3-1) is not the same as the 212 l/s of groundwater flow that
enters the Baseline NFM scenario (Table 4-4). Furthermore, the amounts of
groundwater flow that enter the No Canal and Undisturbed scenarios of the NFM model
(190 l/s and 185 l/s from Table 4-4) are reduced relative to the Baseline scenario. We
note that the inflows to the near field model are determined by the model boundary
conditions. The effect of this was extensively discussed in Chile’s Reply (see Expert
Report by Wheater and Peach, CR Vol.1, pp. 85-154) where it was shown that this will
have exaggerated the effect of channelization and peat development, perhaps by a factor
of 20. We reiterate here that the recharge to the wider groundwater catchment is
unaffected by these localized effects, and that there is no explanation given by DHI for
where the missing water has gone in these scenarios.
50
Annex XV
38
Figure 4-9. Boundary conditions and initial potential head contour lines of both Water Balance
and Near Field models. Neither the contour lines nor the flow directions coincide in the two
models.
Initial potential
head (masl)
- .e4440 c::::J 4400
c::::J 4360
c::::J 4320
- s4280
WBM outflow that
goes into NFM
WBM outflow that
does not go into NFM
- -~~ ''
43;, --:
.,. - ·- - - .. ,
Fixed Gradient
1-0.05)
, ,- -4380 __ ,
,, ,. - ...
, .
BOLIVIA
Annex XV
51
39
4.2.5 Initial Potential Head of the Near Field –MIKE-SHE model
According to DHI (BCM, Vol. 5, p. 18), the initial potential head map was built using
the information obtained in the field from manual measurements. We compared the
initial potential heads of the Lower Silala Ignimbrite (Bolivia defined) layer
(Computational layer n°3) for the Baseline and No Canal scenarios (which are the same)
and the Undisturbed scenarios (Figure 4-10). The initial potential heads used by DHI
(2018) in the Baseline scenario are the same as the No Canal scenario, but are different
from the Undisturbed scenario. Given that these scenarios are supposed to be steadystate
simulations and represent different physical configurations it would be reasonable
for them to have different initial conditions. However, there is a methodological
inconsistency as the same initial conditions are used for the Baseline and No Canal
scenarios but not in the Undisturbed scenario, and there is no explanation given to
support these differences. We also note that since none of the three simulations reached
the steady-state condition (see Section 4.2.2), the initial groundwater heads influence
the results of the simulations.
The differences between the initial potential heads in the Baseline/No Canal and the
Undisturbed scenarios are shown in Figure 4-11, and vary between -18 m and +16.5 m.
These very large imposed differences in the initial conditions mean that the three
simulations are neither equivalent nor comparable. Figure 4-12 shows the difference
between the final heads of the Baseline scenario and the No Canal and Undisturbed
scenarios.
52
Annex XV
40
Figure 4-10. Initial potential head map and contour lines in the NFM.
0 300 600 900
Meters
Mercator Projection, WGS 84
0 600
Meters
Mercator Projection, WGS 84
Initial potential head: Baseline and No Canal
Fixed Head
(initial potential head)
I
I
I
I
Initial potential head: Undii turbed
Fixed Head
(initial potential head)
Initial potential head (masl)
(Lower Silala lgnimbrite)
s-4280 4C32J0 4C36J0 4C40J0 2-:4440
I
!
Annex XV
53
41
Figure 4-11. Initial potential head difference between the Baseline/No Canal scenarios and the
Undisturbed scenario. Positive values correspond to locations where the initial potential head
is higher in the Undisturbed scenario.
300 600
Meters
Mercator Projection, WGS 34
I
.-~--Initial potential head difference: Baseline and No Canal versus Undisturbed
-,;;-18
Fixed Head
!initial potential head)
Initial potential head difference (ml
c:::::J
-12
c:::::J
-6
c:::::J
0
c:::::J
6 -12 -.e18
54
Annex XV
42
Figure 4-12. Final potential head difference between the Baseline and the No Canal scenarios
(upper panel) and the Baseline and Undisturbed scenario (lower panel). Positive values
correspond to locations where the final potential head is higher in the Baseline scenario.
4.2.6 Surface water modelling
In the Baseline scenario, the channel sections were represented explicitly in the MIKE-
11 model, whereas in the No Canal and Undisturbed scenarios the MIKE-11 component
of the model was removed and the natural river sections were not represented explicitly,
meaning that the sections for the No Canal and Undisturbed scenarios have no natural
channel(s). Figure 4-13 shows the MIKE-SHE and MIKE-11 topographies of the same
cross-section. Also, when reviewing the model files, it was found that, to represent the
wetland springs, there were local flow injections in all three scenarios. These inflows
will hereinafter be referred to as “spring recharge”. This feature is inconsistent with the
physical basis of the model, in which groundwater inflow to the Near Field is
determined by the NFM fixed head inflow boundary conditions. It appears that
300 600
Meters
Mtrmor Projection, ~S 54
300 600
Meters
Mmalor Project 100, W6S 84
900
-s-6
Final head difference: Baseline versus N~ Canal
Fixed Head/
(initial potential head)
Final head difference: Baseline versus Undi£turbed
Fixl!d Head
(initial pote ntial head)
Final head difference (m)
c::::::J
-4
c::::::J
-2
c::::::J
0 -2:2
Annex XV
55
43
additional water has been created arbitrarily. This characteristic of the model is neither
explained nor justified in DHI's report.
Table 4-1 summarizes the main aspects of river elements and the way that the “spring
recharge” was modelled in the different scenarios.
Figure 4-13. Representation of the channels in the different scenarios. The yellow, dotted black
and purple lines represent the topography of the Baseline, No Canal and Undisturbed scenarios
of the MIKE-SHE model, respectively. The blue line represents the channel section of the
MIKE-11 model in the Baseline scenario. In the No Canal and Undisturbed scenarios, these
channel sections were not represented explicitly.
Cross section no. 251 O
4362.----------,----------,----------r----------,-------------,
43601---------1---------t---------,.-----~--1------------1
4358
4356
4354 t-=--------+-----------t---+-----+----------+-~---------I
4350
4348
0 5
- Baseline MIKE-11
Distance (m) -~-- --~-
15 20 25
- Undisturbed MIKE-SHE ■ ■ ■ No Canal MIKE-SHE Baseline MIKE-SHE
56
Annex XV
44
Table 4-1. Summary of main aspects of river elements and the way that the spring recharge is
modelled in the different scenarios.
As presented in Table 4-1, the spring recharge incorporated in the model is different for
each scenario. In the Baseline scenario, a constant flow of 1 l/s at the headwater of each
of 32 channels and at 10 springs in the MIKE-11 model is injected (a total of 42 l/s).
Figure 4-14 shows the location of these inflows. In contrast, in the No Canal and
Undisturbed scenarios, a total of 31 l/s (at 1 l/s or 2 l/s per spring cell) was injected into
the MIKE-SHE model as local precipitation in a subset of the spring cells (Figure
4-15). The flow injected as precipitation in the No Canal and Undisturbed scenarios not
only contributes to the overland flow (68%), but also part of this flow directly interacts
with the saturated and the unsaturated zones (31%). This difference between the
scenarios, which affects the distribution of surface water and groundwater outflows
from the catchment, is not explained or justified by the DHI in its reports. The
implications of this for DHI’s water balances, and the supposed impacts of
channelization, are discussed below in section 4.2.8.
It is important to mention that a sophisticated coupled surface water-groundwater model
should be able to represent spring flows as interactions between groundwater and
surface water: where the water table comes to surface, springs should appear in the
groundwater model, representing discharge points for groundwater, and sources of
surface water. It is unrealistic to represent the springs as anything other than interactions
with groundwater and representing them as point sources of water injection as DHI have
done is simply incorrect.
Scenario Hydrological
Model
Canal or
Natural/Undisturbed
river section
River
element
Spring Recharge Elevation
Baseline MIKESHE+
MIKE-11
modelled by MIKE-
11 – Dynamic Wave
Channel
and banks
Local flow at
headwaters and
springs: 42 l/s
Topographical
profiles
No Canal MIKE-SHE modelled as Overland
Flow by MIKE-SHE
– Diffusive Wave
Approximation
Natural
sections
Local Precipitation:
31 l/s
(95 mm/in 91 days)
First
Modification of
Digital Elevation
Model
Undisturbed MIKE-SHE modelled as Overland
Flow by MIKE-SHE
– Diffusive Wave
Approximation
Restored
sections
Local Precipitation:
31 l/s
(95 mm/in 91 days)
Second
Modification of
Digital Elevation
Model
Annex XV
57
45
Figure 4-14. Constant inflow at each channel headwater node to model additional spring
recharge for the Baseline MIKE-11 scenario, not as a result of interaction between the
groundwater and surface water models
300 600
Meters
~mor Projtction, WCiS 84
900
0c := =6i:::O= =1lc::O:===18i0'
Mi,rator Projl'ction,: WG~M
Baseline MIKE-11
o Boundary inflow at headwaters (1 1/s)
• Springs
Model drainage network (MIKE-11)
D Wetlands
58
Annex XV
46
Figure 4-15. In the No Canal and Undisturbed scenarios, additional spring recharge is injected
as “precipitation” into the spring cells, not as a result of the interaction between the surface
and the groundwater in the coupled model MIKE-SHE.
4.2.6.1 Surface flow calculation in the baseline scenario – MIKE-11
To calculate the surface flows in the channels modelled in the Baseline scenario, the
complete 1-D dynamic wave formulation of the Saint-Venant equations is solved using
the MIKE-11 model. When coupling the MIKE-11 and the MIKE-SHE models, both the
overland flow and groundwater flow modelled in MIKE-SHE are linked directly to
MIKE-11 through MIKE-SHE Links (DHI, 2017b).
During a simulation, water levels within the coupled reaches are transferred from
MIKE-11 to adjacent MIKE-SHE links. In turn, MIKE-SHE calculates the overland
flow to each river link from neighboring grid squares and the river-aquifer exchange.
These terms are fed back to the corresponding MIKE-11 as lateral inflows or outflows.
0 300 (i(J() 900
Meters
MEnator l'rojed ion, YliiS 34
B
~~
l o\o
~
0

60 120
Meters
No Canal MIKE-SHE and Undisturbed MIKE-SHE
C
0
nao
□ Injected as local precipitation (2 1/s)
a Injected as loca l precipitation (1 1/ s)
+ Springs
[=:J Wetlands
300
Annex XV
59
47
These flow transfers are directly dependent on the topography used for the MIKE-11
sections.
The MIKE-11 model was reviewed in detail. In the following sub-sections we present
the results of the main channel reach between the Orientales and Cajones confluence
and the last section of the MIKE-11 model (Figure 4-16).
Figure 4-16. Reviewed reach and location of the cross sections (in pink lines) that are presented
in the following sub-sections.
BOLIVIA
Baseline MIKE-11
60
Annex XV
48
4.2.6.1.1 Downstream boundary condition
The discharge at the exit of the MIKE-11 Baseline scenario is calculated using a stagedischarge
curve in the last section of the MIKE-11 model (3635, which is located near
the international border outside the NFM boundaries), and the slope between the two
last cross sections (3560 and 3635) is zero, which is unrealistic (Figure 4-17). This
curve was defined to impose a critical flow condition, i.e., Froude number (Fr) equal to
1. The stage-discharge curve is then defined as the one in which Q and h meet Fr = 1:
𝐹𝐹𝐹𝐹 = 1 =
𝑄𝑄(ℎ)
􀶨𝑔𝑔 ⋅ 𝐴𝐴(ℎ)3
𝑇𝑇(ℎ)
where T is the width of the channel open surface, A is the cross sectional area of water
in the channel and g is the acceleration of gravity.
This feature of the model is not explained or justified in the DHI report. The water level
at the exit of the model in the last timestep is 4282.97 m.a.s.l., which corresponds to a
flow of 150 l/s. This water depth is obtained after 91 days of simulation, where the
steady state has not yet been reached in the integrated MIKE-SHE/MIKE-11 model.
When comparing the flow rates of the MIKE-11 model (150 l/s) with those of the
MIKE-SHE water balance (143 l/s), a difference of 7 l/s is obtained (see Table 4-4 in
Section 4.2.7), which is attributed to the use of the stage-discharge curve. The most
significant aspect of this difference is that it was not reported in the DHI reports and that
it results in an additional 7 l/s difference in flow rates between the Baseline and No
Canal and Undisturbed scenarios, which is then reported as part of the impact of the
channelization, when actually it is due to errors in the MIKE-11 modelling. The logical
thing to do would be to compare the results of the MIKE-SHE models, instead of
mixing the results of the MIKE-11 model in the Baseline scenario and the MIKE-SHE
results in the No Canal and Undisturbed scenarios.
4.2.6.1.2 Manning coefficient and flow conditions
The Manning coefficient, n, which represents the hydraulic roughness of the channels,
was found to be extremely high (n = 0.200).
Table 4-2 shows typical Manning coefficients. In the case of the Silala River, whose
water flows through the channel, the expected values would be between 0.017 and 0.035
in the channelized reaches (minimum and maximum values for built masonry channels)
and between 0.035 and 0.05 in the natural ones (minimum and maximum values for
natural streams). Therefore, using a resistance of n = 0.200, which is representative of
Annex XV
61
49
the highest values recommended for flood plains covered by dense trees, is physically
unrealistic.
Table 4-2. Typical Manning coefficients, n, for open channel flow for lined or built-up channels,
natural streams and flood plains. The complete table is presented in Appendix B. Source: Chow
(1959)
As a result of the high imposed value of the Manning coefficient, the normal depth of
the channel is increased and the flow conditions are subcritical (Fr < 1) in almost all the
cross sections, which does not coincide with what is observed in the field, i.e.,
supercritical flow conditions (Fr > 1). Subcritical conditions are observed when the flow
is dominated by gravitational forces and behaves in a slow or stable manner, whereas a
supercritical flow is dominated by inertial forces, and behaves in a fast or unstable way.
Considering the correct geometry of the last section of the river represented by the
MIKE-11 model, i.e. a topographic slope of 5%, and a Manning coefficient of 0.035
(maximum value for built masonry channels), the normal depths of the cross section
were calculated for the flow range reported by DHI (between 160 and 210 l/s),
obtaining supercritical conditions (see Table 4-3). These results are consistent with field
observations. However, DHI results show subcritical conditions (Froude number < 1)
for most of the cross-sections, as shown in Figure 4-17. Hence, the results of DHI are
unrealistic and conceptually inconsistent with the observed flow regime.
Type of channel and description Minimum Normal Maximum
B. Lined or Built-Up Channels
B-2. Nonmetal
g.- Masonry
1. Cemented rubble 0.017 0.025 0.030
2. Dry rubble 0.023 0.032 0.035
D. Natural streams
D-1. Minor streams (top width at flood stage 100 ft)
a.- Streams on plain
4. Clean, winding some pools and shoals, some
weeds and stones 0.035 0.045 0.05
D-2. Flood plains
d.-Trees
1. Dense willows, summer, straight 0.110 0.150 0.200
62
Annex XV
50
Table 4-3. Flow conditions in the Silala River at the international border. hc is the critical
depth and hn is the normal depth of the Silala River at the international border. As hn is higher
than hc, the normal flow condition is subcritical.
The resulting increase in the normal water depth (subcritical flow) due to the high
Manning’s n and the imposition of a critical flow in the last cross section affect the
river-aquifer interactions, for example, more water than is realistic could be expected to
infiltrate into the aquifer due to a larger hydraulic gradient between the river and the
aquifer.
Discharge (l/s) hc (m) hn (m) Froude (-) Flow conditions
160 0.18 1.57 1.17 Supercritical
210 I 0.21 I 1.90 I 1.16 Supercritical
Annex XV
63
51
Figure 4-17. Froude number in the reach between the wetland confluence and the last section of the model. The vertical numbers represent
the cross-section number, which is also the distance from the beginning of the main channel, located in the headwaters of the Orientales
wetland and not shown in this profile. The x axis shows the distance from the beginning of the analyzed reach, which starts at 2940 m and
ends at 3635 m of the MAINCANAL in MIKE-11.
[meter) Altutude (m.a.s.1.) Froude No - 31-3-2016 23:59:54 Froude (-) [()) ~"'I I I
1.0
.. ... ... , .. . ...... .. •• .... -i, .. i·" ............ t-· ........ . ... .. ..... , .. .. ... , ..... 4325.0
00 0 .9 a.,., "a', r0- -
':'"' "' 0
4320.01 N en 0 en ... N 0 0 I t 0 .8
M m
0 0
m "' 0
4315.01 "----.... .., ;::: 6 0.... .. I t 0 .7 0 "' m... 0 0
M 0 ~ --· r-.. .......: . "N ' ....... ······ . ·····, 1 t 0 .6 m '"' o m
m ."..'.
"' .0.. . 0
4305.0 1 "'----.. N m
m N 0.5 "'
4300.0 r0- - "0 ' 0 .4 m "' co m "' 0
V i
4295.0 "' -------- 6 · · ·······- ·-··-·-· .,q,.' 0 .3
m
4290.0 . 0 .2
0.1 . .
MAINCANAL 2940 - 3635 0 .0
4280.0
0 .0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 550.0 600.0 650.0 700.0
1ml
64
Annex XV
52
4.2.6.1.3 Channel geometry
The channel geometry of the MIKE-11 model was also reviewed in depth. It was found
that water at some of the cross sections does not flow through the main channel. Figure
4-18 shows the water level in the reach between the confluence of the Orientales and
Cajones wetlands and the last section of the MIKE-11 model. Figure 4-19 shows some
of the cross sections where the water does not flow through the main channel and Figure
4-16 shows the location of these sections. DHI (2018) provided no information related
to the validity of the topography used in the Baseline MIKE-11 model. For instance, it
is unclear why the main channel does not follow the bottom of the valley.
In two cross sections of the studied reach (between sections 2940 and 3625 of the main
channel) the channel is simulated as being flooded and the water flows over the river
banks (Figure 4-20). This behaviour does not represent the reality, where under an
average flow condition the water only flows through the main channel.
Annex XV
65
53
Figure 4-18. Water level in the reach between the confluence of the Orientales and Cajones wetlands and the last section of the MIKE-11
model. Some of the cross sections where water does not flow through the channel are depicted with a red circle (Figure 4-19).
[meter)
4330.0
4325.0,
00 .. .,, 0
.a..,.."..'. .,a.._.,.
4315.0
4310.0
4305.0
4300.0
4295.0
4290.0
4285.0
4280.0
0.0 50.0 100.0 150.0
.0. ..
.....,. ..0.. .,. ..,
200.0 250.0
Water Level - 1-4-2016 00:00:00
0
.."...,'.
MAINCANAL 2940 • 3635
300.0 350.0 400.0 450.0 500.0
Water level
Minimum water level
Maximum water level
Top of left bank
Top of right bank
Channel bottom
550.0 600.0 650.0
.".,'
"..,'
700.0
[ml
66
Annex XV
54
Figure 4-19. Some of the cross sections where the water does not flow through the main
channel.
(!114'(erl MAINCANA. l 32:0 31-03-201-615:0-0:0-0 --
00).6
430JA
OOJ.l
Main channel
4.JOJ.0 I 4,0l.&
002.6
4301.4
002.l
4302.0
4301.8
43016
oou
001..2
-tc.0 -12.0 -10.0 ... o -6.0 -40 -2..0 0.0 2.0 ...
[rnrttr]
(mtterJ MAINCANAL 3290 31-03-2016 15:00:00
42'9.0
41'8,8 Main channel
,nu
42'8.4 I
429U
4191..0
42'7.8
'1J7.6
4297.4
•2'7.2
4?97.0
-4.0 •l.0 ., .. ·l.0 0.0 1.0 2.0 J.O ,.o 5.0 ... ,.o
(rnttflfl
(ff'lt'tef] MAINCANAL 3520 31-03-2016 15:00:00
4217.0
42SG 8 Main channel
•1&6.4 I 4U6.2
4286.0
428U
'285.6
,us.•
'18S2
41SS,O
,214.8
•284 5
4284 .•
•214 2
4114,0
·1.0 -7.0 ·6.0 M -4.0 ·3.0 -2.0 ·l.O 0.0 1.0 , .. J.O ... 5.0 , .o ,_, ~o •-• (rneterl
-- Water level - - Maximum water level - - Minimum water level
Annex XV
67
55
Figure 4-20. Cross sections were the channel is flooded.
(IMC«! MAJNCANAL 3540 31-03-2016 15:00:00
•28ul
•21s.1
421S6
uas.,
4215.l
428SO
UMI
OM6
41M 4
0 .. 2
•280
421)1
~.o -ao .7.0 -40 s.o .. 0 .).0 -2.0 •I 0 00 10 ~o 10 0 so ,o 70
,.. ..., , lmorl MAINCANAL l560 31-03-2016 15:00:00
•28u
•1 .. J
•n. l
•n. I
•280
421l9
0831
42aJ7
:::1 •i•J,.t
UU.l
OU..l
•2'11
UIJO .w,
418.t.l
-70 -40 -s.o .. 0 •l.O •l.O ·1.0 0.0 l0 l.O l0 0 s.o '° 70 ,L..O .. ..,
-- Water level - - Maximum water level - - Minimum water level
68
Annex XV
56
4.2.6.1.4 Numerical instability in MIKE-11 model
When reviewing the Baseline MIKE-11 scenario results, errors were found in the DHI’s
hydraulic modelling:
• Abrupt changes in river flow were found at different points.
• There are flow variations along the river that never stabilize, even at the end of
the simulated period. Figure 4-21 shows the flow variations at two points in the
river throughout the simulation.
Annex XV
69
57
Figure 4-21. Flow variations in different sections of the reach between the Cajones and
Orientales confluence and the international border. (A) Plan view of the NFM domain that
depicts the locations of the two sections analyzed. (B) Discharge time series of the flow at
sections 3550 and 3160. (C) Zoom into the last two days of the flow at sections 3550 and 3160.
300 600
Meters
MffcatorProje<licri,\\'GSM
0.19
0.18
017
~
.E.
.~. 0.16 .c :;:
i5 0.15
0.14
0.13
02-03-2016
0.170
0.165
0.160
~0.155
1
~0.150
J!
~ 0.145
0.140
0.135
0.130
30-03-2016
900
07-03-2016 12-03-2016 17-03-2016 22-03-2016
- MAINCANAL 3550 MAINCANAL 3160
31-03-2016
- MAINCANAL 3550 - MAIN CANAL 3160
27-03-2016 01-04-2016
01-04-2016
70
Annex XV
58
4.2.6.2 Surface flow calculation in the No Canal and Undisturbed scenarios –
MIKE-SHE Overland flow
The surface flow in both No Canal and Undisturbed scenarios was calculated as
overland flow in the MIKE-SHE model: this is a quite different methodology to the
Baseline scenario. The overland flow was calculated using the Diffusive Wave
approximation of the Saint-Venant 2-D equations (Chow, 2010), and a different
numerical scheme, which provides a less precise calculation of the surface flows
(compared to the dynamic wave in Baseline scenario). It also uses a much coarser
spatial resolution for the flow routing, as noted above. More specifically, in both the No
Canal and Undisturbed scenarios there are no river channels identified, as opposed to
the Baseline scenario, where the MIKE-11 module is used to transport the flow outside
the basin, following the channel and ravine paths existing in the Silala basin. In reality
in the absence of channelization, the overland flows would combine into numerous
channels, which might change over time, and flow down the topographic gradient to the
Silala ravine and thence across the border into Chile. Such braided stream channels are
commonly seen in altiplano wetlands (see Figure 4-22). The use of the SHE overland
flow algorithms therefore fails to represent the natural channel flow processes, and also
provides a very different representation of the possible interactions between surface
flow and groundwater, creating further modelling differences to confuse the scenario
comparison.
Figure 4-22. Photograph taken at the Quebrada Negra wetland that shows the overland flow
combined into numerous channels.
Annex XV
71
59
4.2.7 Water balance results of the different scenarios modelled by DHI
(2018)
Considering the aspects described in Table 4-1, we have reconstructed the water balance
provided in Table 1 of Annex H to DHI (2018) (BCM, Vol. 5, p. 67). Table 4-4 shows
the main aspects of the water balance obtained from the result files (.sheres) provided
by DHI.
Table 4-5 presents the water balance reported in Table 1 of Annex H to the DHI Report
(BCM, Vol. 5, p. 67). Given that the models presented by DHI (2018) are not at steady
state (Section 4.2.2), the water balance calculations presented in Table 4-4 were
obtained using the difference of the last two-time steps, which are the results that are
closest to steady state.
As noted above, while groundwater inflow to the NFM is generated at the model
boundaries, thus providing the water that should feed the springs, additional spring
flows were represented in the Baseline scenario as point inflows to the channels (spring
recharge), modelled using MIKE-11. In the No Canal and Undisturbed scenarios, these
extra spring recharge were represented by point-source water injections entered as
precipitation rates at each of the spring headwater cells. This precipitation is then
processed by the overland flow module and a water balance in each cell is carried out.
As mentioned above, none of this spring recharge comes from groundwater interaction,
but instead is represented as water apparently created from nowhere, and with no
explanation or justification provided by DHI. The discharges obtained by MIKE-11
(“Total river outflow (MIKE-11)” in Table 4-4) and MIKE-SHE (“Total river outflow
(MIKE-SHE)” in Table 4-4) are different in part because neither of the two models have
reached steady state, but mainly because of the numerical instabilities in the MIKE-11
modelling (see Section 4.2.6.1.4).
72
Annex XV
60
Table 4-4. Detailed NFM water balance for the three scenarios, obtained from the results file provided by DHI. For the Baseline scenario,
the MIKE-11 boundary inflows were considered as spring recharge and included in the Inflow component of the water balance. For the No
Canal and Undisturbed scenarios, precipitation was considered as a point-source spring recharge and was included in the Inflow component
of the water balance.
*42 l/s input at head waters sections in MIKE-11; **31 l/s injected as point-source precipitation in the MIKE-SHE model.
*** the 143 l/s reported as total river outflow (MIKE-SHE) is not the same as the 150 l/s reported as total river outflow (MIKE-
11).
Variables in mm/y Variables in l/s
Baseline No Canal Undisturbed Baseline No Canal Undisturbed
Inflow Variable description 3131 2724 2656 254 221 216
Spring recharge Boundary inflow in MIKE-11/
Precipitation in MIKE-SHE -518 -382 -382 -42* -31** -31**
SubSurf.Bou.Inflow Subsurface boundary inflow -2613 -2342 -2275 -212 -190 -185
Storage change 44 5 64 4 0 5
SubSurf.Stor.Change Subsurface storage change -44 -5 -64 -4 0 -5
OL Stor.Change Overland storage change 0 0 0 0 0 0
Total groundwater outflow 1311 1419 1442 106 115 117
SubSurf.Bou.Outflow Subsurface boundary outflow 1311 1419 1442 106 115 117
Total river outflow (MIKE-SHE) 1766 - - 143*** - -
Baseflow to river Baseflow to river 1226 - - 100 - -
Baseflow from river Baseflow from river -112 - - -9 - -
OL->River/MOUSE Overland flow to river 134 - - 11 - -
Spring recharge Boundary inflow (MIKE-11) 518 - - 42 - -
Total overland outflow (MIKE-SHE) - 1159 1113 - 94 90
OL Bou.Outflow Overland boundary outflow - 1159 1113 - 94 90
Total river outflow (MIKE-11) 1847 - - 150*** - -
Evapotranspiration 126 150 164 10 12 13
Total outflow 3283 2728 2718 267 222 221
Error 27 0 -2 2 0 0
~
Annex XV
73
61
Table 4-5. Detailed NFM water balance for the three scenarios reported in Table 1 of Annex H of DHI’s report.
Variables in mm/y Variables in l/s
Baseline No Canal Undisturbed Baseline No Canal Undisturbed
Inflow 3116 2722 2655 253 221 216
Storage change 49 12 64 4 1 5
Total groundwater outflow 1310 1418 1441 106 115 117
Total overland outflow (MIKE-SHE) - 1159 1112 - 94 90
Total river outflow (MIKE-11) 1846 - - 150 - -
Evapotranspiration 125 150 164 10 12 13
Total outflow 3281 2727 2717 266 221 220
Error 25 0 -2 2 0 0
74
Annex XV
62
We found an important inconsistency when DHI reported the impact of channelization
on surface water flows. In the BCM, DHI states that removing the channels reduces the
river flow by 31 to 40% relative to current conditions (BCM, Vol. 2, p. 303). Then, in
Bolivia’s Rejoinder, DHI reported that removing the channels reduces the river flow by
11% to 33% (BR, Vol. 5, p. 56). The highest values of flow reduction, i.e., the 40% and
the 33%, were calculated using the same data from their model runs (Table 4-5), and
comparing the Total overland flow (MIKE-SHE) from the Undisturbed scenario with
the Total river outflow (MIKE-11) from the Baseline scenario. Nonetheless, the flow
reduction percentages are different. The 40% flow reduction can be calculated from the
values reported in Table 4-5. However, the 33% flow reduction was only replicated
when incorporating 10 l/s of additional surface water flow in the Undisturbed scenario.
The incorporation of this additional 10 l/s to the surface water flow was not explained in
Bolivia’s Rejoinder, but it was included in the Excel spreadsheet named “Water balance
tables – Sensitivity Report.xls”, which was delivered by DHI along with the files
provided to support the Rejoinder modelling (Appendix C). The arbitrary inclusion of
this additional surface water flow is wholly unexplained and thus, in addition to all the
previous issues described before, the estimations of the impact of channelization on
river flow are flawed.
Additionally, we disaggregated the water balance to estimate the groundwater flow that
enters at each boundary in the Baseline model scenario. We calculated the water balance
using the two sub-catchments that are presented in Figure 4-23. This figure also shows
the results of the water balance of each sub-catchment. Taking into consideration the
results of this analysis, most of the groundwater inflow comes from the northern
boundary. When looking at the groundwater levels and contours presented in Figure
4-2, it would be expected that most of the inflow would come from the eastern
boundary.
Annex XV
75
63
Figure 4-23. Sub-catchments (1 and 2) used to calculate the groundwater inflow from each
boundary of the model.
4.2.8 Summary of unreported differences between the DHI scenarios
It can readily be seen from the above discussion that completely different modelling
methodologies were used to simulate the scenarios for the evaluation of the impact of
the channelization. This constitutes poor scientific practice, at the very least, and means
that the results presented to the Court are highly misleading. Broadly speaking, the
differences lie in the fact that (vastly) different topographic surfaces, different forms of
calculating surface flows and different representations of the springs have been used for
the different scenarios.
One of the most significant differences is in the topographies used in the Baseline, No
Canal and Undisturbed scenarios. DHI (2018) only mentions changes made to the
topography in the Undisturbed scenario, the implication being that there are no
differences between the Baseline and the No Canal scenario topographies, other than the
removal of the channels. However, examination of the requested model files reveals
differences of up to 7 m between the MIKE-11 channel topographies used in the
Baseline model and the MIKE-SHE overland flow surfaces used in the No Canal and
Estimated groundwater flow: Baseline
1491/s i
I
CHILE
BOLIVIA
Area
Enlarged
Fixed(Head
(initial potential head)
400 800
Meters '
Mere.nor Prorn. \'fGS 84
1200
76
Annex XV
64
Undisturbed scenarios. These differences will have produced a large part of the
supposed “impacts due to channelization” presented by DHI in the BCM.
Another incorrect and highly unrealistic aspect of the modelling approach is the addition
of external fluxes to represent the springs (“spring recharge”), which should really be a
result of groundwater interactions. Despite having an integrated surface-groundwater
model, only the diffuse groundwater inflow is solely represented by surfacegroundwater
interaction: the spring inflows are additionally represented as external
inputs to the model (spring recharge), with no justification of where this water actually
comes from. In other words, instead of obtaining the spring water flows from
groundwater through the hydrogeological model, artificial point flows are introduced.
In the baseline scenario a total of 42 l/s in the form of point injections is introduced into
the channel system (distributed at 42 spring locations of 1 l/s each) while in the No
Canal and Undisturbed scenarios 31 l/s are introduced via precipitation into the system.
First, there is no explanation of where this spring water comes from (it is not from
groundwater interaction as it should be). Second, the imposed flow is 11 l/s lower in the
No Canal and Undisturbed scenarios than in the Baseline scenario, resulting in a lower
outflow, and the reason to artificially impose a difference of 11 l/s is not explained by
DHI (2018). Third, the addition of this water is not comparable even if the amounts
were equivalent, since the way in which the water is added to the models is different in
the different scenarios. There is no reason to assume that the natural springs would no
longer discharge to surface if the artificial channelization was removed/restored.
The “spring recharge” flows in the Baseline model go directly into the surface water
system, whereas in the No Canal and Undisturbed scenarios 31% of the precipitation
representing the “spring recharge” enters directly into the groundwater system.
Therefore, the way the different scenarios have been set up results in 9.7 l/s (31% of
31 l/s) being transferred directly from the surface water system to the groundwater
system in the No Canal and Undisturbed scenarios. This transfer of water from the
surface water to groundwater systems also produces an additional artificial “impact” or
apparent increase in flow due to the artificial channels.
We conclude that the apparent impacts of the channelization presented in the BCM are
largely a result of the unrealistic way in which the scenarios have been set up, with
around 21 l/s of this apparent impact being due to the (unreported) differences in the
ways the springs are represented in the scenarios, and the rest being due to the large
(unreported) differences between the scenario topographies. Thus, very little of the
supposed “impact” of the channelization presented in the BCM, and also in the BR, is
actually due to the removal of the channels, and the conclusions of the BCM and BR
must therefore be called into question.
Annex XV
77
65
We reiterate that the different ways that topographies and the “springs” have been
represented in the different scenarios are not described in any way in the BCM. There is
no mention of any differences to the topography between the Baseline and No Canal
scenarios (only the Undisturbed scenario is supposed to have any topography changes
according to DHI’s report), and the “spring” flows are presented in Table 1 of Annex H
to the DHI Report (BCM, Vol. 5, p. 67) under the same heading labelled as “inflow”,
with no distinction made at all between the two approaches, implying that this “inflow”
is treated the same way in all scenarios. It has only been through detailed examination
of the requested model files that these differences between the scenarios have been
identified.
5. CONCLUSIONS
This report presents a critical analysis that demonstrates that the methodology used by
DHI to estimate the “artificial flow” attributed to the channelization of the Bolivian
wetlands is incorrect. The main emphasis of this study is the analysis of the NFM, since
it is the main tool that supports Bolivia’s estimation of the “artificial flow”. Also, a brief
analysis of the WBM, used to estimate the recharge of the hydrogeological system, is
carried out. The main conclusions from this study are listed below:
Water Balance numerical model
• The southwestern no-flow boundary condition is not based on the geology of the
studied area, but rather on a geopolitical boundary.
• The flow directions obtained from the initial groundwater levels do not represent
a good approximation of reality since they are influenced by a boundary
condition that is based on a geopolitical rather than a physical boundary.
• The no-flow boundary condition located in the western side of the WBM near
the fixed head boundary influences the flow direction into the NFM, while it
should be exiting the model from east to west.
Near Field conceptual model
• DHI’s hydrogeological understanding has been based on an incorrect
interpretation of the geology including the stratigraphy and the age relationships
of the various deposits, resulting in a flawed conceptual understanding of the
groundwater flow regime. This has influenced aquifer delineation, selection of
aquifer properties and boundary condition definition in their numerical models.
• DHI (2018) constructed the groundwater level contour map of the Silala Near
Field using the levels measured in all the piezometers, making no distinction
between piezometers that measure the shallow aquifer groundwater levels and
78
Annex XV
66
those that measure the deep aquifer groundwater levels, thus mixing the data
from two aquifer systems.
• The groundwater flow directions interpreted from DHI’s piezometric level
contours do not correspond to DHI’s own conceptual model in terms of the flow
directions shown on their spring location maps.
• The groundwater level contours do not take into consideration the presence of a
low permeability boundary at the south-west of the Orientales stream (Volcanic
sequences from the Miocene).
Near Field numerical model
• There is a lack of consistency between the WBM and the NFM:
o The WBM and NFM groundwater contour lines do not coincide.
o There is an inconsistency between the boundary conditions and the
groundwater flow direction of both models.
o The 198 l/s that leaves the WBM model is not the same as the 212, 190
or 185 l/s that enter the NFM model scenarios as groundwater flow.
• The boundary conditions used in the NFM are inconsistent with the groundwater
flow directions derived from the hydrogeological conceptual model, as well as
with the flow directions from the WBM.
• The no-flow boundaries on the north-eastern and southern edges of the model
have no physical or geological justification.
• The initial potential head used in the Baseline and No Canal scenarios is
different to the one used in the Undisturbed scenario.
• Steady state is not reached after 91 days of simulation, so that there are
cumulative systematic errors in the model water balances.
• The model topographies used in the three scenarios are not the same, differing
from one another by up to 7 m. These unreported differences are likely to be one
of the main reasons for the apparent differences in surface water flow between
DHI’s Baseline and No Canal and Undisturbed scenarios.
• The method used to calculate the surface flow through the international border in
the Baseline scenario is different from that used in the No Canal and
Undisturbed scenarios. Therefore, these flows are not directly comparable.
• In addition to the groundwater inflows to the Near Field that arise as a result of
the boundary conditions, the springs have been modelled as localized surface
water inflows in the Baseline scenario and as a local precipitation in the No
Canal and Undisturbed scenarios (spring recharge). Neither of these
representations is correct as the spring water should come entirely from
interactions with the groundwater system. The amounts of extra spring recharge
Annex XV
79
67
added in the models have not been justified, no calculations are shown and no
estimation methodology is described.
• The amount of water added as precipitation in the No Canal and Undisturbed
scenarios is 11 l/s less than the amount added as surface water inflows in the
baseline scenario, thereby artificially producing 11 l/s of apparent increase in
flow due to the channels.
• The representations of the springs as surface water sources in the Baseline
scenario but as precipitation sources in the No Canal and Undisturbed scenarios
results in 31% of the precipitation being transferred directly from the surface
water system to the groundwater system. This results in a further 9.7 l/s apparent
increase in flow due to the channels.
• Presenting the flow values from the unstable MIKE-11 component of the
Baseline scenario, rather than the surface water-groundwater interactions of the
more stable MIKE-SHE component, the Baseline scenario results in a further
7 l/s over-estimate of the flows under current conditions. Neither this nor the
previously mentioned 11 l/s or 9.7 l/s apparent increases are realistic.
• The differences between the ways the springs were represented in the different
scenarios were not described in any way in the BCM and were presented under
the same heading in their water balances, implying that they were represented in
the same way.
• The downstream stage-discharge curve boundary condition in the Baseline
scenario, that imposes critical flow, is not explained or justified in DHI’s report.
• The slope between the two last cross sections (3560 and 3635) is zero, which is
unrealistic and is not explained or justified in the DHI report.
• The Manning coefficient, n, was found to be representative of the highest values
recommended for flood plains covered by dense trees (n = 0.200), which is not
the case of the Silala River and is physically unrealistic.
• As a result of the high imposed value of the Manning coefficient, the normal
depth of the channel is increased and the flow conditions are subcritical (Fr < 1)
in almost all the cross sections, which does not coincide with what is observed in
the field, i.e., supercritical flow conditions (Fr > 1). Hence, the results of DHI
are unrealistic and conceptually inconsistent with the observed flow regime.
• At some of the cross sections water does not flow through the main channel and
in other cross sections the channel is flooded.
• Errors were found in the hydraulic modelling of the DHI:
o Abrupt changes in river flow were found at different points.
o There are flow variations along the river that never stabilize.
• Different values for the upper bound effect of channelization on surface flows
were reported in the BCM (40%) and the BR (33%) for the same simulations.
80
Annex XV
68
Final Conclusions
• The differences between the results obtained using the Near Field Model to
represent the effects of channel removal and peat growth are largely due to
unreported differences between the models used to represent the different
scenarios. These differences were only discovered once the requested model
files were examined in detail (and we recall that DHI originally refused to
provide these files). The very large number of differences, and the fact that these
were not reported, is disturbing, and at best represents very poor scientific
practice. The Near Field modelling results presented to the Court in the BCM
and BR written pleadings to demonstrate the effects of channelization and peat
growth are grossly misleading.
Annex XV
81
69
6. REFERENCES
ARCADIS, 2017. Detailed Hydrogeological Study of the Silala River. (Chile’s
Memorial, Vol. 4, Annex II).
Chow, V.T., 1959. Open-Channel Hydraulics. New York, McGraw-Hill.
Chow, V.T., 2010. Applied Hydrology. Tata McGraw-Hill Education.
Danish Hydraulic Institute (DHI), 2017a. Provisional Report 3. Water balance of the
basin and groundwater aquifer and update of measured surface water flow.
Danish Hydraulic Institute (DHI), 2017b. MIKE 11. A Modelling system for Rivers and
Channels. User Guide.
Danish Hydraulic Institute (DHI), 2018. Study of the Flows in the Silala Wetlands and
Springs System. (Bolivia's Counter-Memorial, Vol. 2-5, Annex 17).
SERGEOMIN (National Service of Geology and Mining), 2003. Study of the Geology,
Hydrology, Hydrogeology and Environment of the Area of the Silala Springs. (Bolivia’s
Rejoinder, Vol. 3, Appendix a to Annex 23.5).
SERNAGEOMIN (National Geology and Mining Service), 2017. Geology of the Silala
River Basin. (Chile’s Memorial, Vol. 5, Annex VIII).
SERNAGEOMIN (National Geology and Mining Service), 2019a. Geology of the Silala
River: an Updated Interpretation (Chile's Reply, Vol. 3, Annex XIV).
SERNAGEOMIN (National Geology and Mining Service), 2019b. A Brief Review of
the Geology Presented in Annexes of the Rejoinder of the Plurinational State of Bolivia.
(Chile’s Additional Pleading, Vol. 2, Annex XVI)
Wheater, H., & Peach, D., 2019. Impacts of Channelization of the Silala River in
Bolivia on the Hydrology of the Silala River Basin (Chile’s Reply, Vol. 1, Expert
Report).
82
Annex XV
70
Annex XV Appendix A
83
71
APPENDIX A.
DATA FILES PROVIDED BY DHI
A-1 MODEL FILES
In the DHI report, three models were used to analyze the hydrological behavior of the
basin: Water Balance, Near Field and Near Border. Appendix A details the files
provided by Bolivia which could be used to critically analyze these models. Each of
these models has variations, marked as different versions, in which the boundary and/or
initial conditions change. In particular, 12 configurations are presented for the Water
Balance model for water balance and aquifer recharge (Table A-1), and two for the
evaluation of groundwater travel times in aquifers (Table A-2).
Table A-1. Configurations of the water balance and aquifer recharge model in the basin (DHI,
2018).
Table A-2. Configurations of the evaluation of groundwater travel times (DHI, 2018).
The Near Field Model has three configurations (Table A-3): the (current) baseline
scenario, the no channelization scenario, and the restored wetlands scenario (i.e.,
without human intervention).
Task Model configuration file name Directory
Particle tracking in Saturated zone Silala_model_gw_200m_v12_final.she WaterBalance
WQ tracer in the unsaturated zone Silala_model_gw_200m_v12_final_tracer.she WaterBalance
Alilnex E
Table 3, Para met er d, ange Model co nfiguration f ile name Di rectory
Line no
1 Baseline S.ilala_model_200m_v24 WaterBalanoe
Rainfall
2 DGA Laguna Colorada S.ilala model 200m v26 Water Ba,I an oe
3 DGA Linwr S.ilala model 200m v27 WaterBalanoe
4 DGA Ina cal iri - rainfal I-altitude rela,ti on S.ilala_model_200m_v5 WaterBa,lanoe
Evaporation
5 EtO Laguna Col orada S.ilala model 200m v:B WaterBa,lanoe
6 EtOS.ol de Mamma S.ilala_model_200m_v34 WaterBalanDe
5oil parameters
7 0-lOcm: 1<5=9. 7E•6 m/s, 10-20cm:45E-6m/s S.ilala model 200m v29 WaterBalanoe
8 0-10 cm: Ks=l.4E-5 m/s, 10-20 cm: L2E-5 m/s S.ilala model 200m v28 WaterBa,lanoe
9 0-10 cm: n=l.619 (theta, FC=0.17), 10-50 cm: n=l.477 (theta FC=0.19) S.ilala model 200m v32 WaterBalanoe
10 0-lOcm: n=l.754(theta, FC=0.12), 10-50 cm: n=l.699 (theta FC=0.12) S.ilala model 200m v35 WaterBalanoe
11 0-10 cm: theta r=0.039, 10-50 cm: theta, r=0 .042 S.ilala model 200m v36 WaterBalanDe
12 0-lOcm: theta r=0.05, 10-50 -cm: theta r=O.B2 S.ilala model 200m v37 WaterBa,l anoe
84
Annex XV Appendix A
72
Table A-3. Configurations of the water balance model in wetlands and springs (DHI, 2018).
The Near Border Model, for which the domain is delimited to study the flow at the
international border, has six configurations considering channelization, and six
configurations without channelization (Table A-4).
Table A-4. Configurations of the water balance model near the border (DHI, 2018).
To carry out the analysis of the DHI simulations, we studied the model files presented in
Table A-5. It was decided to study the WBM version “Silala_model_gw_200m_
v12_final.she” because it simulates groundwater flow. The files from the NFM that
were studied were the final version of each scenario.
Table A-5. DHI model files analyzed in this study.
N° Model setup name Description
1 Silala_10m_withHydrogeologicalModel_DeepLowK_Mo
delArea_V18_OLexplicit.she
An integrated hydrological model setup of the Silala Near
Field area including canals.
2 Silala_10m_withHydrogeologicalModel_DeepLowK_Mo
delArea_V22_NoCanal_OLexplicit.she An integrated hydrological model setup of the Silala Near
Field area without canals.
3 Silala_10m_withHydrogeologicalModel_DeepLowK_Mo
delArea_V22_NoCanal_OLexplicit_undisturb.she
An integrated hydrological model setup of the Silala Near
Field area with restored wetlands and without canals
N° Configuration file name with canal N° Configuration file name without canals l/sec Pct
1 Silala_NearBorder_grav_v4.she 2 Silala_NearBorder_grav_nat_v4.she 12 8
N° Configuration file name with canals Parameters as in Org baseline parameter Scenario Parameters N° Configuration file name without canals l/sec Pct
3 Silala_NearBorder_grav_v4_5m.she Silala_NearBorder_grav_v4.she 10 m resolution 5 m resolution 8 Silala_NearBorder_grav_nat_v4_5m.she 14 8
4 Silala_NearBorder_grav_v5.she Silala_NearBorder_grav_v4.she M2.5 M=15 9 Silala_NearBorder_grav_nat_v5.she 12 8
5 Silala_NearBorder_grav_v6.she Silala_NearBorder_grav_v4.she Kh1=10-4, Kv2=5E-5 Kh1=10-3, Kv2=5E-4 10 Silala_NearBorder_grav_nat_v6.she 23 15
6 Silala_NearBorder_grav_v7.she Silala_NearBorder_grav_v6.she Kuz, fine sand=2.74E-5 Kuz, fine sand=10-4 11 Silala_NearBorder_grav_nat_v7.she 24 15
7 Silala_NearBorder_grav_v8.she Silala_NearBorder_grav_v7.she Kh2=3E-5 Kh2=10-4 12 Silala_NearBorder_grav_nat_v7.she 39 25
Decrease in
transborder
surface flow
Decrease in
transborder
surface flow
Baseline
Sentitivity Analysis
N° Model Comments File name
1 WBM - Silala_model_gw_200m_v12_final.she
2 NFM Baseline scenario Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V18_OLexplicit
3 NFM No Canal scenario Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V22_NoCanal_OLexplicit
4 NFM No Canal Undisturbed scenario Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V22_NoCanal_OLexplicit_undisturb
I I
I I
Annex XV Appendix A
85
73
A-2 RESULT FILES
The results of the models developed by DHI, which are presented as text files, are
presented in Tables A-6, A-7 and A-8.
Table A-6. Results in the form of text files for Water Balance Models.
Text File
Chart_wbl
Silala_model_200m_v5_PreProcessed_SoilProf
Wbl_Chile_sub_total
Chart_Chile
Chart_Chile_new
Chart_Chile_new_v2
Chart_Chile_short
Chart_Chile_sub_wbl
Chart_long
Chart_wbl
Silala_model_200m_v24_PreProcessed_SoilProf
Chart_wbl
Silala_model_200m_v26_PreProcessed_SoilProf
Chart_chile_wbl
Chart_wbl
Silala_model_200m_v27_PreProcessed_SoilProf
Total_wbl
Chart_wbl
Silala_model_200m_v28_PreProcessed_SoilProf
Chart_wbl
Silala_model_200m_v29_PreProcessed_SoilProf
Chart_wbl
Silala_model_200m_v32_PreProcessed_SoilProf
Chart_chile_wbl
Chart_wbl
Silala_model_200m_v33_PreProcessed_SoilProf
Chart_chile_wbl
Chart_wbl
Silala_model_200m_v34_PreProcessed_SoilProf
Chart_wbl
Silala_model_200m_v35_PreProcessed_SoilProf
Chart_wbl
Silala_model_200m_v36_PreProcessed_SoilProf
Chart_wbl
Silala_model_200m_v37_PreProcessed_SoilProf
Silala_model_gw_200m_v12_final_PP_Print
Silala_model_gw_200m_v12_final_PreProcessed_SoilProf
Silala_model_gw_200m_v12_final_WM_Print
Silala_model_gw_200m_v12_final_WQ_Print
Chart_wbl
Silala_model_gw_200m_v12_final_tracer_PreProcessed_SoilProf
Folder
12
13
14
7
8
9
10
11
Silala_model_200m_v28.she - Result Files
Silala_model_200m_6 v29.she - Result Files
1
2
3
4
5
Silala_model_gw_200m_v12_final.she - Result Files
Silala_model_gw_200m_v12_final_tracer.she - Result Files
Water Balance
Silala_model_200m_v32.she - Result Files
Silala_model_200m_v33.she - Result Files
Silala_model_200m_v34.she - Result Files
Silala_model_200m_v35.she - Result Files
Silala_model_200m_v36.she - Result Files
Silala_model_200m_v37.she - Result Files
Silala_model_200m_v5.she - Result Files
Silala_model_200m_v24.she - Result Files
Silala_model_200m_v26.she - Result Files
Silala_model_200m_v27.she - Result Files
86
Annex XV Appendix A
74
Table A-7. Results in the form of text files for Near Field Models.
Text File
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V18_OLexplicit_PP_Print
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V18_OLexplicit_PreProcessed_SoilProf1
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V18_OLexplicit_PreProcessed_SoilProf4
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V18_OLexplicit_PreProcessed_SoilProf5
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V18_OLexplicit_PreProcessed_SoilProf6
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V18_OLexplicit_WM_Print
wbl_va8_withcanal_OLexp
wbl_va8_withcanal_OLexp_WBL_POST
2
Silala_10m_withHydrogeologicalModel_DeepLow
K_ModelArea_V22_NoCanal_OLexp_OL_TopoKor
r.she - Result Files
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V22_NoCanal_OLexp_OL_TopoKorr_PP_Print
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V3_PP_Print
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V3_PreProcessed_SoilProf1
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V3_PreProcessed_SoilProf4
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V3_PreProcessed_SoilProf5
Silala_10m_withHydrogeologicalModel_DeepLowK_ModelArea_V3_PreProcessed_SoilProf6
Folder
1
3
Silala_10m_withHydrogeologicalModel_DeepLow
K_ModelArea_V18_OLexplicit.she - Result Files
Hot_Silala_10m_withHydrogeologicalModel
(MIKE 11)
Near Field
Annex XV Appendix A
87
75
Table A-8. Results in the form of text files for Near Border Models.
Text File
Chart_wbl
Silala_NearBorder_grav_nat_v4_PreProcessed_SoilProf1
Silala_NearBorder_grav_nat_v4_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_nat_v4_5m_PreProcessed_SoilProf1
Silala_NearBorder_grav_nat_v4_5m_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_nat_v5_PreProcessed_SoilProf1
Silala_NearBorder_grav_nat_v5_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_nat_v6_PreProcessed_SoilProf1
Silala_NearBorder_grav_nat_v6_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_nat_v7_PreProcessed_SoilProf1
Silala_NearBorder_grav_nat_v7_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_nat_v8_PreProcessed_SoilProf1
Silala_NearBorder_grav_nat_v8_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_v4_PreProcessed_SoilProf1
Silala_NearBorder_grav_v4_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_v4_5m_PreProcessed_SoilProf1
Silala_NearBorder_grav_v4_5m_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_v5_PreProcessed_SoilProf1
Silala_NearBorder_grav_v5_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_v6_PreProcessed_SoilProf1
Silala_NearBorder_grav_v6_PreProcessed_SoilProf4
Chart_wbl
Silala_NearBorder_grav_v7_PreProcessed_SoilProf1
Silala_NearBorder_grav_v7_PreProcessed_SoilProf4
Wbl_error
Chart_wbl
Cross_sections_main_canal
Error_wbl
Silala_NearBorder_grav_v8_PreProcessed_SoilProf1
Silala_NearBorder_grav_v8_PreProcessed_SoilProf4
9
10
11
12
Folder
4
5
6
7
8
Near Border
Silala_NearBorder_grav_nat_v4_5m.she - Result Files
Silala_NearBorder_grav_nat_v4.she - Result Files
Silala_NearBorder_grav_v5.she - Result Files
Silala_NearBorder_grav_v6.she - Result Files
Silala_NearBorder_grav_v7.she - Result Files
Silala_NearBorder_grav_v8.she - Result Files
Silala_NearBorder_grav_v4_5m.she - Result Files
Silala_NearBorder_grav_v4.she - Result Files
Silala_NearBorder_grav_nat_v8.she - Result Files
Silala_NearBorder_grav_nat_v7.she - Result Files
Silala_NearBorder_grav_nat_v6.she - Result Files
Silala_NearBorder_grav_nat_v5.she - Result Files
1
2
3
88
Annex XV
76
Annex XV Appendix B
89
77
APPENDIX B.
VALUES OF THE ROUGHNESS MANNING COEFFICIENT
Type of channel e.nd description Minimum Normal Mo.ximun:
A. Cx,osEO CONDUITS FLOWING PARTLY Fow.
A-1. Metal
a. Brass, smooth. 0.009 0.010 0.013
b. Steel
1. Lockbar &nd welded 0.010 0.012 0.014
2. Riveted s.nd spiral 0.013 0.016 0.017
c. Cut iron
l. Coated 0.010 0.013 0.014
2. Uncoated 0.011 0.014 0.016
d. Wrought iron
l. Bia.ck 0.012 0.014 0.015
2. Galvanized 0.013 0.016 0.017
e. Corrugated metal
1. Subduin 0.017 0.019 0.021
2. Storm dra.in 0.021 o.ou 0.030
A-2- Nonmetal
a. Luciui 0.008 0.009 0.010
b. Glass 0.009 0.010 , .013
c. Cement
1. Neat, surface 0.010 0.011 0.013
2. Mortar 0.011 0.013 0.016
d. Concrete
1. Culvort, stru.ight o.nd free of debris 0.010 0.011 0.01a
2. Culvert with bends, con.oect.ions, 0.011 o.ota 0.014
and some debris
a. Finished 0.011 0.012 0.014
4. Sewer with manholes, inlet, etc., 0.013 0.015 0.017
straight
5. Unfinished, steel form 0.012 0.013 0.014
6. Unfinished, smooth wood form 0.012 o.ou 0.016
7. Unfuiiahed, rough wood form 0.015 0.017 0.020
e. Wood
l. Stave 0.010 0.012 0.014
2. Laminated, treal.ed 0.015 0.017 0.020
/. Cls.y
l. Common dra.inage tile 0.011 0.018 0.017
2. Vitrified sewer 0.011 0.014 0.017
3. Vitrified sewer with =boles, inlet, 0. 013 0.015 0.017
etc.
4. Vitri.6ed subdrain with open joint 0.014 0.016 0.018
g. Brickwork
l. Glazed 0.011 0.018 0.015
2. Lined with cement mortar 0.012 0.015 0.017
It,. Sanitary sewers coated with sewage 0.012 0.013 0.016
slimes, with bends and connections
i. Paved invert, sewer, smooth bottom 0.016 0.019 0.020
j _ Rubble masonrv. cemented 0.018 0.025 0.030
90
Annex XV Appendix B
78 Type of cbMnel and description Minimum Normal Maximum
B. L1N:&n oa BTJtlli'-ITP CnANNr;ui
B-1. Metal
c. Smooth steel aurface
I. Unpaint.ed 0.011 0.011 0.014
2. Painted 0.012 0.013 0.017
b. Corrugated 0.021 0 . 025 0 . 030
B-2. Nonmetal
o. Cement
l. Nent, surface 0.010 0.011 0 .0 13
2. Mort.o.r 0.011 0. 013 0.016
b. Wood
1. Planed, untreated 0 . 010 0 .012 0 . 0H
2. Planed, creoaoted 0.011 0.012 0. 015
3. Unplaned 0.011 0.013 0.016
4. Plank with batt.ena 0 . 012 0 . 015 0.0 18
5. Lined with roofing p&pcr 0 . 010 o.ou. 0.017
e. Concrete
1. Trowel 6niah 0 011 0.011 0 .015
2. Float fini1b 0 .013 0.015 ,0 .016
3. FiniAbed, with gravel on bottom 0.015 0 .017 0.020
4. Unfinished 0 . 01" 0.017 0.020
5. Gunite, good scetion 0.016 0.019 0.023
6. Gunite , wavy aection 0.018 0.022 0.02s
7. On good exca.vntad rock 0.017 0.020
8. On irregulu exeavat.ed rock 0.022 0 . 027
d. Concrete bottom ftoat finished with
sides of
1. Dressed atone in mortar 0 . 016 0.017 0 . 020
2. Random atone in mo rtar 0 017 0.020 0.024
3. Cement rubble m&.10n.ry, plastered 0 . 016 0 . 020 0.024
4. Cement rubble muonry 0.020 0.025 0.030
5. Dry rubble or riprap 0.020 0.030 0.035
e. Gravel b ottom with aides of
1. Formed concrete 0.017 0.020 0.025
2. Random atone in mortar 0.020 0.023 0 .026
3. Dry rubble or riprap 0 .023 0.033 0.036
J, Brick
1. Glued 0.011 0 . 01s 0.015
2. In cement mortar 0 . 012 0.011 0.018
q. Masonry
1. Cemented rubble 0 . 017 0 .025 0. 030
2. Dry rubble 0.023 0.032 0.035
.h. Dressed aahlar 0 .013 0 . 015 0.017
i. Asphalt
l. Smooth 0.013 0.013
2. Rough 0. 016 0 .016
j, Veget.&I linlng 0.030 ..... 0 .500
Annex XV Appendix B
91
79
- ---------- - - - - - - - --~------- Type of channel and description
C. ExCAVATED OR DRllDGED
,;i.. Earth, straight and uniform
1. Clean, recently completed
2. Clean, a.fter weathering
3. Gra.vel, uniform section, clean
4. With short grass, few weeds
b. Earth, winding a.nd sluggish
1. No vegetation
2. Grass, some weeds
3. Dense weeds or a.qua.tic plants in
deep cha.nnels
4. E&rth bottom a.nd rubble sides
5. Stony bottom a.nd weedy ba.nka
6. Cobble bott.om and clean sides
c. Dragline-excavated or dredged
1. No vegetation
2. Light brush on ba.nl<s
d. Rock cuts
1. Smooth and uniform
2. J a.g:ged and irregular
•· Channels not maintained, weeds and
brush uncut
1. Dense w ecds, high as dow depth
2. Clean bottom, brush on sides
3. 'Sa.me, highest stage of flow
4. Dense brush, high stage
D. N A't'URAL STRJJJIMS
D-1. Minor streams (top width at llood ata.ge
<100 ft)
a. Streams on plain
1. Clean, straight, full stai;e, no rifts or
deep pools
2. ·Sa.me a.s above, but more stonea and
weeds
3. Clean, winding, some pools and
shoals
4. Sa.me a.s above, but some weeds and
st.ones
5, Sa.me a.s a.bove, lower stages, more
ineffective slopes and sect.ions
6. Sa.me u 4, bu1. more stones
7. Sluggish reaches, weedy, deep pools
8. Very weedy rea.ches, deep pools, or
8.oodwa.ys with heavy ata.nd of timber
a.nd underbrush
Minimum Normal Ma.xirnum
0.016 0.018 0.020
0.018 0.022 0.025
0.022 0.025 0.030
0.022 0.027 0.033
0.023 0.025 0.030
0.025 0.030 0.033
0.030 0.035 0.040
0.028 0.030 0.035
0.025 0.035 0.040
0.030 0.040 0.050
0.025 0.028 0.033
0.035 0.050 0.060
0.025 0.035 0.040
0.035 0.040 0.050
o.oso 0.080 0.120
0.040 0.050 0.080
0.045 0.070 0.110
0.080 0.100 0. 140
0.025 0.080 0.033
0.030 0.035 0.040
0.033 0.040 0.045
0.035 0.045 0.050
0.040 0.048 0.055
0.045 0.050 0.060
o:oso 0.070 r. 080·
0.075 0. 100 0.150
92
Annex XV Appendix B
80
Table B-1. Values of the roughness coefficient n (Boldface figures are values generally
recommended in design). Source: Chow (1959).
Type of channel and description Minimum Normal Maximum
b. Mountain streams, no vegetation in
channel, banks usually steep, trees
and brush along banks submerged a.t
high sta,ges
1. Bott.om: gravels, cobbles, and few
boulders
2. Bottom: cobbles with l&rge boulders
D-2. Flood pl&ins
a. Pasture, no brush
l. Short. grass
2. High grass
b. Cultivated areas
1. No crop
2. Mature row crops
3. Mature field crops
a. Brush
l. Scattered brush, heavy weeds
2. Light brush and trees, in winter
3. Light brush and trees, in summer
4. Medium to dense brush, in winter
5. Medium to dense brush, in summer
d. Trees
1. Dense willows, summer, straight
2. Cleared land with tree stumps, no
sprouts
3. So.me as above, but with heavy
growth of sprouts
4. Hca.vy sto.nd of timber, & few down
trees, little undergrowth, flood stage
below branches
5. Sa,me as above, but with flood sto.ge
reaching branches
D-3. Major streams (top width at flood stage
> 100 ft). The n value is less than tha.t
for minor strea.ms of simil&r description,
because banks offer less effective resistance.
0.030
0.040
0.025
0.030
0.020
0 .025
0.030
0 .035
0.035
0 .040
0.04.5
0.070
0.110
0 030
0.050
0.080
0.100
a. Regulo.r section with no boulders or O. 025
brush
b. Irr egular and rough section O. 035
0.040
0 .050
0.030
0 .035
0.030
0.035
0.040
0.050
0.050
0 .060
0 .070
0.100
0.150
0.040
0.060
0. 100
0. 120
0 .050
0.070
0.035
0 .050
0.040
0.045
0 .050
0 .070
0.060
0 .080
0.110
0 160
0 .200
0.050
0 .080
0.120
O.lGO
0.060
0.100
Annex XV Appendix C
93
81
APPENDIX C.
REJOINDER FILES PROVIDED BY BOLIVIA
Figure C-1. Rejoinder files submitted by Bolivia.
-:;; I Silala Sensitivityanalys:es Data for Report
lnicio Compartir Vista
., ~ > Es.te equipo > Escritorio > Silala Sensitivityanalyses Data for Report
Nombre Fecha de modificaci6n
G4_Baseline.she - Result Files
G4_NoCanal.s.he - Result Files
G4_Undis.turbed.she - Result Files.
G6_Baseline.s.he - Result Files
G6_NoCanal.she - Result Files
G6_Undisturbed.she - Result Files
GIS
H_Versions
HotStarts.
Maps
MIKE11
NoCanal_plus_1.00_times_ADif.she - Result Files
Silala_NoCanal.she - Re~ult Files
Silala_Undisturbed.she - Result Files
Silala_WithCanal.s.he - Result Files
Undisturbed_A4.she - Result Files
uz
e G4_Baseline
e G4_NoCanal
e G4_Undisturbed
e G5_Baseline
• G5_NoCanal
e G6_Baseline
e G6_NoCanal
e G6_Undisturbed
e NoCanal_plus_ 1.00_t imes_ADif
~ ReadMe1
e Silala_NoCanal
e Silala_Undisturbed
• Silala_WithCanal
e Undisturbed_A4
~ Water balance tables - Sensitivity Report
04-06-2019 11:23
04-06-2019 11:35
04-06-2019 11:24
04-06-201911 :36
04-06-2019 11:24
04-06-2019 11:25
04-06-2019 10:49
04-06-201913:52
04-06-2019 10:30
04-06-2019 10:30
04-06-2019 10:48
04-06-201913:28
04-06-2019 11:26
04-06-2019 11:32
04-06-2019 11:28
12-06-2019 10:49
04-06-2019 10:31
10-04-2019 7:50
10-04-2019 7:50
13-04-2019 7:59
05-04-201921:13
02-04-2019 14:59
09-04-2019 10:47
10-04-2019 7:46
12-04-2019 22:27
12-04-2019 10:31
12-06-2019 1&18
02-04-2019 14:59
18-03-2018 12:42
05-04-201921:13
13-04-2019 &01
12-06-2019 1&16
Tipo
Carpeta de archivos.
Carpeta de archivos.
Carpeta de archivos
Carpeta de archivos
Carpeta de archivos
Carpeta de archivos
Carpeta de archivos
Carpeta de archivos.
Carpeta de archivos.
Carpeta de archivos
Carpeta de archivos
Carpeta de archivos
Carpeta de archivos
Carpeta de archivos
Carpeta de archivos.
Carpeta de archivos.
Carpeta de archivos.
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
Microsoft Word Docum ...
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
MIKE Zero Flow Model
Microsoft Excel 97-2003 ..
D X
v @
Bus.car en Silala Sensitivityana ... P
Tamario
422 KB
424 KB
424 KB
422 KB
424 KB
422 KB
424 KB
424 KB
424 KB
17 KB
424 KB
423 KB
422 KB
424 KB
2,810KB
94
Annex XV
Annex XV Appendix D
95
Pluri-national State of Bolivia, Ministry
of Foreign Affairs, Diremar
Report
November 15, 2017
Contract CDP-I No 15/2017, Study of
the Flows in the Silala Wetlands and
Springs System
Product No. 3:
Provisional Report 3 – Water balance of the basin
and groundwater aquifer and update of measured
surface water flow
Foto:SENAMHI 2017, Weir C-2, Southern Wetland
APPENDIX D
D~
The expert in WATER ENVIRONMENTS
96
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Annex XV Appendix D
97
Pluri-national State of Bolivia, Ministry
of Foreign Affairs, Diremar
Report
November 15, 2017
This report has been prepared under the DHI Business Management System
certified by Bureau Veritas to comply with ISO 9001 (Quality Management)
Approved by
Oluf Zeilund Jessen, Head of
Projects Water Resources
D~
The expert in WATER ENVIRONMENTS
98
Annex XV Appendix D
Annex XV Appendix D
99
DHI • Agern Allé 5 • • DK-2970 Hørsholm • Denmark
Telephone: +45 4516 9200 • Telefax: +45 4516 9292 • [email protected]www.dhigroup.com
Contract CDP-I No 15/2017 Study of the Flows in
the Silala Wetlands and Springs System.
Product No. 3
Provisional Report 3 – Water balance of the basin
and groundwater aquifer and update of measured
surface water flow
Prepared for Pluri-national State of Bolivia, Ministry of Foreign
Affairs, Diremar
Represented by Dr. Emerson Calderón
Foto: SENAMHI 2017:
Weir C-2 Southern Wetland
Project manager Roar Askær Jensen
Quality supervisor Michael Brian Butts
Project number 11820137
Approval date November 15, 2017
Revision 0
Classification Confidential
~
... ,,,~~
,· ... · . .:z
• ,-"!, ~~ -
100
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Annex XV Appendix D
101
i
CONTENTS
1 Executive summary ..................................................................................................... 1
2 Introduction ................................................................................................................. 2
2.1 About this report and the following steps of the project ................................................................. 2
2.2 Project objective and areas of concern .......................................................................................... 2
2.3 Rationale and methodology of the analyses. ................................................................................. 4
2.3.1 Climate assessment ....................................................................................................................... 4
2.3.2 Water balances and ground water recharge .................................................................................. 4
2.3.3 Analyses of surface flow measurements ....................................................................................... 4
3 Climate data ................................................................................................................. 5
3.1 Precipitation data ........................................................................................................................... 5
3.1.1 Annual and seasonal variation ....................................................................................................... 6
3.1.2 Spatial distribution of rainfall .......................................................................................................... 7
3.2 Evapotranspiration ......................................................................................................................... 8
3.3 Temperature ................................................................................................................................... 9
3.4 Silala climate characteristics and conclusions ............................................................................... 9
4 Water balance and groundwater recharge .............................................................. 10
4.1 Recharge estimation approach .................................................................................................... 10
4.2 Water balance assumptions ......................................................................................................... 11
4.3 Water balance model setup ......................................................................................................... 11
4.4 Water balance results and uncertainty ........................................................................................ 11
4.5 Groundwater flow and age ........................................................................................................... 12
4.6 Water balance conclusions .......................................................................................................... 15
5 Surface water flow measurements ........................................................................... 16
5.1 Simultaneous canal flow data ...................................................................................................... 17
5.2 Simultaneous spring flow data ..................................................................................................... 18
5.3 Continuous flow data of installed flumes ..................................................................................... 20
5.4 Permanent Bolivian and Chilean flume flow records ................................................................... 20
5.5 Comparison and analysis of flow data ......................................................................................... 22
5.6 Data consistency and uncertainty ................................................................................................ 27
5.7 Conclusions on the measured flow data ...................................................................................... 27
6 Summary and conclusions ....................................................................................... 28
7 References ................................................................................................................. 29
FIGURES
Figure 1 Approximate extent of the Silala Near Field. (Figure from Reference 1) ....................................... 3
Figure 2 Approximate extents and locations of the Silala Near Field, the Silala Far Field and the
neighbouring Northern valley ......................................................................................................... 3
Figure 3 Locations of weather stations with rainfall data in Bolivia and Chile (Senamhi stations in
green) ............................................................................................................................................. 6
Figure 4 Annual precipitation at the Inacaliri and Silala gauges .................................................................. 7
Figure 5 Monthly average precipitation at the Inacaliri (1969-2016) and Silala gauges (2001-2016) ......... 7
D~
The expert in WATER ENVIRONMENTS
102
Annex XV Appendix D
ii provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure 8 Regional annual average precipitation as a function of altitude based on CHIRPS data
from 1981-2017 compared with station data at Silala, Linzor and Ollague and
precipitation-elevation relationship derived by Muñoz et al., 2017 ................................................ 8
Figure 9 FAO reference Et0 for Silala, Laguna Colorada and Sol de Manana (30 day moving
averages) compared with the range (min to max daly values) of 7 nearby Stations from
DGA Chile (Reference 10) ............................................................................................................. 9
Figure 10 Daily rainfall, potential evapotranspiration and recharge for 2016 3 km north of the Silala
wetlands ....................................................................................................................................... 12
Figure 11 Geological model including cross-section from MIKE SHE model .............................................. 13
Figure 12 Simulated potential head of the ignimbrite aquifer (above) and in cross section (below) ........... 14
Figure 13 Simulated map of particle travel time and groundwater age ....................................................... 15
Figure 14 Particle age distribution ............................................................................................................... 15
Figure 15 Overview of flow measurement locations (SENAMHI) ................................................................ 17
Figure 16 Longitudinal simultaneous flow profile (Southern Canal) ................................................................. 19
Figure 17 Long-term series of measured Silala Canal flows close to border, 2013-2017 ........................... 21
Figure 18 Long-term series of measured Silala Canal flows close to border, May-September 2017 ......... 22
Figure 19 Southern canal profile (S-1 to C-5) showing canal elevation (m) on the Y-axis and canal
chainage (m) on the X-axis .......................................................................................................... 24
Figure 20 Northern canal profile (S-18 to C-6) showing canal elevation (m) on the Y-axis and canal
chainage (m) on the X-axis .......................................................................................................... 25
Figure 21 Mapping of flows and net inflows based on simultaneous mean canal flow measurements
(in l/s) ........................................................................................................................................... 26
Figure 22 Continuous (shown as lines) and simultaneous (shown as circles) flow measurement
data, July-September 2017 .......................................................................................................... 27
TABLES
Table 1 Overview of rainfall gauges in Bolivia and Chile ............................................................................ 5
Table 2 Canal flows by section, accumulated upstream spring inflows and derived diffuse inflows ........ 19
APPENDICES
A Climate data analysis
A.1 Precipitation
A.1.1 Annual and seasonal variation
A.1.2 Snow formation
A.1.3 Spatial distribution of rainfall
A.2 Evapotranspiration
A.3 Temperature
B Water balances
B.1 Recharge estimation approach
B.2 Water balance assumptions
B.3 Water balance model setup
B.4 Water balance estimates and uncertainties
B.5 Groundwater flow model and age
C Measured flows
C.1 The surface water flow measurement program
C.2 Simultaneous canal flow data
C.3 Continuous canal flow data
Annex XV Appendix D
103
iii
C.3.1 The data collection campaign
C.3.2 The rationale of the campaign
C.3.3 Observations on the received data
C.3.4 Conclusions on the continuous flow data
C.4 Permanent flume flow data
C.5 Long term flow series from Chile and Bolivia
C.6 References
D~
The expert in WATER ENVIRONMENTS
104
Annex XV Appendix D
Annex XV Appendix D
105
1
1 Executive summary
DHI (the Consultant) has been contracted by the Government of the Pluri-national State of
Bolivia (Directorate: Diremar) to execute the technical study: Flow Analysis of the Silala
Springs, Canal and Wetland System”. The present report constitutes the third deliverable of
the second part of the study:” Product No. 3: Provisional Report 3 – Climate data, water
balance and measured flows.”
The report is divided into three main chapters covering 1) the climate data, 2) water balance
and 3) measured flow. We begin with the evaluation of data sources and generation of climate
datasets, these areas used subsequently in a model-based groundwater and catchment water
balance analysis, which is then evaluated against canal flow measurements.
More specifically, the first chapter describes how climate data from local climate stations have
been analysed, processed and combined with local data from satellites to derive long-term
spatially distributed time series of precipitation, evapotranspiration and temperature for the
Silala Catchment.
In the second chapter, climate data is used in a water balance model covering the delineated
catchment to the Silala Springs System (Far Field area of 232 km2). Due to limitation in the
subsurface geological data currently available, a generalised conceptual hydrogeological
model has been used. A key output of the water balance model is a distributed estimate of
groundwater recharge and the water age that can be compared with field data.
The third main chapter is devoted to Silala Canal flow measurements. Flow data from the two
permanent flumes on the Bolivian and Chilean sides of the border, as well as flow data
collected by SENAMHI during the May-September 2017 monitoring program have been
plotted, analysed and compared. Therefore, the surface flow analyses presented here are
based on more flow data than the previous analysis in the project’s surface water report from
July 2017.
The water balance calculations indicate that the groundwater recharge from the catchment is
sufficient to maintain a discharge of 160-200 l/s to the Silala spring and canal system. From
particle-tracking simulations, a water age of up to several thousand years from infiltration at
the surface to discharge at the springs has been estimated. The results are, however, subject
to considerable uncertainty, as demonstrated through a sensitivity analysis.
The flow observations show that the spatial distribution of inflows is approximately constant in
time as expected from a groundwater fed stream. In addition to the springs in the Northern and
Southern Wetlands, a limited reach of the main canal at the upper part of the ravine
contributes to a relatively large inflow to the canal. The recorded fluctuations in flow are likely
due to measurement inaccuracies rather than a response to climate events or surface runoff.
The various independently gauged flow series from locations close to the border (three
locations in Bolivia and one downstream the border) would be expected to be almost identical.
However, these series show significantly different flows ranging from160 to 210 l/s.
The flow data analysis shows that the flows are approximately constant in time and dominated
by groundwater discharge. The temporal variation observed in site-specific flow
measurements cannot be explained by responses in neighbouring measurement locations or
any climate or runoff events.
During the winter period July –Sept 2017, the large base flow component from groundwater is
observed to be superimposed by smaller periodic daily flow variations. These cannot be
explained by wetland evaporation but may be due to freezing/thawing of the water in the
wetlands.
D~
The expert in WATER ENVIRONMENTS
106
Annex XV Appendix D
2
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
2 Introduction
Through Technical Report Diresilala/DDM Nº 001/2017 of 6 February 2017, the Office for the
Protection of Silala Springs, Diresilala, contracted DHI for the realisation of the first part of this
technical study of the flows of the Silala Wetland and Springs System. The Silala Springs are
located in an arid area of the Potosi Department of Bolivia, close to the border with Chile.
Diresilala was subsequently integrated into Diremar, the Strategic Office for the Maritime
Vindication, Silala and International Water Resources. Diremar has signed a new contract with
DHI (Contract No. CDP-I 15/2017) for the execution of the second part of the study. The
present report constitutes the third deliverable under this second part of the technical study of
the flows of the Silala Wetland and Springs System.
2.1 About this report and the following steps of the project
This report documents and analyses climate data, water balance and flow measurements for
the Silala Catchment.
The report is organised as a relatively brief main report in which the rationale, analyses and
results of each of these three main themes are broadly described in separate sections. The
main report also summarises the conclusions on all the themes but does not include all
technical details, arguments and references. These are described in the three appendices –
one for each main theme - and organised so they may be read in isolation from the main
report.
Diremar is in the process of conducting a field study program to supplement the existing
information on geology, hydrology, hydrogeology and wetland characteristics. More details on
the field survey activities are given in the Field Survey Specifications Report (see Reference
6).
The field survey activities on surface water flows started in May 2017 and are ongoing to
capture as much hydrological information as possible. The hydrogeological drilling and testing
program as well as the planned campaign for soil sampling and determination of soil hydraulic
characteristics in the wetlands and uphill top soils were originally planned to end by August
2017. However, problems in finding and allocating the right teams and equipment have
delayed the drilling and soil analysis programs. These programs are not yet finalised at the
time of writing (November 2017). This report and the analyses it contains are therefore based
on data received from DIREMAR up to October 15th, 2017.
The report forms parts of DHI’s deliverable under this project. Further deliverables in the
coming project stages are:
 Product 4 Provisional report 4, Subsurface flows
 Product 5 Provisional report 4, Integrated surface and subsurface flows and scenario
analyses
 Product 6 Final Report, Summary of findings of the previous reports and project
conclusions.
2.2 Project objective and areas of concern
The project objective is to carry out a technical study of the flows of the Silala Wetland and
Spring System, quantifying the surface and subsurface flows in their current condition and in
their natural state, i.e. the flows without the manmade canal and drainage network. The
canalisation was introduced by the Antofagasta Railway Company in the early 20th century to
control the flow from the Silala Springs and use it for supply to the steam locomotives on the
Annex XV Appendix D
107
3
Antofagasta-Bolivia Railway. The objective concerns the ‘Near Field’ area in the Silala Valley
from the international border to just upstream the Silala Northern and Southern wetlands (see
Figure 1).
A robust assessment requires both data and information of sufficient quantity and quality. It
has therefore been agreed between Diremar and DHI to confine the data collection and the
flow assessment to the Silala Near Field, where data collection is possible within the time
available, and not to extend the field survey to the whole upstream catchment (see Figure 2,
the Far Field). The extent of the Far Field groundwater catchment and recharge area is not
known in detail and its size and conditions can only be very roughly assessed within the time
and resources available to this project. Considerable effort would be required to map the
complete hydrogeology and piezometric surface systematically.
Figure 1 Approximate extent of the Silala Near Field. (Figure from Reference 1)
Figure 2 Approximate extents and locations of the Silala Near Field, the Silala Far Field and the
neighbouring Northern valley
, orth Carutl
Neigt,bourln1 north<tn
valley
The expert in WATER ENVIRONMENTS
D~

108
Annex XV Appendix D
4
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
2.3 Rationale and methodology of the analyses
2.3.1 Climate assessment
Previous analyses (see Reference 10) have indicated large inter annual climate variations in
the area and slow response of the Silala Springs System to climate variations. Long-term
spatially distributed climate time series are required to understand the local hydrology, to
analyse the recharge conditions of the system and the impacts of the manmade canals
Such time series have been generated by combining daily and hourly climate observations
from the ground stations within or close to the Silala Springs catchment with satellite data of
the local area. This approach is deemed to be the best one to compensate for the sparse
coverage of climate ground observations in the catchment area.
2.3.2 Water balances and ground water recharge
The Silala Springs System is fed by groundwater originating from the upstream groundwater
catchment. Previous isotope analyses of the water in the Silala Springs have indicated water
ages in the order of 1,000 -10,000 years. The present aquifer recharge analysis investigates
whether the discharge through the Silala Springs System may be in balance with the present
climate or the discharge is from slowly depleting aquifers holding fossil water, which has
infiltrated during wetter pre-historic periods.
The spatial extent of the supplying groundwater catchment is unknown, but is for the purpose
of a water balance analysis, approximated by the Catchment area to the Silala Springs
System as delineated from a digital terrain model in our previous surface water report
(Reference 10).
A water balance has been established. The main components include precipitation,
evaporation, infiltration through the soil, recharge to a groundwater aquifer and groundwater
flow. This water balance is then used to assess whether the order of magnitude of upstream
recharge is sufficient to sustain groundwater discharge and flow rates at the downstream
wetland and border area. Given the approximate groundwater flows, the groundwater travel
time and groundwater age are estimated.
2.3.3 Analyses of surface flow measurements
Groundwater feeds the Silala Springs Systems through a number of seepage faces and
springs along the edges and underneath the wetlands and canals. The spatial distribution of
the groundwater contributions, as well as the magnitude and temporal variation of the canal
flows, reveal information on the combined groundwater surface water system, which is
important for the subsequent assessment of the flows in the system at present and under
natural conditions without the canals.
Data from the project’s flow observations campaign has been analysed and evaluated in
combination with the longer records from DGA’s weir in Chile, just downstream of the border.
The flow observation campaign was launched in May 2017 and is still ongoing. Flows are
measured at many strategic locations in the system, both as simultaneous spot measurements
and in 7 strategic locations as continuous flow records. The analyses are presented in Section
5 of this report and constitute an update of the flow analyses previously presented in the
surface water report from July 2017 (Reference 10).
Annex XV Appendix D
109
5
3 Climate data
Climate data from Bolivia, Chile and satellites have been analysed in order to assess the
Silala climate variables and produced what is considered to be the most representative climate
time series for use in the analysis and models of the Silala Springs System and its catchment.
The data sources are presented in this section, including how they were compiled and
combined to derive a continuous dataset. The section gives an overall summary of the
analyses and findings while further details are given in Appendix A.
3.1 Precipitation data
Daily records of precipitation are available for a number of stations in and around the Silala
catchment. The stations are listed in Table 1 and the locations are shown in Error! Reference
source not found..
As the stations in Bolivia generally only have a few years of rainfall and several gaps in the
observed record, rain gauges at Inacaliri and Silala in Chile operated by Direciόn General de
Aguas (DGA) have been used to analyse the long-term daily rainfall series for the Silala
Springs Catchment. The long-term average annual rainfall at DGA-Silala is 87 mm/year
compared with 98 mm/year at Inacaliri for the corresponding period from 2001-2017. The
rainfall varies considerably over time at both stations with high inter-annual variation. The
average rainfall at Inacaliri for the full data period from 1969-2017 is, for example, higher at
122 mm/year due to the large climate variability in the data.
Table 1 Overview of rainfall gauges in Bolivia and Chile
Station Source Distance from Silala (km) Altitude (m.a.s.l) Period Years
Silala Senamhi 0 4402 12/6/2012-30/9/2017 4.5
Laguna Colorada* Senamhi 28 4278 18/9/2010-25/9/2017 6
Sol de Manana Senamhi 53 4916 1/1/2012-11/7/2017 5.5
Siloli DGA 2 4000 25/10/2012-1/8/2017 4.5
Inacaliri** DGA 6 4040 1/2/1969-28/2/2017 48
Silala** DGA 2 4305 1/1/2001-28/2/2017 17
Ollague DGA 90 3707 1/1/1971-28/2/2017 46
Linzor DGA 25 4100 1/11/1973-28/2/2017 43
*) Very large values in 2016/17 indicate problems with station
**) The DGA gauges, Silala & Inacaliri have identical values for longer periods. - not raw data but it looks like one
station may have been gap filled with values from the other station by DGA
D~
The expert in WATER ENVIRONMENTS
110
Annex XV Appendix D
6
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Figure 3 Locations of weather stations with rainfall data in Bolivia and Chile (Senamhi stations in
green)
3.1.1 Annual and seasonal variation
The inter-annual variation in precipitation is very high. Figure 4 shows the annual rainfall at
Inacaliri and Silala. Although the inter-annual variation may have some connection with largescale
atmospheric variations such as the El Niño, its correlation to this phenomenon does not
seem to be very strong. It is noteworthy that, after 2001, the dry years seem to be drier and
the annual average precipitation at Inacaliri lower than in the previous period. It has not been
determined if this is an impact of a general global long-term change in climate or if it is a local
decadal variation.
Most of the precipitation occurs during the austral summer months between December and
March (see Figure 5). Very little precipitation is observed during the winter months from April
to September. Snow has however been recorded and observed in the Silala catchment during
the winter during site visits but this may not be captured adequately by the existing weather
stations. The stations inspected for the analysis on the Bolivian territory are not equipped with
instruments suitable for catching snow.
Daily MODIS satellite data of snow cover over the catchment from 2000 to 2017 confirm that
some precipitation falls as snow during the winter months without being recorded at the
precipitation gauges. While MODIS provides snow cover, it is not possible to reliably estimate
snow depth or snow equivalent from these satellite data alone but they indicate that the
gauged precipitation underestimates total precipitation. Further details are provided in
Appendix A.
D~
Annex XV Appendix D
111
7
Figure 4 Annual precipitation at the Inacaliri and Silala gauges
Figure 5 Monthly average precipitation at the Inacaliri (1969-2016) and Silala gauges (2001-2016)
3.1.2 Spatial distribution of rainfall
Rainfall in the area varies with altitude. To establish a reliable and longer data set of spatially
distributed rainfall for the Silala catchment, this relationship was analysed using a combination
of local ground stations and gridded long-term daily satellite precipitation data (CHIRPS) with
a 5-kilometer resolution.
Based on the CHIRPS data within and close to the Silala catchment, a linear relation between
precipitation and altitude has be established (see Figure 6). The established altitude relation
was combined with the long-term precipitation series from the local weather station, Inacaliri,
to estimate the spatial distribution of precipitation across the basin over time. This combination
of local ground station data and the altitude variation from the local CHIRPS data provides the
best estimate of the daily precipitation over the catchment. The data however does not capture
snow events and may therefore underestimate rainfall in some years. The average annual
D~
•oo
l511
lOO
ir 1!>11
!.
C
0 "s ,oo
a
,l;:l l>il
100 :ii I ,I I I I I I.Ilk. 1.11 I I I I I
lD ~ - - - - L
~ t i ! ,; I f 1j ! l ~ :'f " "' J 8 zl l: "
a 11"1,KAltl"'"VfflClfl?h • M;il.l'"""'ff'K)n1'1
The expert in WATER ENVIRONMENTS
112
Annex XV Appendix D
8
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
catchment rainfall obtained from the series is 137 mm/year. For comparison, the average
annual precipitation, based directly on area weighed CHIRPS data for the Silala catchment, is
146 mm/year. These estimates are of the same order of magnitude as the value of 165
mm/year as derived by Muñoz et. al. (Reference 11) for a smaller Silala catchment but
considerably higher than previous estimates around 60 mm/year, which were based on old
data from Laguna Colorada.
Figure 6 Regional annual average precipitation as a function of altitude based on CHIRPS data
from 1981-2017 compared with station data at Silala, Linzor and Ollague and precipitationelevation
relationship derived by Muñoz et al., 2017
3.2 Evapotranspiration
Potential evapotranspiration (Et0) records have been estimated using the Penman-Monteith
equation, at three weather stations close to the site: Silala, Laguna Colorada and Sol de
Manana. The method is recognized worldwide for reliable approximations to Et0 in a wide
range of locations and climates.
Figure 7 shows the potential evapotranspiration estimates for the three locations. The average
annual Et0 ranges from 1268 mm/year at Sol de Manana to 1940 mm/year at Laguna
Colorada with around 1472 mm/year at Silala. The derived series correspond well with the
range of Et0 from five nearby Chilean DGA stations also shown in the figure.
The altitude dependency of the potential evaporation in the area was found to be negligible.
Therefore, the potential evaporation rate is assumed to be uniform over the Silala catchment
area. The Et0 record from the Silala station is assumed to best represent the Et0 in the
catchment and is therefore used in the water balance model. The uncertainty in Et0 directly
affects the range of simulated groundwater recharge. In order to take the large differences
between the series from Laguna Colorada, Silala and Sol de Mañana into account, sensitivity
analyses have been carried using data from each station as input for the model.
D~
100
ISO
160 e !. 1
C
0 5 uo
a
~ lOO
Q
2 ao
.C. C. :l! 60
::i'
•o
20
a
0 1000 2000 3000 4000 )000 6000
E evation (ml
• Ch•P'
Annex XV Appendix D
113
9
Figure 7 FAO reference Et0 for Silala, Laguna Colorada and Sol de Manana (30 day moving
averages) compared with the range (min to max daly values) of 7 nearby Stations from
DGA Chile (Reference 10)
3.3 Temperature
Snowfall has been observed on higher grounds in the catchment also out of the austral winter
season. To include the influence of snow on recharge, long-term spatially distributed
temperature series with an hourly temporal resolution are required.
Based on the daily time series records from Inacaliri, Linzor, Silala and Laguna Colorada, a
long-term time series of daily temperature for the period 1969-2017 has been constructed. A
temperature lapse rate of -7.1 °C/km has been derived from these stations, which are all
located within or close to the catchment. Hourly variation in the long-term series has been
generated from the hourly Silala records.
3.4 Silala climate characteristics and conclusions
Assessment of the recharge conditions in the Silala catchment as well as the detailed
analyses of the impact of the manmade canals in the Silala Springs nearfield requires
consistent and reliable climate data input, in the form of multi-year time series of precipitation,
reference evapotranspiration (Et0) and temperature.
These time series have been determined specifically for the Silala catchment by combining
local ground based observations, from within the catchment or very close to it, with the terrain
information of the catchment. Where local ground based data have been insufficient to
construct a reliable spatial variation satellite, observations of the local area have been used.
We find that this combination of ground based and remote sensing observations of the local
area gives more reliable estimates for the Silala catchment than trying to correlate
observations over long distances for other catchments with different characteristics as
presented by Muñoz et al. (Reference 11).
9.0
LO
0.0
Dl /ol/1O11 0 1/0lhOJJ 31/U/2012
D~
31/U/J.0U Ol /o1/2Ol !t Dl /OJ/20Ht 31/12/1016
- - m•• of Ch ••n record• - - m of QI Mn f9!0fds --Soi, oe MaNna --Lag Colored.a Sl\ala
The expert in WATER ENVIRONMENTS
114
Annex XV Appendix D
10
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Significant uncertainty in the climate series has been addressed in the water balance model in
section 4 by sensitivity runs to assess the range of key model results.
A detailed description of climate data and the generation of the required model input is found
in Appendix A.
4 Water balance and groundwater recharge
The Silala Springs and canal flow system is fed almost entirely by groundwater. Groundwater
from the upstream catchment area (Far Field) is continuously discharging through the Silala
Springs and canals in the Near Field and probably also as trans-border groundwater flow.
It is not clear if the discharge through the Silala Springs System is sustained by:
1. The upstream aquifers being recharged by infiltration of rainfall or melting snow
reflecting current climatic conditions,
2. Solely by a gradual depletion of fossil aquifer storage or
3. A combination of 1. and 2.
Groundwater isotope analysis suggests that ancient, fossil water is part of the water
discharged at the springs.
The purpose of the water balance analysis is to improve the understanding of the hydrological
processes in the catchment and provide an independent estimate of groundwater age to
backup this understanding and test if some of the above three explanations of the origin of the
Silala flows may be eliminated.
4.1 Recharge estimation approach
A recharge and water balance assessment has been carried out for the approximate upstream
catchment of the Silala wetlands. As the hydrogeological data in the area are limited, a
conceptual approach has been adopted. It is not possible, with the data available, to
determine the source of groundwater but based on generalised climate data, soil properties
and overall geological features, the results may provide an indication of whether spring flows
at Silala can be explained by a plausible range of recharge rates within the topographical
catchment.
Groundwater recharge within the Silala area is driven by short-term precipitation events
scattered in time and often separated by long dry periods. To estimate the sustainability of
such desert recharge with high variability requires long-term dynamic simulation of the
infiltration and evaporation processes, with a daily or finer temporal resolution in order to
produce a reliable water balance. This approach constitutes a far better and more detailed
analysis than previous simpler water balances for the area such as Reference12, which
compares only the average annual precipitation, potential evapotranspiration and surface
water canal discharge from Silala.
The topography, soil types and depths, as well as representative precipitation, potential
evaporation and temperature are used as input to a distributed hydrological model to produce
a water balance for the contributing catchment under historic conditions. A first, rough
assessment of travel times in the aquifers is made to ascertain to which extent these match
the age of water determined from field measurements.
Dynamic rates of actual evaporation and groundwater recharge are estimated using the
distributed integrated flow modelling system MIKE SHE (Reference 14). MIKE SHE is a
dynamic flow modelling system, which couples advanced soil moisture and evapotranspiration
Annex XV Appendix D
115
11
models with unsaturated zone and groundwater models for describing evaporation from both
plants and soils, and recharge/infiltration to the underlying aquifers. The modelling system is
described in detail in Appendix B.
4.2 Water balance assumptions
For the catchment upstream of the Silala Springs (the Far Field), the important processes for
estimating groundwater recharge are soil evaporation, infiltration and snow processes.
Overland processes may play a small role in parts of the catchment, for example on the
volcanoes. However, since the areas that could generate overland flow are small as compared
to the total catchment area and since the surface runoff seems to re-infiltrate in the foothills of
the volcanoes, the overland flow component is expected to be of limited importance for
recharge estimation. A number of generalized assumptions, listed below, have been made
due to limited data availability and information in the topographic catchment. These
assumptions are described in more detail in Appendix B.
 There are no significant surface water bodies or surface water flows within the
catchment area.
 There is little or no vegetation to support any significant potential transpiration, i.e.
evaporation losses are assumed to be in the form of soil evaporation and a small
amount from sublimation from snow at high altitude
 The catchment area (232 km2) is delineated from the NASA topographical model
assuming that the surface water and groundwater catchments coincide
 The soils are generally coarse (sands or gravels), i.e. they are free draining with high
permeability and a low capillary rise potential
4.3 Water balance model setup
For estimation of groundwater recharge and water balances for the Silala basin, a MIKE SHE
unsaturated zone model was set up. The model has been set up using a grid size of 200 m
resulting in a total of 5717 unsaturated zone columns for the catchment. Free drainage was
assumed by fixing the water table at a constant depth of 3 m below ground.
Inputs consist of 48 years of daily and hourly climate time series for a period from 1969-2017
(described in section 3 and Appendix A) and estimates of soil properties were based on
general literature values for sand and gravel, as no measurements of soil properties are
available from the catchment at the time of producing this report. Details of the model setup
can be found in Appendix B.
4.4 Water balance results and uncertainty
Based on the model results, the annual average actual evaporation over 48 years has been
estimated at approximately 81 mm/year (6% of potential evapotranspiration) with a recharge
rate of 56 mm/year corresponding to an outflow rate from the upper catchment of 412 l/s.
Some groundwater flow is expected to bypass the wetland, both below the sediments and in
the deeper Ignimbrite aquifer. An old observation borehole in the Silala ravine, located 1.8 km
downstream of the border in Chile (Reference 13), indicates artesian conditions and yields a
constant rate of 90 l/s (without pumping). It seems plausible that the overall groundwater
recharge is somewhat higher than the stream flow and borehole yields combined. Therefore,
when compared to the recorded average stream flow at the Silala gauge of 160-210 l/s, our
model-based estimate seems realistic.
D~
The expert in WATER ENVIRONMENTS
116
Annex XV Appendix D
12
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
In order to understand the importance of the model input parameters for the recharge
estimates, a sensitivity analysis described in detail in Appendix B was undertaken. The
sensitivity analysis looked at the effects of varying soil parameters and potential
evapotranspiration rates, as they are associated with high uncertainty. It is clear from the
analysis that both soil parameters and evapotranspiration rates have a significant impact on
recharge rates. Using potential evapotranspiration from other stations at Laguna Colorada and
Sol de Manana has an impact on total recharge in the order of -/+ 20-30%. Soil hydraulic
conductivity uncertainty could affect recharge by -/+ 20%. Figure 8 shows daily rainfall,
potential evapotranspiration, simulated actual evaporation and estimated recharge over time
using the potential evapotranspiration rates from the Silala weather station. This illustrates
how high intensity rainfall exceeds daily potential evapotranspiration leading to small amounts
of occasional groundwater recharge in Silala. It also shows how actual evaporation and
recharge are highly dependent on the variation of daily potential evapotranspiration during the
year.
Figure 8 Daily rainfall, potential evapotranspiration and recharge for 2016 3 km north of the Silala
wetlands
Based on the sensitivity analysis, the catchment recharge is estimated to be in the range 45-
74 mm/year corresponding to 330-550 l/sec. This is consistent with measured flows in the
Silala wetlands and the current knowledge of subsurface outflows into Chile. Actual recharge
rates could potentially be higher as satellite maps of snow cover indicate that some snow
events in the austral winter are not captured in the rainfall station data. Overall, the analysis
indicates that it is plausible to assume that the current flows in the Silala Springs system may
be sustained by groundwater recharge from the topographic catchment.
4.5 Groundwater flow and age
Groundwater age has been investigated using an extended version of the MIKE SHE
integrated unsaturated zone groundwater model with particle tracking. The purpose of the
particle tracking analysis was to estimate likely groundwater age of the water recharging the
Silala canals and wetlands assuming inflows are from the topographic catchment. This will
help ascertain whether the age of the water supports the findings from isotope analysis of
water, which suggests that part of the spring water in Silala is fossil water.
The unsaturated model used for recharge estimation was modified for the analysis to include a
relatively simple three-layer geological model comprising a lava layer at the top, overlying two
Ignimbrite layers. Based on borehole information from the wetland area, the Ignimbrite aquifer
was divided into a fractured high permeable top layer with a thickness of 20 m and a lower
D~
.>O
lO
~
~:,,
E
E
10
1,
JO
Annex XV Appendix D
117
13
less permeable layer with a thickness of 250 m. The geological model delineation is described
in Appendix B and a geological profile is shown in Figure 9.
Figure 9 Geological model including cross-section from MIKE SHE model
The particle tracking analysis serves to estimate the origin and travel time of water recharging
the Silala canal and springs system. Particles have been introduced at the upper groundwater
layer, corresponding to infiltrating water recharging the aquifer. These particles are then
displaced according to the simulated flow field until they reach the Silala Near Field area,
where the groundwater discharges to the surface. Figure 10 shows the simulated potential
head and groundwater flow vectors of the ignimbrite.
The origin, destination and travel time of each particle is registered. The simulated travel time
is a proxy of groundwater age. In the Silala Far Field area, the depth to the groundwater table
can be up to several hundred meters, especially at higher altitudes. A measure of water age
from precipitation on the surface to discharge to the springs would thus have to consider both
travel time through the unsaturated zone and through the groundwater aquifer.
Figure 11 shows groundwater age in the catchment based on the particle tracking model. The
model results indicate an average groundwater age of approximately 900 years. The age
varies with travel times from as little as 25 years in the vicinity of the wetland to up to 4,000
years for water coming from the far end of the catchment. The majority of the water is
estimated to be between 400-1,000 years old (see Figure 12) based on groundwater flow
transport time alone. Travel time in the unsaturated zone will add to the overall water age,
particularly in the areas with volcanoes where the water table is assumed to be as deep as
1,000 m. The travel time in the unsaturated zone has been estimated based on a separate
simple transport model run, with a tracer source with a constant concentration applied at the
top of a number of unsaturated zone columns in the catchment. This provides a rough
estimate of travel time through the unsaturated zone and using this approach, the travel time
has been estimated to be between 0-50 years close to the wetland up to over 1,000 years
below the volcanoes.
D~
The expert in WATER ENVIRONMENTS
118
Annex XV Appendix D
14
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Figure 10 Simulated potential head of the ignimbrite aquifer (above) and in cross section (below)
D~ -,._ -,.,_ -..,_ -,.,_ ---
-----
,.._ -.......
--
.... --
~ ;f l -- I - "" - - -
I
.l
- - , ... - -
u
-..
".."." "'
---
..
Annex XV Appendix D
119
15
Figure 11 Simulated map of particle travel time and groundwater age
Figure 12 Particle age distribution
4.6 Water balance conclusions
Recharge estimates and water balances have been produced using the best available data for
the Silala catchment. The results should be viewed as approximate and should not be
interpreted as exact figures due to the scarcity of information on climate, soils and geology in
the area. The main findings are summarized below:
JG
I I
~
The expert in WATER ENVIRONMENTS
.e .IC,,1 JOO
o ten ,oc:
0 .,.
•0 .1:,:c , ,·,-.
• ,.., 111111 . ,,:,a,
• $t ·-
120
Annex XV Appendix D
16
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
 Average recharge for the period 1969-2017 has been estimated to 56 mm/year, which
corresponds to a mean groundwater discharge to the Silala Near Field area of
approximately 400 l/s. Compared to the recorded average stream flow at the Silala
gauge of 160-210 l/s, this seems realistic as some groundwater flow is expected to
bypass the wetland, both below the sediments and in the deeper Ignimbrite aquifer.
 Sensitivity runs considering key parameter and inputs indicate a range of recharge of
330-550 l/s. It shows that the recharge by infiltration of precipitation within the
topographical catchment can provide sufficient groundwater flow to maintain
discharges into the canal and springs system.
 The climate and recharge rate is highly variable with respect to both temporal and
spatial distribution
 Overall, the analysis indicates that it is plausible to assume that the flows in the Silala
Springs System may be sustained by groundwater recharge from the topographic
catchment.
 A particle tracking analysis with the simulated groundwater flow field suggests variable
groundwater travel times of up to 4,000 years, with a mean value of 900 years. The
simulated travel time is a proxy of groundwater age.
 The age estimates do not include travel time of infiltrating water through the locally
very deep unsaturated soil column. Based on average vertical travel time from a
simple transport model run with a tracer and simulated depths to the groundwater
table, the travel time has been estimated to range from 5-50 years where the
groundwater table is closest to the surface by the wetland, to up to over a thousand
years with the deepest groundwater table.
 Overall, the analysis confirms a high water age of over 1,000 years as compared to
previous Isotope datings of 1,000-10,000 years.
 Given the lack of field data from the Silala Far Field area, the uncertainty and
variability of climate data and the model sensitivity, these results should be viewed as
indicative only.
A detailed description of the water balances and groundwater age calculations is found in
Appendix B.
5 Surface water flow measurements
Groundwater continuously discharges in Silala as surface water through seepage faces and
springs. In the present situation, the surface flow is collected by the artificial drainage and
canal network and is conveyed through the manmade main canal across the border to Chile.
A key objective of the project is to quantify flows both under current conditions and under
natural conditions assuming that the canals are closed and removed. A canal flow
measurement campaign has been carried out during May-September 2017. Proven and
reliable measurement methods have been applied in order to reduce uncertainties and provide
a solid basis for analysing the current Silala surface water flows.
The surface flow measurements are analysed with the purpose of establishing:
 The canal flow rate at the permanent border site including mean rates and temporal
variation
 The spatial distribution of canal flows and inflows from the wetlands to the border
during the May-September field campaign
Annex XV Appendix D
121
17
 The temporal variation of surface water flows during the May-September field
campaign
 Flow measurement and water balance consistency checks
 Interpretation of flow measurement data in the context of a conceptual hydrological
model of the Silala near field area
The distributed flow pattern contains information on sub-system contributions to canal flow,
which is essential to the understanding, description and simulation of the surface hydrological
processes. In later stages of the project, the surface water information will be combined with
hydrogeological information collected as part of the groundwater field survey program to form
an integrated surface water – groundwater model.
A surface flow measurement program planned by DIREMAR, SENAMHI and DHI was later
adjusted during field inspections to pin down the best suitable locations (see Reference 6).
SENAMHI has been contracted by DIREMAR to carry out the surface flow measurement
program. The surface water flow measurement program was initiated in May 2017. The
measurements include simultaneous canal and spring flow measurements, continuous flow
records collected at flumes installed during 2017 and the permanent flume flows recorded
close to the Bolivian-Chilean border.
Figure 13 shows the flow measurement locations including springs (Ojo de Agua),
simultaneous flow measurement locations (S-1 – S-21) and continuous flume flow gauges (C-
1 – C-7). Prior to the establishment of the flumes, simultaneous flow measurements have
been carried out at both S-1 – S-21 locations and at the locations C-1 – C7 where six new
flumes were later installed.
Figure 13 Overview of flow measurement locations (SENAMHI)
A preliminary assessment of measured flows was carried out as part of the Surface Water
Report (see Reference 10). In the following sections, the flow data provided by the SENAMHI
for the period May-September 2017 are updated, presented and analysed along with the
permanent flumes flow records at the Bolivian and the Chilean side of the border.
5.1 Simultaneous canal flow data
The simultaneous flow measurement program is designed to provide a snapshot of flows in
many points of the canal network. The measurements have been carried out ten times. Initially
D~
...... .. .... N to.>t """" - ·- " Uyen ll■ ... ..... ~-
A ·---·--- i - •- i
.. ,,
I I
...... ...... .,,... ......
The expert in WATER ENVIRONMENTS
122
Annex XV Appendix D
18
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
at a bi-weekly and later at a monthly frequency, covering all locations within 2-3 days. Micropropeller
measurements in multiple points of the cross section provide a cross-sectional
velocity profile, which is integrated to calculate the flow. The profile measurements have been
carried out twice at each location to verify results and, if necessary, to take prompt on-site
action to prevent errors.
5.2 Simultaneous spring flow data
The program of simultaneous spring-flow measurements was designed to assess flow rates at
individual springs and the total spring flow contribution of sub-systems. By comparing
measured spring flows and canal flows, a measure of diffuse canal inflows has been derived.
Diffuse inflows describe non-point inflows, e.g. seepage faces or groundwater-canal flow
exchange.
Spring flows have been measured at the discrete points of spring discharge (Ojo de Agua),
which have been mapped across the entire Silala Near Field system. They include free flowing
exposed springs, exposed springs with little or no flow and springs covered by soil and visible
only by wet soil seepage faces. The first type is suitable for measurement of flow rates which
has been carried out by collecting the spring discharge and deriving the flow rate from volume
and time. In January 2017, flow rates were measured at the majority of springs while the data
collected from May 2017 and onwards only includes 20 high-flow springs approximately.
Unfortunately, the spring locations selected for measurement and the applied spring-naming
convention are not consistent for all of the 10 measurement rounds during May-September
2017. This means that measured flow cannot be referred to the identical same locations.
Spring flow measurements were carried out for two days. In January 2017, flows at 64 springs
were measured, with flow rates in the range of 0 – 11.9 l/s. In the Southern wetland upstream
of station C3, 21 springs have been mapped and measured. The total spring flow adds up to
approximately 40 l/s with an additional 15 l/s along the lower Southern Canal reach. On the
Northern Canal, spring flows adding up to 46 l/s have been recorded. For the entire Silala
Near Field area, the sum of spring flows is approximately 100 l/s compared to downstream
canal flow measurements in the range of 160-200 l/s, meaning that 60 -100 l/s enters the
canal, not as spring point sources, but as diffuse sources.
The canal and springs flow measurements indicate that the Silala canal system receives
considerable lateral inflows, which are not accounted for by the spring flow measurements.
The canal system gains water from both diffuse sources and spring point discharges, while
potentially losing water due to diversion to wetlands, seepage and evapotranspiration. It is not
possible to close the canal water balance from the flow measurements but the difference
between measured canal flow and measured spring flows indicates a magnitude of diffuse
inflows
A total of ten simultaneous flow measurements in 26 locations were carried during May-
September 2017. Figure 16 is a longitudinal flow profile along the Southern Canal with
measurements from 10 different dates. The flow increases from approximately 20 l/s at the
Southern wetland to C-5 at the confluence between the Northern and Southern Canal. The
measured simultaneous flow rates are approximately constant in time. Simultaneous flow data
are also presented in Figure 17 to Figure 19 and in Appendix C.
Table 2 shows approximate diffuse net inflows by section of the Silala Canal estimated as the
difference between measured mean canal flows and springs flows. At the upstream reaches of
the Southern Canal (C-1 – C-3), the measured spring flows are almost equal to the measured
canal flow, which implies limited diffuse inflows. However, on the lower section (C4 – C5)
where only a few springs have been mapped, a large diffuse inflow indicates significant
groundwater discharge to the Silala Canal in the upper canyon/ravine section.
On the Northern Canal, the sum of spring flows accounts for 75-80 % of the canal flow, leaving
20-25 % for diffuse lateral net inflow. Similarly, derived total diffuse net inflows for the
Southern Canal are expected to be in the order of 35-45 %
Annex XV Appendix D
123
19
The measurements of simultaneous canal flow and spring flow are associated with
uncertainty. The spring flow measurement method is coarse and relies on capturing all of the
spring flow within a given time interval, preventing any bypass flow. Measurements of canal
flows suggest that the groundwater discharge is approximately constant. Consequently, spring
flows should accordingly be approximately constant. However, for the most frequently
measured spring, the flows vary between ± 40 % of the average value. The highest relative
deviations are found for springs with low flow rates. The variation in measured flow is not
consistent across the springs, suggesting that the variations are caused by measurement
uncertainty and not hydrological temporal variations driven by, for example, climate.
Section Measured spring flow
(l/s)
Measured Canal Flow
(l/s)
Difference, canalsprings
(l/s)
C1, springs 1-12
(Zone 2)
23.8 27.8 4.0
C2, springs 1-20
(Zone 2)
41.2 36.7 -4.5
C3, springs 1-21
(Zone 2)
41.2 38.0 -3.2
C4, springs 1-22
(Zone 3)
45.2 59.5 14.3
C5, springs 1-32
(Zone 4)
56.9 97.0 40.1
C6, springs 33-64
(Zone 1)
46.1 56.9 10.8
C5+C6, springs 1-64 103.0 154.0 51.0
Table 2 Canal flows by section, accumulated upstream spring inflows and derived diffuse inflows
Figure 14 Longitudinal simultaneous flow profile (Southern Canal)
D~
S-1 to C-5 ow profi le
l~O.QJ
- 1211 ! I-IOJIC
~ •o.oo
il ao.oo
~ lll..00
0.00
S-1 C-1 s-1 C-l Sil H q; H H c .. s-, J.lO s-tJ c;
--Molylii-7 .,>.J(l 1 ' 14 -l\ O.G!» ,. '\Si hlO "" 41 '15 •• ,u, 11' ,,.- ,s 1G
--M 'fU14 JJ.OQ ., .. .!.1 )U ..&e, !JO i:lltl JI.JO ..... "' ,uo , .. 101..m 1116' 101 te 1107'
- M•'flJ•17 :UJ,C 21.lO 3J.CS "',. 40.JS '10 J310 114-"
--Mtv11-JQ uo, Jl.o~ &l 7~ ~ ,,, • 10 DA • !! ll!Jt: • , oUO f1 ., IIJ !Oll!t . .,
- IJllaJA n . .:., 2&.!tO JUD lLC. 3'0.~!l )LOO 30..l> ll.lC lLG.S 12.>D au IC6.JII ,,. .,,., 110.>C
2 "
2110 "-' i'S 7~ 1110 12., JS.lO IJM .t'l05 51.J5 II 5 inf.JS ),OS tlli.O
--~..-,e:, .1 n.1, JU ,, .. JJ..6) .,. ,., 17,U ,u 0,1 ,u 111!1 1D1,t 1> IU
ZA 1> 317, JU , ... IU U.15 ,, JPS l'i,.!I >CIIS '1.3 IOI !OJ.I ,,.u
--•-c> 77 iu, ll' I ,s 11 ia.s .. ' ILSS 11, J1U ,us U.1 1101:1 IU~ 101
l7 2, .. , 240 , ... , IU 2:US ,..,., )3 4 \ 16U Al.3.0S >o 1 un lll ll J(l'!t.l , ...
The expert in WATER ENVIRONMENTS
124
Annex XV Appendix D
20
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
5.3 Continuous flow data of installed flumes
During May-June 2017, SENAMHI installed six new flumes and V-notch weirs, in accordance
with the Final Field Survey Specifications (Reference 6). Once installed, the weirs were
calibrated in the field to derive rating curves which describe the relation between water level
and flow. Calibration was performed by controlling upstream flows. A number of corresponding
values of flow and water level were measured, covering the low to normal flow range at each
site. For the low flow ranges, the flow was calculated by collecting the volume in a container
for a period of time. For the higher flow ranges, micro propeller measurements were used. The
rating curves were approximated by curve fitting to the set of water level and flow data.
All of the weirs are equipped with continuous, automated pressure sensors, which provide
continuous records of high temporal resolution
The purpose of this part of the flow observation campaign is to determine the flow rate at
strategic locations in the canals of the Silala Springs System as exactly as possible, and
therefore:
1. Reveal the temporal variation of the flow rate
2. Evaluate the daily flow variations and detect possible short-term impact of precipitation
event. The daily variations are important to evaluate the simultaneous observation
taken at more locations and may also open for an independent, although not isolated,
evaluation of the evaporation rates
3. Ease the observation of possible surface water impacts from the planned borehole
pump tests.
The resulting time series cover the period July –Sept 2017. All series shows a high base flow
level superimposed with a smaller periodic daily variation peaking around midday.
Unfortunately, the base flow in all series exhibits abrupt jumps at certain dates and sometimes
trends in the intermediate periods. None of these variations can be assigned to climatic events
and must therefore be due to malfunctions of the equipment.
Although the daily flow variations may play a role in the uncertainty of the simultaneous
observations, they are too small to explain the spread in the simultaneous measurements at
the locations. The flows peaks at midday at all stations and daily variations can therefore not
be due to evaporation losses that peaks at the same time. Hence, the daily variation is
assigned to freezing and thawing of the water in the wetlands.
The results from the two two-week periods, during which the data are most consistent, confirm
contributions from the Southern and Northern wetlands to be in approximately 60% and 40%
of the confluence flow, respectively and that the flow contribution in the ravine between C4
and C5 is a significant part of the flow at the confluence.
5.4 Permanent Bolivian and Chilean flume flow records
Long-term time series of the flows in the Silala primary canal are available at two locations,
one at the old siltation chambers in Bolivia around 700m upstream of the border and the other
from Chile’s Direción General Del Agua (DGA), just downstream of the border on the Chilean
side. Given the locations and proximity (less than 1 km) of the permanent flumes, no
significant differences in canal flows are expected and the same level of flow should be found
in both of the two flow time series.
At the Bolivian gauging site, a flume is constructed in a rectangular concrete trench
constructed along the old siltation chambers and equipped with a V-notch and automatic
(electronic) water level registration by floater with resolution around one mm. Hence, the
station should be almost ideal for measuring the narrow flow range of the canal. Water levels
Annex XV Appendix D
125
21
are measured both manually (two times a day) by the military personnel and automatically
(hourly). Each of the two water level series has been converted to flows by a formula relating
specific water level observations to flows. Particularly for V-notch weirs, the standard formula
is considered accurate within 3-5 %.
Both manual and automatic water level readings and corresponding flow records exist. A
comparison of measured flow time series covering the period August 2013- August 2017 is
shown in Figure 15. The series is characterised by a constant base flow of 150-200 l/s, which
clearly indicates that the canal is fed almost entirely by groundwater. However, frequent abrupt
changes in the calculated flows, sometimes from one time step to the next, are also observed.
The rapid fluctuations in flow originate from similar changes in the water level observations. It
is, in general, not been possible to relate them to climatic conditions, runoff events or
seasonality. It seems likely that these fluctuations must be attributed to uncertainty in water
level observations, due to e.g. jamming of the float or sediment deposition in the stilling canal.
The automatically gauged water levels include sudden jumps of 0.5 cm or 1 cm although the
resolution of the instrument is 1 mm. This also points out to possible errors in the automated
sensor registration. In spite of the near ideal flow gauge conditions provided by the weir, the
uncertainty is therefore substantial, in the order of 25-30 % of the flow rate.
The Chilean flow time series also includes abrupt changes in flow. The Chilean flow series are
generally approximately 15-25 l/s lower than the Bolivian series. A difference in flow of 40-50
l/s is seen in the most recent data from September 2017 (Figure 16). It seems unlikely that
local canal losses along a generally gaining canal could explain the recorded differences in
flow. Although both series shows significant variations over time, 125-225 l/s for the Chilean
series and 160-210 l/s for the shorter Bolivian series, neither shows clear sign of seasonality
or a direct correlation with local rainfall. Hence, the variation must be assigned to uncertainty
in the measurements.
Figure 15 Long-term series of measured Silala Canal flows close to border, 2013-2017 Blue curve:
manual readings C7, yellow curve: automatic floater instrument C7, turquoise curve: daily
average from the new pressure sensor C7; red curve daily data from DGA’s Siloli station
just downstream of the border.
D~
.,.
n,
'"'711lr::::==:;:::::::=:::::::::::~::::'.:==:::::::::::::::::=::::=====:::::== ;=::=:::::::::::::ilil
CHn1.1011
The expert in WATER ENVIRONMENTS
126
Annex XV Appendix D
22
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Figure 16 Long-term series of measured Silala Canal flows close to border, May-September 2017.
Blue curve: manual readings C7, yellow curve: automatic floater instrument C7, turquoise
curve: daily average from the new pressure sensor C7; red curve daily data from DGA’s
Siloli station just downstream of the border.
5.5 Comparison and analysis of flow data
Figure 17 and Figure 18 show simultaneous flow measurement plotted respectively for the
Southern and Northern canal elevation profile, The left axis shows elevations (m) of the canal
and the right axis shows flow rates (l/s). In addition, the elevations of springs adjacent to the
canal have been marked.
On the Southern canal branch (Figure 17), the mean flow in the Southern wetland increases
from 30 l/s upstream at S-1 to 36 l/s downstream at S-6. On the upper canal reaches, the
slope is almost constant and from S-6 to C-4, the canal flow increases at an approximately
steady rate reaching 60 l/s at C-4. However, from C-4 to S-10, in the upper reach of the
ravine, the surface elevation drops and the canal bed slope increases. According to the
measurements, a significant inflow to the canal, in the order of 50 l/s, occurs along this
section. Since only a few springs have been recorded, the majority of the canal flow increase
is due to groundwater discharges through seepage entering the deepest section of the ravine
as diffuse discharge to the canal. The spring water level elevations have been plotted as an
indication of the groundwater table elevation along the canal. Between S-9 and S-10, the
spring elevations are significantly above the canal level. This is indicative of a relatively high
water level gradient from the groundwater towards the canal and consistent with the high
inflow rates recorded.
The results suggest that the topography is a main controlling factor of groundwater discharges
to the canal. As the surface elevations drop, the groundwater table is forced closer to the
surface, where it exchanges flow with springs, typically aligned with fractures, or directly to the
canal. Larger scale hydrogeological features, such as faults, may play a role with respect to
canal discharge patterns. On the steep canal section from S-10 to C-5, the mean flow
decreases by approximately 10 l/s, which is attributed to either canal losses or measurement
errors.
On the Northern Canal branch (Figure 18), the slope is less variable. The increase in mean
flow is relatively high from S-18 to S-13, 5 l/s to 45 l/s. This section is characterized by a
dense drainage network distributed across the width of the wetland. This is also the section
where the vast majority of the springs of the Northern wetland discharge into the drainage
D~
"'
""'
,.,
I
I ,., I ~I
""
,.,
Annex XV Appendix D
127
23
network. From S-13 to C-6, close to the confluence between the Southern and the Northern
canals, the wetland is narrowly constrained by the ravine, with an approximately uniform canal
bed slope. In this section, only a few springs have been mapped and the mean flow rate
increases from 45 l/s to 57 l/s along a distance of approximately 300 m.
Figure 19 shows a map of canal flows and canal net inflows in the Silala Near Field area
based on mean simultaneous flow measurements. This figure shows the flow at the
continuous measurements stations (C1 – C7), the inflow between the stations and the
percentage of flow relative to the downstream measurements, assuming that C7 flow equals
the sum of C5 and C6 flows. Approximately 63 % of C-7 flows originate from the Southern
canal and wetlands. Most of it enters the canal on the C-3 – C-5 reach. The reach has
relatively few mapped springs and the gaining canal flow must thus be attributed to either
diffuse seepage sources or groundwater discharging directly through the base of the canal in
the deepest section of the canyon. Although not explicitly shown in the map, losses occur on
each reach, e.g. by evapotranspiration or canal seepage to the adjacent riparian area.
D~
The expert in WATER ENVIRONMENTS
128
Annex XV Appendix D
24 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure 17 Southern canal profile (S-1 to C-5) showing canal elevation (m) on the Y-axis and canal chainage (m) on the X-axis
.~. -~--- -~.~·-· .l ···?·
+
t ,r,.........:•
--~·····~·
~::c
C
"
·'. ~ z ~+~.-. . .
!'.~:"::r:J= ____; __
I
Annex XV Appendix D
129
25
Figure 18 Northern canal profile (S-18 to C-6) showing canal elevation (m) on the Y-axis and canal chainage (m) on the X-axis
0;:I
!
i
i
i
·'·!~ ;
·i i
·•···1·1:T:+···•·
: l : i
·-t··-l·-+··!·••i••·::::l .. '
i
i
i!!
i
-~ ;
·I i
i
i
i
;
i
;
i
i
;
i
i
i

i
i
i I!! § i z
li Ill
::E
~ i z ····ii i J ~ >z
Ill
! ~
Ill
!;;: • ;:
_!;
i t'.
OJ
CL
; 1i5
OJ
..c
; f130
Annex XV Appendix D
26 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure 19 Mapping of flows and net inflows based on simultaneous mean canal flow measurements (in l/s)
Canal Inflow
D~
59 1/s
Legend
Q CMtilhl!M. fbll 9:MUl5
• S-.ll•nt04,/t .f'k,w SIMO'lt
--Wba!Zon.,
COOfilDE~$_°'°8_,t,-G~
t:"
G:,
~
~
37 1/s v
18 %
Annex XV Appendix D
131
27
5.6 Data consistency and uncertainty
The canal flows have been measured for different periods, at different locations and by different
methods. Comparison of the long-term flow records from the permanent flumes in Bolivia and
Chile respectively show significant differences in both the mean flow levels and temporal
variation.
The shorter term continuous and simultaneous flow measurements carried out in January-
September 2017 exhibit inconsistencies both at the individual gauging points but also when
cross comparing the data. Figure 20 shows C-5, C-6 and C-7 flow measurements in July-
September 2017. The measured continuous flows are significantly higher than the simultaneous
flow measurements for all three locations and there are unexplained, but significant differences
between the sum of C5 and C6 versus C-7 flows.
Figure 20 Continuous (shown as lines) and simultaneous (shown as circles) flow measurement data,
July-September 2017
5.7 Conclusions on the measured flow data
 The long-term time series from the Bolivian and Chilean permanent flumes show mean
flow rates around 160 l/s – 210 l/s with differences between the locations of 15-25 l/s.
The temporal variations in flow at both locations are generally not mutually correlated or
correlated with seasons, climate or runoff events.
D~
O. (Vsl
-c-ss,muil -C-7s,muil
-c-s - C-7
The expert in WATER ENVIRONMENTS
132
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15 28
 The flow data collected by SENAMHI during May-September 2017, including both
simultaneous and continuous flow measurements, show approximately constant flow
rates.
 The measured flows have been used to calculate the spatial distribution of inflows. The
spring inflows to the Northern and Southern wetland account for roughly 60 % of the
total canal flow at C-7. Diffuse inflows, in particular along the upper ravine reach (C-4 –
C-5) of the Southern Canal, account for the remaining 40 %.
 The comparison of flow measurements show significant differences and deviations,
under what would be expected to be well-controlled flume measurements. The
additional measurements carried out in January-September 2017 have not narrowed the
flow range in the downstream reach between C-7 and the border. Despite independent
continuous and simultaneous flow measurements on the Chilean and Bolivian side of
the border, the actual canal flow remains uncertain (160 -210 l/s).
 Smaller periodic daily flow variations have been detected at all of the seven continuous
gauging sites during July-Sept 2017 (winter period). They cannot be caused by wetland
evaporation but are likely the effect of freezing/melting of the water in the wetlands.
A more detailed description of flow data and the flow data analyses is found in Appendix C.
6 Summary and conclusions
The hydrology and hydrogeology for Silala is linked with the climate. Flow and water balance
estimates thus require reliable distributed climate datasets. These were not available but have
been estimated for this project. By combining local ground based observations with satellite data
and the topography of the catchment, precipitation, potential evapotranspiration and
temperature, time series have been established specifically for the Silala catchment.Considering
the large spatial climate variability in the Andes This method is deemed to provide better climate
datasets than correlating observations over long distances as suggested by Muñoz et al.
(Reference 11).
Given the climate variability of the area and the quantity and quality of data, uncertainty must be
recognised. Significant uncertainty in the climate series has been addressed in the water
balance model by sensitivity simulations and the range of key model results assessed.
A water balance, recharge and flow-tracking model have been set up for the delineated
catchment upstream the Silala springs and canal system. It is based on available data, e.g.
precipitation and potential evapotranspiration time series and on a number of general
assumptions concerning the characteristics and properties of the area.
Results show recharge rates of approximately 56 mm/year in the upstream catchment (232 km2)
corresponding to a total long-term catchment discharge (groundwater and surface water) of
roughly 400 l/s.
The results indicate that recharge generated inside the topographical catchment under current
climate is sufficient to sustain the spring and canal discharges of 160-210 l/s and potentially a
cross-border groundwater flow.
The simulated groundwater flow field has been used in a particle tracking analysis in order to
map the possible origin and age of water discharging the Silala springs and canal system. The
highest age of up to 4,000 years is found for the remote, higher altitude areas with an age of 900
years on average across the catchment. The age estimates do not include travel time of
infiltrating water through the locally very deep unsaturated soil column. Based on averaged
vertical flow velocities in the unsaturated zone and the simulated depths to the groundwater
Annex XV Appendix D
133
29
table, the travel time range from 0-200 years, where the groundwater table is closest to the
surface (3-4 m below surface at the downstream boundary) and up to several thousand years
with the deepest groundwater table.
Overall, the analysis indicates a water age within the range of previous Isotope datings of 1,000-
10,000 years.
Given the lack of field data from the Silala Far Field area, the uncertainty and variability of
climate data and the model sensitivity, the results should be viewed as indicative only.
The continuous Silala canal flow measurements at the two permanent gauging stations on
Bolivian and Chilean territory immediately upstream and downstream of the border have been
supplemented by new measurements carried out by SENAMHI during January-September
2017. SENAMHIs field program includes simultaneous micro-propeller flow measurements (21
locations), spring flow measurements (20-33 Ojos De Agua) and six continuous flume water
level recorders converted to flows.
The flow data analysis shows that the flows are dominated by groundwater discharges and
approximately constant in time. The temporal variation observed in site-specific flow
measurements cannot be explained by responses in neighbouring measurement locations or
any climate or runoff events.
The flow measurements have provided valuable information regarding the spatial distribution of
inflows and allowed a breakdown of water balances by reach. Although considerable flows
(approximately 95 l/s) enter through the springs at the Northern and Southern wetlands, a large
groundwater inflow contribution has been identified along the Southern Canal between C3-C5,
especially along the upper reaches of the ravine, coinciding with a locally steep drop in
topography and canal levels.
The different flow measurements around C5-C7 just upstream the border revealed
inconsistencies between the flow records and have not contributed to narrowing the canal flow
range.
Smaller periodic daily flow variations have been detected at all of the seven continuous gauging
sites during July-Sept 2017 (winter period). They cannot be caused by wetland evaporation but
are more likely due to freezing/melting of the water in the wetlands.
The continuous flow measurements have confirmed that the Northern and Southern wetlands
contribute to respectively around 40% and 60% of the confluence flow and that a significant part
of the flow in the Southern canal enters along the ravine upstream of the confluence. The
uncertainties for assumingly well controlled flume measurements appear high and the data
available up to the deadline of this report do not further constrain the wide flow range of 160-210
l/s measured at the border.
7 References
Reference 1
B.M. Mulligan and G.E. Eckstein, 2011: The Silala/Siloli Watershed: Dispute over the Vulnerable
Basin in South America. Water Resources Development Vol 27, no 3.
Reference 2
Christian Neumann-Redlin, Juan Torres, after 2004: Hydrological Hydro-chemical and Isotopic
Investigations in the Area of the Silala Wetlands.
Reference 3
D~
The expert in WATER ENVIRONMENTS
134
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15 30
G.Skrzypek, Z. Engel, T.Chuman, L. Šefrna, 2011: Distichia peat — A new stable isotope
paleoclimate proxy for the Andes, Earth and Planetary Science Letters vol 307, 298-308
Reference 4
A. F Squeo, G. B. Warner, R. Aravena, D. Espinoza, 2006 : Bofedales: high altitude peatlands
of the central Andes, Revista Chilena de Historia Natural, 79: 245-255.
Reference 5
DHI Feb 2017: Contract CDP-I No 01/2017 Study of the Flows in the Silala Wetlands and
Springs System, Phase I: Product no. 1, Inception Brief.
Reference 6
DHI Feb 2017: Contract CDP-I No 01/2017 Study of the Flows in the Silala Wetlands and
Springs System, Phase II Product 1 Final Field Survey Specifications
Reference 7
NASA 2017: Shuttle Radar Topography Mission. https://www2.jpl.nasa.gov/srtm/statistics.html
Reference 8
Robert H Fox, (1922): The Water works Department of the Antofagasta (Chili) and Bolivia
Railway Company.
Reference 9
Servicio Nacional de Geologia y Minería (2001): Estudio de la Geología, Hidrología,
Hidrogeología y Medio Ambiente de Area de los Manantiales de Silala
Reference 10
DHI July 2017: Contract CDP-I No 15/2017, Study of the Flows in the Silala Wetlands and
Springs System – Second Part Product No. 1: Provisional Report 1, Surface Flows
Reference 11
Muñoz J.F., Suárez, F., Fernández, b., Maas T.,2017 Hydrology of the Silala River Basin
International Court of Justice Dispute over the status and use of the waters of Silala (Chile
vs.Bolivia), Memorial of the Republic of Chile Volume 5 annex VII.
Reference 12
Graham, D.N. and M. B. Butts (2006) Flexible, integrated watershed modelling with MIKE SHE.
In Watershed Models, (Eds. V.P. Singh & D.K. Frevert) CRC Press. Pages 245-272, ISBN:
0849336090.
Reference 13
Arcadis, 2017. International Court of Justice Dispute over the status and use of the waters of
Silala (Chile vs.Bolivia), Memorial of the Republic of Chile, Volume 4, Annex 2. Detailed
Hydrogeological Study of the Silala River
Reference 14
DHI, 2012, MIKE SHE User Manual Volume 2: Reference Guide, MIKE by DHI
Annex XV Appendix D
135
31
Reference 15
https://trmm.gsfc.nasa.gov
Reference 16
https://pmm.nasa.gov/GPM
Reference 17
Home page of Food and Agricultural Organisation of the United Nations:
http://www.fao.org/land-water/databases-and-software/ Et0-calculator/en/
Reference 18
De Wit, C.T., Gooudriaan, J. and van Laar, H.H., 1978. Simulation of Simulation, Respiration
and Transpiration of Crops, Pudoc. Wageningen, The Netherlands, 148 pp. 1978
Reference 19
Xiao, X., R.Horton, T.Sauer, J. L.Heitman, and T.Ren (2011), Cumulative soil water evaporation
as a function of depth and time, Vadose Zone J., 10, 1016–1022
Reference 20
Kasenov, 2001. Applied Ground-Water Hydrology and Well Hydraulics by Michael Kasenov, 2nd
Ed., ISBN: 9781887201629, pp. 214
Reference 21
Freeze, R. A. and J. A. Cherry, 1979. Groundwater, ISBN: 0-13-365312-9
D~
The expert in WATER ENVIRONMENTS
136
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15 32
Annex XV Appendix D
137
33
APPENDICES
D~
The expert in WATER ENVIRONMENTS
138
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15 34
Annex XV Appendix D
139
Climate data analysis
1
APPENDIX A
Climate data
D~
The expert in WATER ENVIRONMENTS
140
Annex XV Appendix D
A-2 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Annex XV Appendix D
141
Climate data analysis
A-1
A Climate data analysis
This appendix documents a climate and hydrological analysis of the Silala Springs system in
Bolivia close to the Chilean border. The purpose of the analysis was to develop an
understanding of the hydrological processes in the spring catchment, with the aim to produce a
water balance for the upper part of the catchment.
The appendix presents the available climate data for the area including precipitation,
evapotranspiration and temperature, and our analyses of their spatial and temporal variations. It
gives our best estimates of long-term distributed climate series, to be used in the catchment
water balance studies in this report and in the detailed integrated groundwater –surface water
studies of the Silala Nearfield to be established later in the project.
A.1 Precipitation
Daily records of precipitation are available for a number of stations in and around the Silala
catchment in both Bolivia and Chile. Senamhi has provided data for three stations in Bolivia and
station data has been extracted for six stations operated by Direciόn General de Aguas (DGA) in
Chile. The stations are listed in Table A-1 and the locations are shown in Figure A-1. Historical
data for Laguna Colorada is also available for a period from 1980-2000. However, this data set
looks erroneous, with repeating patterns of rainfall for longer periods. It has therefore not been
used in the analysis.
Table A-1 Overview of rainfall gauges in Bolivia and Chile
Station Source Distance
from Silala
(km)
Altitude
(m.a.s.l)
Period Years
Silala Senamhi 0 4402 12/6/2012-30/9/2017 4.5
Laguna Colorada* Senamhi 28 4278 18/9/2010-25/9/2017 6
Sol de Manana Senamhi 53 4916 1/1/2012-11/7/2017 5.5
Siloli DGA 2 4000 25/10/2012-1/8/2017 4.5
Inacaliri** DGA 6 4040 1/2/1969-28/2/2017 48
Silala** DGA 2 4305 1/1/2001-28/2/2017 17
Ollague DGA 90 3707 1/1/1971-28/2/2017 46
Linzor DGA 25 4100 1/11/1973-28/2/2017 43
Caspana DGA 40 3246 12/6/2012-30/9/2017 4
*) Very large values in 2016/17 - problems with station
**) Identical values for longer periods - not raw data but it looks like one station may have been gap filled
with values from the other station by DGA
D~
The expert in WATER ENVIRONMENTS
142
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure A-1 Locations of weather stations with rainfall data in Bolivia and Chile (Senamhi stations in
green)
As the stations in Bolivia generally only have a few years of rainfall and also have several gaps
in the records, some of the stations from Chile have been used for analysing the long-term
variations in rainfall and for looking at long-term annual average rainfall for the Silala catchment.
The DGA rain gauges at Inacaliri and Silala (hereafter named DGA-Silala) are located closest to
the study area and both have long records. However, it was noted that, for some years after
2010, the rainfall is identical at the stations, which could indicate that one of the stations may not
have been operating properly and some gap filling was undertaken. The long-term average
annual rainfall at DGA-Silala is 87 mm/year compared to 98 mm/year at Inacaliri for the period
from 2001-2017. The average rainfall at Inacaliri for the full data period from 1969-2017 is 122
mm/year.
A.1.1 Annual and seasonal variation
The inter-annual variation in precipitation is very high, as illustrated in Figure A-2, which shows
the annual rainfall at Inacaliri and Silala. The calendar years 2003, 2009 and 2010 were
particularly dry years. Although the inter-annual variation may partly be explained by large scale
atmospheric variations such as the El Niño effect, all three years are only moderate El Nino
years. On the other hand, 2015 was very strong but was not particularly dry in the records.
Hence, the inter-annual variation in precipitation does not seem to have a very strong El Niño
correlation. A similar inter-annual pattern is observed at the other DGA stations. It is also
interesting to note that the dry years seem to be drier after 2001 than for the previous period.
Whether this and the detected generally lower average precipitation at Inacaliri is due to a
general global long-term change in climate or whether it is a local decadal variation cannot be
determined from the available data.
D~
"
LI • C ... •
Annex XV Appendix D
143
Climate data analysis
A-3
Figure A-2 Annual precipitation at the Inacaliri and Silala gauges
Most of the precipitation in the Silala catchment occurs during the austral summer months
between December and March (Figure A-3). Very little precipitation is observed during the
winter months from April until September. Snow has been recorded and observed in the Silala
catchment during the winter but this may not be captured adequately by the weather stations. In
fact, the stations inspected on the Bolivian territory were not equipped with instruments suitable
for catching snow. The station data from Inacaliri and DGA-Silala has some minor precipitation
events during the winter month for some years but no precipitation has been observed at the
two stations after 2005.
Figure A-3 Monthly average precipitation at the Inacaliri (1969-2016) and Silala gauges (2001-2016)
A.1.2 Snow formation
In order to investigate the importance of snow events in more details, MODIS satellite data was
acquired, with a spatial resolution of 500 m showing the snow cover of the catchment on a daily
basis from 2000-2017. Percentage snow cover in the Silala topographic catchment area
•oo
lSG
100
E150
.E.
C
0
" 200
~
ii
2 l..>IJ
"
100
5: ii I f I II I
50
.,
10 ' - i i!: ~ j
.! j i
The expert in WATER ENVIRONMENTS
I I I I Li
- - i ~ i
D~
i.lll1d l.l1
-II t 1l
8 f
t ..,_
144
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
indicates that some precipitation falls as snow during the winter months. Particularly large snow
(wet) events were observed in July 2002, August 2011 and June 2013 (see Figure A-4 and
Figure A-5). However, this was not observed in any of the rain gauge data. Only a small amount
of precipitation was recorded at the Inacaliri station in 2002 and none during the other periods.
While MODIS provides snow cover, it is not possible to reliably estimate snow depth or snow
equivalent from the data alone but they indicate that the gauged precipitation underestimates
total precipitation.
Figure A-4 MODIS satellite snow cover in the Silala catchment in June 2013
Figure A-5 Comparison of satellite snow cover (blue) to the north of the wetland on the ridge with rainfall
daily recorded at Inacaliri (red).
D~
...
July2002
100
90
80
70
60
50 ..,
30
20
10
31/12/2001 01/01/2004 31/12/2005 01/01/2008 01/01/2010
- MODl5 - Rairrfal
""
August2011
June 2013
01/01/2012 01/01/2014
•H- ..·....
..:.:. .:,. q. ,. .•.· ·,.
--•·· N -
01/01/2016
70
60
50
40
30
20
10
Annex XV Appendix D
145
Climate data analysis
A-5
A.1.3 Spatial distribution of rainfall
Due to the limited number of rainfall station with longer-term rainfall records in the Silala
catchment area, it is difficult to make a reliable assessment of the spatial distribution of rainfall.
Muñoz et al., 2017 (Reference 11) has, based on long-term rainfall records at a large number of
DGA stations in Chile, developed a simple rainfall-altitude relationship and used it, combined
with local elevation data, to make an assessment of the annual average rainfall for the
catchment delineated by them. However, there is a large spread in the rainfall data at heights
above 3,500 meters. It was therefore decided to look at satellite data to see if a more reliable
relationship could be established from local data.
Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) was used for the
analysis. The data consists of daily gridded values with a resolution of 0.05 degrees or
approximately 5 km, covering a 30-year period starting in 1981. Other gridded remote sensing
rainfall series were also considered for the analysis but since these (TRMM and GPM,
Reference 15 and 16) have a much lower spatial resolution (0.25° and 0.1° compared with
0.05°), the CHIRPS is considered the best source of distributed precipitation available for the
Silala catchment. Furthermore, GPM data is only available for 2015-2017.
Like the ground station records in the area, the CHIRPS data does not show precipitation
outside the austral summer months. Hence, CHIRPS does not capture any snow events in the
winter months. The spatial variation of long-term annual average rainfall indicates that the
highest amount of rainfall is seen in the North-Eastern part of the Silala catchment, reducing
towards the South-West. This is consistent with the fact that precipitation in the basin is mainly
caused by convective activity in a North-East South-West direction. More than 90% of the
precipitation in the basin occurs between January and March, as a result of the significant
atmospheric pressure coming from the East. During the rest of the year, the atmospheric
moisture in the air decreases due to dry winds from the West.
Based on the CHIRPS data within and nearby the Silala catchment, a linear relation between
precipitation and altitude has be established (Figure A-6 below). There is some scatter at the
higher elevations and in general the curve is not as steep as the one derived by Muñoz et al.,
2017.
As input to the water balance modelling, local gridded elevation data has been combined with
the derived altitude/precipitation relation and long-term station data from the Inacaliri weather
station to generate spatial precipitation distribution estimates across the basin over time. This
combination of local ground station data and the altitude variation from the local CHIRPS data is
deemed to give the best estimate of the daily precipitation over the catchment.
The average annual rainfall obtained from the series is 137 mm/year. This is lower than the
value derived by Muñoz et al., 2017 of 165 mm/year, which was based on Chilean data from a
larger area. It is also assumed that the Silala catchment area was smaller than the area used in
this study. For comparison, the average annual precipitation based directly on area weighed
CHIRPS data for the Silala catchment is 146 mm/year, less than 7% higher than what we
consider the best estimate. The three estimates are within the same order of magnitude and
considerably higher than previous estimates of around 60 mm/year, which were based on data
from Laguna Colorada.
D~
The expert in WATER ENVIRONMENTS
146
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure A-6 Regional annual average precipitation as a function of altitude based on CHIRPS data
from 1981-2017 compared with station data at Silala, Linzor and Ollague and
precipitation-elevation relationship derived by Munoz et al., 2017
A.2 Evapotranspiration
Potential evapotranspiration records have been calculated for three weather stations: Silala,
Laguna Colorada and Sol de Manana. Estimates have been derived using the Et0 calculator, a
software tool developed by the Land and Water Division of FAO (Reference 17), which
calculates reference evapotranspiration (Et0) according to FAO standards based on
temperatures, solar radiation and wind speed using the Penman-Monteith equation. The method
is recognized worldwide for reliable approximations of Et0 over a wide range of locations with
different climates. It is physically based and explicitly incorporates both physiological and
aerodynamic parameters.
Figure A-7 shows the potential evapotranspiration estimates for the three locations. For Silala,
the evapotranspiration is higher in 2013/14 than later years, which is due to an abrupt change in
average wind speeds in 2014, from around 12 m/s to less than 5 m/s. This indicates some
problems with the station. Unfortunately, it has not been possible to establish what has caused
the change. For Laguna Colorada, reference evapotranspiration is generally higher than for the
other two stations, which is mainly due to high average wind speeds of 15 m/s. At Sol de
Manana, the average wind speed is less than half (7 m/s). This indicates that the potential
evapotranspiration is highly sensitive to wind speeds in this region. The average annual Et0
ranges from 1268 mm/year at Sol de Manana to 1940 mm/year at Laguna Colorada with around
1472 mm/year at Silala. Compared to the range of Et0 from seven nearby Chilean DGA stations
(Figure A-7), these values seem reasonable.
The relationship between elevation and average annual evapotranspiration rates for the three
Bolivian stations and five DGA stations is shown in Figure A-8. Although a downward trend in
evapotranspiration with elevation is detected, it is small (-100mm/1000m) corresponding to less
than 7% change in EP rate of the Silala station, over the whole altitude range of the Silala
catchment. Furthermore, the slope of the trend line is uncertain due to the large spread in the
data.
D~
,oo
180
loll e !_ 1'10
C
0
~ 110
a
~.. 100
2 go
.C. C: 60 ....
:ii
,o
lO
0 1000 2000 3000
Elevation (ml
4000 )000 6000
Annex XV Appendix D
147
Climate data analysis
A-7
Consequently, the potential evaporation has been assumed to be uniformly distributed over the
catchment. Since the Silala station is located inside the catchment, the series from this station
are deemed to be the most representative for the catchment conditions. This series has been
repeated to form a long multiyear time series. To account for the uncertainty illustrated by the
rather big difference in EP levels between the three Bolivian stations, sensitivity analyses of the
impact on the modelled groundwater recharge from the EP rates has been made. This was done
by substituting the Silala series with the series from respectively Sol de Mañana and Laguna
Colorada.
Figure A-7 FAO reference Et0 for Silala, Laguna Colorada and Sol de Manana (30 day moving
averages) compared with the range (min to max daily values) of 7 nearby Stations
from DGA Chile (Reference 10)
Figure A-8 Regional annual reference Et0 as a function of altitude
9.0
8.0
7.0
6.0
>
~ 5.0
ee'
~4.0
3.0
20
I 0
0.0
01/01/2011 01/01/2012
D~
ll/1212012 l l / 12/lOll 01/01/2015 01/01/2016 31/11/2016
- - 1'1l.1. ofCl'l-llffltrKorm - - "' OfCt'i • .,.,.coro:1 --.sofoe r1e~ana --Legur.a c e.oral!:• ""
- 1:;00
~
ff uoo
.f.
0
t, llNI
,oo
7110
500
11'00 JOOO
The expert in WATER ENVIRONMENTS
♦ Cl-nuehlu
• s.anP~d'• ~u
• (elimltl.ut•I
~-........... . ......... ······ ·-
·················•··
)OOC .noe- ..,ma 5000
Altltud•lma.s I) """
148
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
A.3 Temperature
Daily temperature records are available for three Bolivian weather stations in Table A-1 and
longer-term records have also been collected from two Chilean DGA stations: Inacaliri and
Linzor. The annual average temperature varies considerably between stations, with an average
temperature at Inacaliri of 5.71°C compared with 1.49 °C at Silala. The temperature gradient
based on this dataset as a function of elevation is illustrated in Figure A-9. It should be noted
that the average temperature was calculated for different time periods. However, the gradient is
still quite clear from the graph. At an altitude between 4 and 5 kilometers, this corresponds to a
reduction in temperature of 7.1 °C/km compared to 4.6 °C derived by Muñoz et al., 2017 who
used station data for a larger region. 7.1 °C/km is also high compared to general global numbers
of 4-6 °C/km but the regression of the nearby stations in Figure A-9 seems to strongly support
this lapse rate.
Figure A-9 Annual mean temperature gradient as a function of altitude
Based on the daily time series records from Inacaliri, Linzor, Silala and Laguna Colorada, a
long-term time series of daily temperature for the period 1969-2017 has been constructed.
However, data for the period 1986-2010 is not available and has therefore been gap-filled with
data from Laguna Colorada and Silala from 2011-2016.
In order to be able to model snow formation and melting as accurately as possible, hourly
temperature data was also acquired. Hourly data for Laguna Colorada for the period 2011-2016
was used for testing a diurnal model developed by De Wit et al. (1978) (Reference 18). Based
on average, minimum and maximum daily temperature can be used for generating hourly data.
This method was then used for converting daily data at Silala for 2016 into hourly data. As
minimum and maximum values were not readily available for the Chilean stations, the hourly
data from 2011-2016 based on Laguna Colorada and Silala data have been used for long-term
water balance calculations.
An analysis of the temperature data shows that the annual average temperature is 2.2 °C with a
minimum annual average temperature of 1.9 °C and maximum of 3 °C. Maximum daily
temperatures are in the range 17.3-21.5 °C with an average of 19.6 °C. Minimum temperatures
vary more between -24 °C to -16 °C with an average of -19.6 °C. Overall, the inter-annual
temperature pattern is fairly similar. It was therefore assessed reasonable to repeat the data for
the period from 1969-2010 in order to generate a long-term temperature time series. Some
variation in temperatures for specific years will not be captured and this could have some impact
D~
10
• tn.ul111
• lJNot
4000 4500 .t600
Alt11..do Im u.l)
······ ....
·············
4800
········
•,oo ~
Annex XV Appendix D
149
Climate data analysis
A-9
on snow formation for the earlier period. However, as some of the snow events in the austral
winter months are not captured in the rainfall data, this is more of an issue and may mean that
infiltration rates using the rainfall data may be slightly underestimated for some years..
D~
The expert in WATER ENVIRONMENTS
150
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
D~
Annex XV Appendix D
151
Climate data analysis
APPENDIX B
Water balance
D~
The expert in WATER ENVIRONMENTS
152
Annex XV Appendix D
B-2 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
D~
Annex XV Appendix D
153
Water balances
B-1
B Water balances
Appendix B describes a water balance analysis undertaken for the Silala River basin located in
Bolivia. The purpose of the analysis was to develop an understanding of the hydrological
processes in the catchment, with the aim to produce a water balance for the upper part of the
catchment feeding the Silala wetlands.
The Silala springs and canal flow system is fed almost entirely by groundwater. Groundwater
from the upstream catchment area for the wetlands is continuously discharging the springs and
canal of the Silala wetlands. In order to sustain the groundwater flow, the groundwater aquifer
must be either:
1. Recharged by infiltration of rainfall or melting snow reflecting current climatic
conditions,
2. Associated with a gradual depletion of groundwater storage or
3. A combination of 1. and 2.
Groundwater isotope analysis suggest that ancient fossil water is part of the water discharged
at the springs.
B.1 Recharge estimation approach
As the hydrogeological data from the area is limited, a conceptual approach has been adopted
for estimating recharge and water balances. With the data available, it is not possible to
determine the source of groundwater. However, based on generalized climate data, soil
properties and overall geological features, the water balance estimates as presented in this
appendix confirm that flows at Silala may be sustained by plausible infiltration and groundwater
recharge rates occurring within the topographic catchment.
Groundwater recharge in the Silala area is driven by short-term precipitation events scattered in
time and often separated by long dry periods. Correct reproduction of such desert recharge
requires long-term dynamic simulation of the infiltration and evaporation processes with a daily
or finer temporal resolution. This simulation approach has been adopted in the analyses and
constitutes a far better and more detailed approach than previous simpler water balances for
the area such as Arcadis (2017) (Reference 13), which compares only the average annual
precipitation and surface water canal discharge from Silala.
The MIKE SHE hydrological modelling system (DHI, 2012) (Reference 14) has been selected
for this analysis. The rationale behind this selection is that this modelling system is one of the
most advanced and well-proven spatially distributed modelling systems available. It
incorporates and dynamically links all the relevant hydrological processes for the analyses. The
process representations are all physically based, which makes it possible to fill in information
not measured in the field with generally accepted estimates, without sacrificing the
transparency of the analysis.
MIKE SHE includes a soil moisture model by Kristensen and Jensen (Graham and Butts, 2006)
(Reference 12) combined with an unsaturated zone flow model (Richard’s equation) for
describing evaporation from plants and soils and recharge/infiltration to the underlying aquifers.
The model has a snow module, which accounts for the formation of snow based on diurnal
variations in temperature and snow melt, including sublimation from dry snow. The
evapotranspiration module accounts for evaporation from plant interception, ponded water, soil
evaporation as well as transpiration from plants. Surface runoff processes are also included
D~
The expert in WATER ENVIRONMENTS
154
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
using a simple diffusive wave model. Finally, the model includes a 3D-groundwater flow model
coupled with the surface water and unsaturated flow modules.
A schematic of the MIKE SHE flow modelling system illustrating the different flow processes
included in the system is presented in Figure B-1. Detailed descriptions of the different modules
and equations can be found in the MIKE SHE documentation.
Figure B-1 MIKE SHE flow and transport modelling system
B.2 Water balance assumptions
For the Silala catchment, the important processes for estimating groundwater recharge are soil
evaporation, infiltration and snow processes. Overland processes may play a small role in parts
of the catchment, for example on the volcanoes. However, since the areas that could generate
overland flow are small compared to the total catchment area and since the surface runoff
seems to re-infiltrate in the foothills of the volcanoes, the overland flow component is expected
to be of limited importance for recharge estimation. The topographic catchment area has been
delineated based on a NASA digital elevation model (DEM) and covers an area of 231.5 km2
excluding the wetlands. The catchment area contributing to recharge is uncertain due to limited
information on the underlying geological aquifers. However, it is reasonable to assume, as a
first assumption, that the groundwater divide coincides with the topographic divide.
The catchment is characterized by being very dry with very limited vegetation outside the
wetland areas. Soils consist of sandy gravels with very little evidence of surface runoff or
ponding near the surface. Soil evaporation is therefore the main process for removing water.
Some evaporation also takes place from snow through sublimation but, as little information is
available on rates and literature is sparse on this subject, this is assumed to be limited. A small
sublimation factor of 5% of the potential evapotranspiration rate has been assumed
reasonable.
Soil evaporation typically takes place from the upper 2 cm of soil (Xiao et al., 2011) (Reference
19) and will depend on soil properties such as hydraulic conductivity and capillary effects as
well as the location of the water table. The recent drilling of boreholes by SERGEOMIN indicate
D~
- pr«ipitwon
!inowmdt
Witt,ation
Aootzone
tJnWCUflttd
How
Annex XV Appendix D
155
Water balances
B-3
depths to the water table of approximately 4 meters immediately upstream of the wetland, with
a likely increasing depth of several hundred meters moving away from the wetland into the
lavas. For recharge estimation, it is therefore assessed reasonable to assume that outside of
the wetland areas all soils across the catchment have free drainage conditions.
Limited information is currently available on soil properties in the basin. However, based on
observations during site visits, top soils consist of mainly coarse sand and gravels with no
indication of surface runoff or water ponding. On some of the volcanoes, there is some
evidence of old flow pathways but runoff has not been observed in recent time. Investigations
by Arcadis (2017) (Reference 13) in Chile indicate fairly sandy gravelly soils with hydraulic
conductivities in the order of 0.1-2 m/day. However, this may not apply inside the Silala
catchment and requires further investigations. Capillary effects are also of importance and will
depend on grain size distribution, with limited capillary rises of 15 cm for coarse sands and up
to 0.5 m for finer sands (Kasenov, 2001) (Reference 20). For soils with lower hydraulic
conductivities, capillary forces will tend to be higher.
B.3 Water balance model setup
For an initial estimate of groundwater recharge and water balances for the Silala basin, a MIKE
SHE unsaturated zone model was set up. The model has been set up using a grid size of 200
m resulting in a total of 5717 individual unsaturated zone columns for the catchment. Free
drainage was assumed by fixing the water table at a constant depth of 3 m below ground.
Long-term daily and hourly climate time series for a period from 1969-2017 (described in
Appendix A) was used as input for the model. Daily station rainfall from Inacaliri was used as
input in the model along with a precipitation lapse rate to account for variations in rainfall with
altitude. A daily potential evapotranspiration time series at Silala was constructed based on 4
years of data from 2013-2016 and assumed to apply for the whole the catchment. Some
variation will occur with altitude and varying wind speeds but no clear correlation could be
found in the data. In terms of temperature, an hourly record of temperature generated from
hourly values at Laguna Colorada (2011-2015) and daily values at Silala (2016) was used as
input for the model, combined with a temperature lapse factor of -0.71 oC/100 m derived from
station data. Snow formation has been included using a standard melting threshold
temperature of 0 oC and a sublimation factor of 0.05.
Soils were assumed to be homogeneous with a saturated hydraulic conductivity of 1.4.10-5 m/s
(~ 1.2 m/day) corresponding to sand (Freeze and Cherry, 1979) (Reference 21) and capillary
parameters were set using standard empirical Van Genuchten parameters of α = 0.05 and n =
3 corresponding to well graded sand. The unsaturated zone model input parameters are
summarized in Table B-1 below.
Table B-1 Overview of unsaturated model parameters
Model component Parameters Values
Unsaturated zone Saturated conductivity Ks 1.4 x 10-5 m/s
Saturated water content Ɵs 0.37
Residual water content Ɵr 0.03
Water content at wilting Ɵwp 0.03
Water content at field cap. Ɵfc
Van Genuchten α
Van Genuchten n
0.044
0.05
3
D~
The expert in WATER ENVIRONMENTS
156
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
B.4 Water balance estimates and uncertainties
Based on the model results, the annual average evaporation over 48 years was estimated to
81 mm/year with a recharge rate of 56 mm/year corresponding to an outflow rate from the
upper catchment of 412 l/s. The recharge varies considerably in space as illustrated in Figure
B-2 below. Compared to the recorded average stream flow at the Silala gauge of 160-210 l/s,
this seems realistic. Some groundwater flow is expected to bypass the wetland both below the
sediments and in the deeper Ignimbrite aquifer. An observation borehole downstream of Silala
located in Chile (Arcadis, 2017) (Reference 13) indicates partly confined conditions and
currently yields a constant rate of 90 l/s. It seems plausible that the overall groundwater
recharge is somewhat higher than the stream flow and borehole yields combined.
Figure B-2 Estimated groundwater recharge across the catchment on 5/3/1997
In order to understand the importance of the soil properties and potential evapotranspiration
estimates for the recharge estimates, a sensitivity analysis was undertaken. Due to large run
times, a representative unsaturated zone column located 3 km north of the wetland was
selected for the analysis. Model runs were undertaken for a shorter period from 1998-2017
(~19 years). The column was selected as it has approximately the same precipitation as the
catchment being located at an altitude of 4660 m close to the average for the catchment of
around 4,700 m. Precipitation for the shorter period is slightly lower with an average of 131
mm/year. Evaporation is higher than for the full catchment. Baseline recharge from the column
is therefore lower, 48 mm/year compared with 56 mm/year for the full catchment. The results of
the sensitivity analysis are summarized in Table B-2.
It is clear from the analysis that both soil parameters and evapotranspiration rates have a
significant impact on recharge rates. The potential evapotranspiration has a particular impact
on total recharge. Interestingly, the annual average potential evapotranspiration at Sol de Mana
is only 15% below the annual average at Silala but this results in a 33% increase in recharge.
Conversely, the average potential evapotranspiration at Laguna Colorada is 32% higher than at
Silala but only results in a reduction in recharge of 8%. An analysis of the daily potential
evapotranspiration records at the three stations show considerable variations during the
periods of rainfall, which explains the differences in impact on recharge. The graph in Figure B-
3 below shows daily rainfall, potential evapotranspiration and estimated recharge over time. It
D~
Annex XV Appendix D
157
Water balances
B-5
illustrates how high intensity rainfall exceeds potential evapotranspiration rates leading to small
amounts of groundwater recharge in Silala. Soil parameters also have an impact on soil
evaporation. Particularly saturated hydraulic conductivities affect evaporation with an increased
evaporative loss for less permeable soils.
Figure B-3 Daily rainfall, potential evapotranspiration and recharge for 2016 3 km north of the
Silala wetlands
Based on the sensitivity analysis of groundwater recharge, taking into account the fact that the
column model has lower recharge than the full catchment, the catchment recharge is estimated
to be in the range of 45-74 mm/year corresponding to 330-550 l/sec. This is consistent with
measured flows in the Silala wetlands and current knowledge of subsurface outflows into Chile.
Actual recharge rates could potentially be higher as satellite maps of snow cover indicate that
some snow events in the austral winter are not captured in the rainfall station data. It may be
possible to reduce the uncertainty of the recharge estimates if more information on soil
properties become available but potential evapotranspiration rates remain uncertain. Overall,
the analysis indicates that it is plausible to assume that the wetland is fed by groundwater
recharge from the topographic catchment.
Table B-2 Sensitivity analysis of recharge estimates to soil parameters and potential
evapotranspiration
Sensitivity
run
Parameter
Rain Evaporation Recharge Recharge
Change from
baseline
mm/year mm/year (mm/year) (l/sec) (%)
Baseline
See Table 1
131.2 83.8 47.4 348.1
-
1
Ks=1.4E-4
m/s 131.2 75.5 55.7 409.1 17.5
2
Ks=1.4E-6
m/s 131.2 92.8 38.4 281.6 -19.1
4
Van
Genuchten
α = 0.2 131.2 74.5 56.7 416.1 19.5
5
Van
Genuchten
α = 0.1 131.2 78.9 52.3 384.0 10.3
6 Epot - 131.2 87.6 43.6 319.9 -8.1
D~
The expert in WATER ENVIRONMENTS
158
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Laguna
Colorada
7
Epot - Sol
de Manana 131.2 67.8 63.4 465.5 33.7
B.5 Groundwater flow model and age
Groundwater age has been investigated using an extended version of the MIKE SHE
integrated unsaturated zone groundwater model with particle tracking. The purpose of the
particle tracking analysis was to estimate likely groundwater age of the water recharging the
Silala canals and wetlands assuming inflows are from the topographic catchment. This will help
ascertain whether the age of the water supports the findings from isotope analysis of water
suggesting that part of the spring water in Silala is fossil water.
The unsaturated model used for recharge estimation was modified for the analysis to include a
relatively simple three-layer geological model comprising a lava layer at the top, overlying two
Ignimbrite layers. Based on borehole information from the wetland area, the Ignimbrite aquifer
was divided into a fractured high permeable top layer with a thickness of 20 m and a lower less
permeable layer with a thickness of 250 m. The extent of the lava deposits was delineated
based on both a geological map provided by SERGEOMIN reproduced in Figure B-4 below and
another updated map: SEARGEOMIN: PROYECTO MAPEO GEOLÓGICO ESTRUCTURAL
ÁREAS CIRCUNDANTES AL MANANTIAL SILALA, La Paz, 2017 in Figure B-5. The applied
delineation is fairly simple and does not represent the lava deposits very precisely, particularly
in the Eastern part of the catchment. Outside the areas covered by lava, the Ignimbrite aquifer
is assumed to be covered by colluvial/glacial topsoil of 1 m thickness. A geological profile of the
model layers is presented in Figure B-6.
Figure B-4 Geological interpretations provided by SERGEOMIN (from Powerpoint)
D~
Annex XV Appendix D
159
Water balances
B-7
Figure B-5 Updated geological map provided by SERGEOMIN, 2017
Figure B-6 Geological model including cross-section from MIKE SHE model
D~
The expert in WATER ENVIRONMENTS
160
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
In terms of aquifer properties, the Ignimbrite aquifer has been assumed to have fairly high
horizontal hydraulic conductivities in the order of 10-5 - 10-4 m/s. The lava deposits have been
assumed to have lower saturated conductivities than the underlying Ignimbrite. Currently, there
is no borehole information on aquifer properties in the catchment but pumping tests across the
border in Chile (Arcadis, 2017)1 indicate values for Ignimbrite in this range. One borehole also
indicates partly confined conditions in the lower Ignimbrite but this has not been possible to
confirm in the Silala catchment. It is likely that parts of the aquifer could be semi-confined but
for the purposes of this analysis the aquifer has been assumed to be unconfined in the
topographic catchment.
In the particle tracking model the unsaturated zone parameters were modified slightly
compared to the values in Table B-1 using a higher α value of 0.15 to reduce the capillary
effects. Currently, there is very limited information on soil parameters but the nature of the
deposits do seem to indicate sandy gravel with low capillary effects. Using the modified
parameters, the modelled recharge increases to 63.6 mm/year compared with the previous 56
mm/year, which is at the higher end of the range of recharge from the sensitivity analysis
above. Table B-3 provides a summary of the saturated zone model input parameters.
Table B-3 Overview of geological units and parameters
Soil name Horizontal K
(m/s)
Vertical K
(m/s)
Specific
yield (-)
Specific
storage (-)
Porosity
(-)
Weathered Ignimbrite 0.0001 1.00E-05 0.15 0.0001 0.2
Ignimbrite 2.50E-05 2.50E-06 0.15 0.0001 0.2
Lava 1.00E-06 1.00E-07 0.15 0.0001 0.2
Colluvial/Glacial top soil 1.40E-05 1.40E-06 0.3 0.0001 0.2
Modelled groundwater levels at the end of 2016 are shown in Figure B-7 both as contours with
flow vectors and along a cross-section. The results are presented at the end of the simulation
in December 2016. Since recharge rates are small and the unsaturated is very deep, in some
places between 500-800 m, limited annual fluctuations in the groundwater table are observed.
The location of the water table in the middle of the catchment is approximately between 20-50
m below ground. This seems reasonable, as the area is very dry with no indication of a shallow
groundwater table. There are three small dry lakes in this area, which indicates that locally the
groundwater table may occasionally be higher but, with the regional model using a 200 m grid,
it has not been possible to capture it in the model.
1 Arcadis, 2017. Memoria, Volume 4, Annex 2. Detailed Hydrogeological Study of the Silala River
D~
Annex XV Appendix D
161
Water balances
B-9
Figure B-7 Simulated potential head in the Ignimbrite aquifer including flow vectors (layer 3) and
profile of water table on 20/12/2016
The combined unsaturated zone and saturated zone flow model has been used for a particle
tracking analysis. The particle tracking analysis serves to estimate the origin and travel time of
water recharging the Silala canal and springs system. Particles have been introduced in the
upper groundwater layer, corresponding to infiltrating water recharging the aquifer and
subsequently displaced step by step according to the simulated flow field until reaching the
Silala wetland area, corresponding to groundwater discharging into the surface water system or
leaving the area as sub-surface flows.
The origin, destination and travel time of each particle are registered. The simulated travel time
is a proxy of groundwater age. In the Silala Far Field area, the unsaturated zone, i.e. the depth
to the groundwater table, can be up to several hundred meters, especially at higher altitudes. A
measure of water age from precipitation on the surface to discharge to the springs would thus
have to consider both travel time in the unsaturated zone and groundwater.
Figure B-8 shows groundwater age in the catchment based on the particle-tracking model. The
model results indicate an average groundwater age of approximately 900 years. The age varies
with travel times from as little as 25 years in the vicinity of the wetland to up to 4,000 years for
water coming from the far end of the catchment. The majority of the water is estimated to be
between 400-1,000 years old (Figure B-9) based on groundwater flow transport time alone.
-
-
D~
-_,._..
.,..._,.
011 gx
, ,-.4e11 ....... -- .-.... ....M... -,. -...-... .M... .,..,.0_..-.
.,-,. ...._.M...,1..1
♦JN ♦- '"'.,,. ,._~----------------,-,--------------------t --,11• -•--
,,.. - ; 1
I
"" 1, - "" - - -
The expert in WATER ENVIRONMENTS
- - .... - -
....... ..
--
--
...
162
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure B-8 Simulated map of particle travel time in the saturated zone
Figure B-9 Particle age distribution
D ~
1>
O I I
Key
• ~ IIJO
• 101 llr . .,,
o ,o, NO . .,,,
O ICl1 QII
• I 1~1Xld
• 151;1 t1'0
• ll'CI :,CO . --
Annex XV Appendix D
163
Water balances
B-11
Travel time in the unsaturated zone will add to the overall water age, particularly in the areas
with volcanoes where the water table tends to be very deep, down to 1,000 m. The travel time
in the unsaturated zone has been estimated based on a separate simple transport model run
with a tracer source with a constant concentration applied at the top of a number of unsaturated
zone columns scattered across the catchment. Four columns with different depths to the
groundwater table were selected and travel times were found to be approximately 1 m/year.
Combined with the modelled depth to the water table, this provides a very rough estimate of
travel time through the unsaturated zone presented in Figure B-10. In the model, it has been
assumed that the flow through the unsaturated zone takes place as matrix flow through a highly
porous medium. Flow is more likely to be a combination of fracture and low permeable matrix
flow at depth but as no information is available on the unsaturated zone properties, this could
not be modelled at this time. The travel time in the unsaturated zone using this approach has
been estimated to be between 5-50 years close to the wetland up to over 1,000 years below
the volcanoes.
Figure B-10 Unsaturated travel time in years for the catchment based on simple transport model
runs
Overall the total travel time from the analysis confirms fairly old water, over 1,000 years old on
average. The thickness of the ignimbrite aquifer is unknown and could be more than the 250 m
assumed in this assessment. A larger thickness of this main water-bearing layer would lead to
a proportionally larger water age (assuming the unchanged groundwater gradients). However,
even with a significant increase of the thickness of this layer, the model assessment would not
be as large as 10,000 years, as indicated by the isotope analysis of the water from the wetland.
Isotope dating is however uncertain and it is possible that some of the water feeding the
wetlands is younger.
-
--
_._ ________________________________ _.
The expert in WATER ENVIRONMENTS
-...
D~
164
Annex XV Appendix D
provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
D~
Annex XV Appendix D
165
APPENDIX C
Measured surface water flows
D~
The expert in WATER ENVIRONMENTS
166
Annex XV Appendix D
C-2
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Annex XV Appendix D
167
C-3
C Measured flows
C.1 The surface water flow measurement program
Until the initiation of the surface water monitoring program under the present project, time
series of flows in the Silala canals were only available at two locations, one at the old siltation
chambers in Bolivia around 700m upstream of the border and another close to the border on
the Chilean side.
These two continuous flow time series are of paramount importance for the assessment of the
surface water discharge of the spring system at the border. However, the initial flow
assessment (Reference 10) found that they contained significant uncertainty as to the
magnitude of the flows in the Silala main canal.
Furthermore, the two series do not contain sufficient information to understand and quantify
the processes in the various parts of the system. Such understanding is important to quantify
how the canalisation and drainage of wetlands may have affected the natural flows at the
border and to assess water requirements of a healthy natural wetland.
A consistent and mutually accepted flow assessment at the border will also be important if an
agreement on fair sharing of the water resource between Bolivia and Chile.
To improve the accuracy of the existing series and to gain knowledge on the distributed flow
contribution in the Silala Springs System, a surface flow measurement program18 (Reference
5) has been planned by DIREMAR, SENAMHI and DHI. The surface flow measurement
program is based on field inspections to pin down the best suitable gauging locations.
SENAMHI was contracted by DIREMAR to carry out the program, which was initiated in May
2017. The measurements include simultaneous canal and spring flow measurements,
continuous flow records collected at weirs installed at during 2017 at six new strategic
locations (C1-C6) and at the existing permanent flume at the de-siltation chambers close to
the Bolivian-Chilean border. At the latter location, the old automatic floater-based water level
instrument has been supplemented with a new automatic pressure sensor similar to the ones
used at the weirs (C1-C6).
This appendix describes the observations and findings derived from the data collected through
this measurement program, as obtained up to October 15th, 2017. It is divided in three parts:
“Simultaneous canal flow measurements”, “Continuous canal flow measurements” from the
new weirs and “Long term flow series” from the two permanent flumes.
Figure C-1 shows the flow measurement locations including springs (Ojo de Agua),
simultaneous flow measurement locations (S-1 – S-21) and continuous flume flow gauges (C-
1 – C-7). Prior to establishment of the flumes, simultaneous flow measurements have been
carried out at both S-1 – S-21 locations and at the locations C-1 – C7 where the flumes were
later installed or already existed (C7).
A preliminary assessment of measured flows was carried out as part of the Surface water
report18. In the following sections the flow data provided by the SENAMHI for the period May-
September 2017 and the permanent flumes flow records at the Bolivian and the Chilean side
of the border are updated, presented and analysed.
The expert in WATER ENVIRONMENTS
168
Annex XV Appendix D
C-4
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Figure C-1 Overview of flow measurement locations (SENAMHI)
D~
~ ; ....
N A
600500 601000 601500
C-4
...
,S-1~ ~
g
g
:.&..
0
~ :..g.
C-5
C-7
-=-.s-20
- -~ S-21
600500
S-9
---S-11
S-10 "-- (Canal Sur)
Djo,s
601000 601500
602000 602500
602000 602500
603000
Leyenda
A Atarw Contllluoa
e AIOivtSlf?frJJl,~a
Afo.lN ,.,-Mtf.tJart, (o,o,) --ora,...-
LJm;r. '"~"'
603000
~ ; ....
g
g
:..&..
~
"' ~
Annex XV Appendix D
169
C.2 Simultaneous canal flow data
The simultaneous flow measurement program is designed to provide a snapshot of flows in
many points of the canal network. The measurements have been carried out, initially at a biweekly
and later at a monthly frequency covering all locations within 2-3 days. Micro-propeller
measurements in multiple points of the cross section provide a cross-sectional velocity profile,
which is integrated to calculate the flow. The profile measurements have been carried out
twice at each location to verify results and, if necessary, to take prompt on site action to
prevent errors.
Figure C-1 shows the flow measured each location at ten different dates from May to
September 2017. The average, minimum and maximum values have been calculated.
Figure C-2 shows minimum, maximum and mean simultaneous flow rates measured between
May and September 2017.
Figure C-3 shows time series of simultaneous flows measured, i.e. ten values between May
and September 2017. The C-7 flow ranging from 115 to 170 l/s is highlighted by a thicker line.
Figure C-4 to Figure C-6 show longitudinal flow profiles along the Southern Canal, the
Northern Canal and the reach from C-7 to the border, respectively, for the ten dates
measured.
D~
The expert in WATER ENVIRONMENTS
170
Annex XV Appendix D
C-6
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Table C-1 Table of simultaneous mean canal flow measurements (in l/s)
Puntos de Aforo May 6-7 May 12-14 May 15-17 May 27-30 June 3-4 June 12-14 June 20-21July 24-25 Aug 25-27 Sep 25-27 Average Min Max Std.dev
S-1, canal sur S-1 25.80 33.00 32.50 29.05 31.55 29.10 29.15 31.75 27.45 26.45 29.58 25.80 33.00 2.41
C-1, canal sur C-1 28.35 33.60 31.65 26.90 27.55 28.6 26.9 22.5 24.45 27.83 22.50 33.60 3.17
S-2, canal sur S-2 24.45 24.50 28.10 23.75 31.80 25.75 27.8 30.9 30.45 26.95 27.45 23.75 31.80 2.74
C-2, canal sur C-2 47.05 46.90 36.90 28.85 33.20 33.65 35.3 37 31.5 36.71 28.85 47.05 6.00
S-3, canal sur S-3 34.95 28.10 31.05 34.30 30.05 32.25 32.85 28.5 25.35 30.82 25.35 34.95 2.96
S-5, canal sur S-5 36.10 38.30 30.30 30.45 31.00 32.90 30.9 29.9 26.4 34.45 32.07 26.40 38.30 3.26
S-6, canal sur S-6 34.75 40.60 40.25 34.35 36.85 35.20 37.85 37.75 32.55 33.45 36.36 32.55 40.60 2.62
S-7, canal sur S-7 42.95 35.70 39.70 28.90 33.50 31.00 34.1 35.5 33.9 36.15 35.14 28.90 42.95 3.80
S-8, canal sur S-8 56.40 53.10 53.10 49.95 51.05 49.05 47.8 50.15 49.85 45.05 50.55 45.05 56.40 2.98
C-4, canal sur C-4 70.35 58.80 61.90 62.50 57.35 58.3 66.6 48.65 50.7 59.46 48.65 70.35 6.54
S-9, canal sur S-9 88.45 107.05 89.35 78.65 83.65 83.75 92.3 83.7 81.65 87.62 78.65 107.05 7.93
S-10, canal sur S-10 115.40 111.65 114.95 113.80 106.30 106.85 107.4 104 110.6 112.15 110.31 104.00 115.40 3.76
S-11, canal sur S-11 96.95 101.05 102.15 95.45 94.55 98.75 102.1 111.25 109.8 101.34 94.55 111.25 5.56
C-5, canal sur C-5 103.65 105.75 83.45 110.50 93.60 84.8 97.65 103.45 90.3 97.02 83.45 110.50 9.03
C-7, canal principal C-7 169.70 126.90 126.10 126.45 130.40 112.90 128.6 128.45 130.55 138.25 131.83 112.90 169.70 13.95
S-19, canal principal S-19 214.85 209.15 163.85 143.90 149.95 156.1 148.35 152.05 155.05 165.92 143.90 214.85 25.22
S-20, canal principal S-20 167.80 194.15 149.70 157.55 141.55 157.1 175.4 152.95 157.1 161.48 141.55 194.15 14.77
S-21, canal principal S-21 179.45 169.30 147.15 156.60 148.45 155.55 173.25 141.55 141.3 156.96 141.30 179.45 13.24
S-18, canal norte S-18 6.15 6.20 7.05 4.85 5.60 3.95 4.55 3.8 4.9 5.23 3.80 7.05 1.03
S-17, canal norte S-17 23.40 28.40 27.10 25.65 24.10 25.75 22.4 23.8 25.2 25.09 22.40 28.40 1.78
S-16, canal norte S-16 15.75 14.85 10.30 11.40 13.25 12.2 12.05 9.85 10.6 12.25 9.85 15.75 1.92
S-15, canal norte S-15 49.15 54.80 39.70 34.25 30.35 30.5 41.5 33.3 33.65 38.58 30.35 54.80 8.09
S-14, canal norte S-14 11.00 11.10 8.90 10.90 10.7 9.9 11.15 12.85 10.81 8.90 12.85 1.05
S-13, canal norte S-13 38.95 46.75 41.35 37.90 51.90 46.9 57.85 34.55 45.4 44.62 34.55 57.85 6.89
S-12, canal norte S-12 53.40 58.15 51.35 46.60 52.30 52.45 53.35 51.05 50.45 52.12 46.60 58.15 2.88
C-6, canal norte C-6 62.65 63.85 60.40 55.15 53.85 56.65 65.35 42.5 52 56.93 42.50 65.35 6.74
I 11 I I I
I I I I 1 I I I
' '
'
' '
' '
'
'
'
' '
'
' '
~C jii~jliiJJi llljilljuijji
Annex XV Appendix D
171
C-7
Figure C-2 Simultaneous flow measurements (Qmean,, Qmin and Qmax in l/s)
-50.00
0.00
50.00
100.00
150.00
200.00
250.00
S-1
C-1
S-2
C-2
S-3
S-5
S-6
S-7
S-8
C-4
S-9
S-10
S-11
C-5
C-7
S-19
S-20
S-21
S-18
S-17
S-16
S-15
S-14
S-13
S-12
C-6
Average Min Max
D~
■ ■ ■
The expert in WATER ENVIRONMENTS
172
Annex XV Appendix D
C-8
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Figure C-3 Time series of flows (l/s)
D~
S-1 (lls)
C-1 (lls]
S-2 (I/sf
c.2 111,1
S-3 Pl•J
S-5 (1/s)
~ Pl•J
S.7 (I/sf
S-8 (llo}
C-4 (I/sf
S-9 (lis!
S-10 (I/sf
S-11 (II•!
C-S (1111!
C-7 Pis] --
S-19 (lls]
S-20 (1/s}
S-21 Pl•!
s.18 p1sJ
S.17 (II&]
S-16 (1/s}
S.15 (II•!
S •14 (11sf
S-13 (1l•J
S-12 (I/sf
C-6 II•
220
210
200
190
180
170
160
150
140
130
~
120
v
110
_,/""
0
100
90
80
70
60 r
50 --------..
40
30
20
10
0
May
2017
-----... ----
------------------
June
2017
July
2017
August
2017
-
September
2017
Annex XV Appendix D
173
C-9
Figure C-4 Simultaneous flow profiles, Southern Canal (S-1 to C-5)
Figure C-5 Simultaneous flow profiles, Northern Canal (S-18 to C-6)
D~
S-1 to C-5 flow profile
140.00
..... 120.00
;: 100.00
_g 80.00
] 60.00 ai
ill 40.00 <>z .,, :;; 20.00
0.00
S-1 C-1 5-2 C-2 5-3 5-5 5-o 5-7 5-8 C-4 5-9 5-10 5-11 C-5
--May6-7 25.80 28.35 24.45 47.05 34.95 36.10 34.75 42.95 56.40 70.35 88.45 115.40 96.95 103.65
--May12-14 33.00 33.60 24.50 46.90 28.10 38.30 40.60 35.70 53.10 58.80 107.05 111.65 101.05 105.75
--MaylS-17 32.50 28.10 31.05 30.30 40.25 39.70 53.10 114.95
--May27-30 29.05 31.65 23.75 36.90 34.30 30.45 34.35 28.90 49.95 61.90 89.35 113.80 102.15 83.45
--June3-4 31.55 26.90 31.80 28.85 30.05 31.00 36.85 33.50 51.05 62.50 78.65 106.30 95.45 110.50
--June12-14 29.10 27.55 25.75 33.20 32.90 35.20 31.00 49.05 57.35 83.65 106.85 94.55 93.60
--June20-21 29.15 28.6 27.8 33.65 32.25 30.9 37.85 34.1 47.8 58.3 83.75 107.4 98.75 84.8
--July24-25 31.75 26.9 30.9 35.3 32.85 29.9 37.75 35.5 50.15 66.6 92.3 104 102.1 97.65
--Aug25--27 27.45 22.5 30.45 37 28.5 26.4 32.55 33.9 49.85 48.65 83.7 110.6 111.25 103.45
--Sep 25-27 26.45 24.45 26.95 31.5 25.35 34.45 33.45 36.15 45.05 50.7 81.65 112.15 109.8 90.3
70.00
o0.00
..~... )0.00
-~ .:o.oo ~ 30.00
~
~ 20.00
~
10.00
000
5-1.8 5-16-S-17 s-14~15 S-12 C-6
--"1•v• I U> 3' ll 60.U )PO 62 6)
--M•VU-1• 5.20 U.H 65 ,o SSlS U.85
-M•yl5•17
- a..1,yJ7 lO 1 DS lUO 39,70 SUS 60,.tO
--J:un,;aJ-4 43) l70l nn •IMO 55.1)
- .N.n•t,t.t HiO 17 JS ~us 52.30 Sl.85
--.k,r:P20-,B 3.95 ]795 ~LlO 52. S 56.65
--My24-B •.SS ,. •s Sl40 H-3S ~).35
- Au&l5·17 J.80 BU H.4~ HOS -12.50
--~~11
The expert in WATER ENVIRONMENTS
174
Annex XV Appendix D
C-10
provisional report 3, climate,waterbalance and flows_rev2.docx / RAJ / 2017-07-03
Figure C-6 Simultaneous flow profiles, permanent flume to border (C-7 to S-21)
D~
2$0 0)
~• "''"' 0 1!IOM
i I ,.
.S0.00
a.oo
- v•vt•1
- -J•vll·U
- V,1iUl7
Y•vl7·10 - -... ~•-•
- Nna12·l•
- ~-.iN!lO·ll
- )fJ«lS
- a.~i,12.)-11
C1
1e, 10
121..10
UOlD
116.45
llOCI
UHO
llltiOOOOU
121 u,-;11
IJO~~
JH.2~
C-7 to S-21 flow profile
... 510 H J
2lJ l5 101.IO nus
JOI.LS , ... " ......
U, .U
t6l B'i 14; 10 ...... ....... 1.37..D 1 ...
l41.,5 14155. liH5
tl6 IOOO°"' l!J7.0,,,1)9S
1-ta.UOOOO& 17.l.i:DOOQJS sn..n~s
,u ... 1:'12 !f!t l•U» ,~ .. 1';7,1 UI 3
Annex XV Appendix D
175
Measured flows
C-11
Table C-2 Table of simultaneous spring flow measurements (in l/s)
Puntos de Aforo May 9 May 14 May 27 May 31 June 5 June 16 June 22 June 27 aug-28 sep-28 Average Min Max Std.dev.
OJO 1 SUR 3.9 4.2 4.0 3.9 3.7 4.1 5.6 4.1 4.5 4.2 3.7 5.6 0.5
OJO 2 SUR 3.0 2.4 2.8 3.2 2.0 2.7 2.0 1.2 2.4 1.2 3.2 0.6
OJO 3 SUR 3.5 3.5 3.1 3.0 2.8 2.8 3.8 2.9 3.3 3.2 2.8 3.8 0.3
OJO 4 SUR 2.5 2.1 2.2 2.5 2.4 2.4 2.2 2.2 2.3 2.1 2.5 0.1
OJO 5 SUR 1.3 1.7 0.9 0.6 0.6 0.8 0.6 0.4 0.9 0.4 1.7 0.4
OJO 6 SUR 8.0 5.0 4.6 4.4 5.3 4.8 5.4 4.4 8.0 1.2
OJO 22 SUR 4.6 2.8 2.0 2.3 2.9 2.0 4.6 1.0
OJO 22 SUR 4.5 4.5 4.5 4.5 0.0
OJO UNION 9-10-11 SUR 1.9 2.0 1.5 1.2 1.5 1.1 1.2 1.1 0.8 1.4 0.8 2.0 0.4
OJO UNION 9-10-11 SUR 1.6 1.6 1.6 1.6 1.6 0.0
OJO - 30 - 84 SUR 6.3 3.9 4.0 3.2 3.2 4.1 3.2 6.3 1.1
OJO - 30 -84 SUR 6.4 3.9 5.1 3.9 6.4 1.2
OJO 31 SUR 3.5 3.8 3.5 3.8 3.2 1.8 4.4 2.7 3.3 1.8 4.4 0.7
OJO - 32-A SUR 2.5 1.0 1.7 1.0 2.5 0.7
OJO - 32-A SUR 2.4 1.0 1.7 1.0 2.4 0.7
OJO 32 SUR 6.2 3.6 3.0 3.9 3.7 2.0 3.8 1.9 3.5 1.9 6.2 1.3
OJO - 35 NORTE 1.6 2.6 1.4 1.5 1.4 1.4 1.9 1.5 1.7 1.4 2.6 0.4
OJO - 35 NORTE 2.3 2.7 2.5 2.3 2.7 0.2
OJO 37-38 NORTE 3.2 3.1 2.9 2.3 3.0 3.2 3.0 3.6 3.0 2.3 3.6 0.3
OJO - 41 NORTE 3.6 4.1 3.4 4.1 3.8 3.4 4.1 0.3
OJO 41 NORTE 3.6 4.1 4.1 3.9 3.6 4.1 0.2
OJO 46 NORTE 3.0 2.3 4.1 1.8 2.4 2.4 2.3 2.6 2.3 2.6 1.8 4.1 0.6
OJO 48 NORTE 1.3 1.2 0.9 1.2 1.2 0.7 1.0 1.1 0.7 1.3 0.2
OJO - 44 NORTE 8.1 8.6 9.0 9.2 9.6 9.8 9.7 9.9 9.3 9.2 8.1 9.9 0.6
OJO - 44 NORTE 9.1 8.7 8.9 8.7 9.1 0.2
OJO 49 SUR 2.0 1.8 2.1 1.8 1.8 1.9 1.8 2.1 0.1
OJO - 50 2.1 2.7 2.4 2.1 2.7 0.3
OJO 50 1.9 2.7 1.4 2.0 1.4 2.7 0.5
OJO 54, NORTE 4.5 5.2 4.8 4.5 5.2 0.4
OJO 59 NORTE 2.5 1.8 2.3 2.0 2.6 1.3 2.1 2.5 2.9 2.2 1.3 2.9 0.5
OJO - S7 1.4 1.8 1.6 1.4 1.8 0.2
OJO-S7 1.4 1.8 1.6 1.4 1.8 0.2
OJO 64 - SUR 3.7 4.3 5.3 5.0 3.4 3.5 6.1 4.5 3.4 6.1 1.0
Sum (l/s) 80.4 69.7 0.0 30.4 42.9 51.7 41.8 54.2 49.0 44.0 70.9
D~
The expert in WATER ENVIRONMENTS
176
Annex XV Appendix D
C-12 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
C.3 Continuous canal flow data
C.3.1 The data collection campaign
Six new V-notch weirs were installed at strategic locations in the system and equipped with
water level sensors (pressure transducers). Subsequently, discharge – water level relations
were established during June- August 2017 by comparing different water levels with
corresponding flows measured by propeller measurement in reliable cross sections downstream
of each weirs.
Calibration was performed by controlling upstream flows and a number of corresponding values
of flow and water level were measured covering the low to normal flow range at each site. For
the low flow ranges, the flow was calculated by collecting the volume in a container for a period
of time. For the higher flow ranges, micro propeller measurements were used. The rating curves
were approximated by curve fitting to the set of water level and flow data.
The same type of water level sensor as used in the new weirs was installed at the existing flume
at the old desiltation chamber (station C7). Measurement of water levels at 15 minutes intervals
were taken during the period late June to end of September 2017 and corresponding discharges
calculated by SENAMHI who has been in charge of the measurement campaign.
C.3.2 The rationale of the campaign
The rationale of the collection of continuous flows at strategic locations are:
4. To determine the flow rate as exact as possible at strategic locations in the canals of the
Silala Springs System.
5. To reveal the temporal variation of the flow rate
6. To evaluate the daily flow variations and to detect possible short-term impact of
precipitation event. The daily variations are important to evaluate the simultaneous
observation taken at more locations and may also open for an independent, although
not isolated, evaluation of the evaporation rates
7. To ease the observation of possible surface water impacts from the planned borehole
pump tests.
C.3.3 Observations on the received data
A time series of the received data are shown in Figure C-8 for the stations C1 to C4
representing the conditions in the southern wetland in Figure C-10 for the stations C4-C7
illustrating the flow contributions in the ravine and from the Northern wetland
The water levels have been registered every 15 minutes and the raw discharges calculated with
the same frequency.
A rather constant pattern of daily flow variations, with the highest flows after midday and lowest
flows during nights, are visible in all the flow series. Although the amplitudes of the flow
variations vary from series to series and sometimes also significantly with time, all series shows
a general pattern of rather small and periodic daily variations, superimposing a much larger and
relatively constant base flow component.
D~
Annex XV Appendix D
177
Measured flows
C-13
Abrupt changes in the base flow values as well as the daily variations are also noted. To further
illustrate these base flow changes, the series have been averaged on a daily basis and the most
obvious measurement errors substituted with missing values as shown in Figure C-9.
Abrupt changes in the base flow levels occurs at several weirs at the end of June, around July
29th and August 24th. While the base flows during the period (from the start of records to the first
abrupt change) seem to be relatively stable, it is decreasing and sometimes reaching a new
constant level in most of the stations, before exerting a new upwards abrupt jump. No
explanation or comments on this behavior have been given by SENAMHI.
The abrupt changes in base flow only allow to analyse the series in the two periods: 1 July – 28
July and 29 July – 23 Aug. In these two periods, the individual series are rather constant and the
sum of the flows from the two main branches are within 4% of the observed confluence flow at
the de-siltation chambers (C7). After August 23rd, the flows both in C6 (Northern Branch) expels
spurious variations which are not observed in the neighboring weirs. The confluence flows are
on average 18% higher than the observations at the de-siltation chambers.
Figure C-7 Measured continuous flows in weirs C1-C4 located in the Southern wetland
D~
811
02-01-20 oo 01 1&-01 ~, 10-01 011 os 13 oa 20-il8 nos IX!·09 10-00 11 oo 1<-0e
The expert in WATER ENVIRONMENTS
178
Annex XV Appendix D
C-14 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure C-8 Measured flows in weirs C1-C4 located in the Southern wetland averaged to daily values and with
obviously spurious data replaced by missing values (red crosses)
D~

:.
I
J
- -
- s..&a,C11
Annex XV Appendix D
179
Measured flows
C-15
Figure C-9 Measured continuous flows in the weirs C4-C7 illustrating the flow contributions in through
the ravine and from the Northern wetland.
D~
300
01-07·?0 09-07 16--07 ~7 30-07 ~ 13-08 20-08 27-08 03--09 10-09 17-09 2+Cll
The expert in WATER ENVIRONMENTS
180
Annex XV Appendix D
C-16 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure C-10 Measured continuous flows in the weirs C4-C7 illustrating the flow contributions in through
the ravine and from the Northern wetland averaged to daily values and with obviously
spurious data replaced by missing values (red crosses)
.
C.3.4 Conclusions on the continuous flow data
All series shows a high base flow level, superimposed with a smaller periodic daily variation
peaking around midday. In all the series, the base flow exhibits abrupt jumps at certain dates
and sometimes trends in the intermediate periods. None of which can be assigned to climatic
events and must therefore be due to the equipment.
The daily variations vary slightly in amplitude for C7, the permanent weir, where the variation
over the day is 25-35l/s. The daily variations cannot explain the spread in flows at the
simultaneous measurements, which at C7 approximate 65 l/s. The flows peaks at midday at all
stations and can therefore not be due to evaporation losses which peak at the same time.
Hence, the daily variation must be assigned to freezing and thawing of the water in the
wetlands.
For C5-C7, base flows seems rather consistent from 1-28 July and 29 July-23 Aug. The last
period (24 Aug – 29 Sept) seems inconsistent with combined flows from C5 and C6, being 18%
higher than the flows in C7. In the first two periods, this combined flow is within 4% of C7.
D~
200
l t 150 a
100
50
.,...._ ~
02-<17-211- ~ 16-07 ZHl7 -, 06-0II ,;i.ce lll-08 2?-08 ~
- !IHlltOi ,o.ttl
Annex XV Appendix D
181
Measured flows
C-17
The data from the two periods confirms contributions from the Southern and Northern wetlands
to be respectively ca. 60% and 40% of the confluence flow and that the flow contribution in the
ravine between C4 and C5 is significant.
The most trustworthy period is deemed to be the one from 1 to 28 July 2017 where the records
have the smallest trends and variations.
Figure C-11 Recorded water levels at the C-1 – C-7 flumes, July-September 2017 (SENAMHI)
Location C4 c5-c4 c5 c6 c5+c6 c7
Simultaneous Average Flow (l/s) 60.6 38.1 98.7 57.6 156.3 131.8
Simultaneous Fraction of (C5+C6) 0.39 0.24 0.63 0.37 1.00 0.84
Continuous Weirs Average Flow (l/s) 01 Jul -> 28 Jul 24.3 87.0 111.3 74.1 185.4 190.4
Continuous Weirs Fraction of (C5+C6) 01 Jul -> 28 Jul 0.13 0.47 0.60 0.40 1.00 1.03
Continuous Weirs Average Flow (l/s) 29 Jul -> 23 Aug 23.2 120.4 143.6 70.9 214.5 205.8
Continuous Weirs Fraction of (C5+C6) 29 Jul -> 23 Aug 0.11 0.56 0.67 0.33 1.00 0.96
-10
0
10
20
30
40
50
60
70
14-06-2017 04-07-2017 24-07-2017 13-08-2017 02-09-2017 22-09-2017 12-10-2017
C-1 C-2 C-3 C-4 C-5 C-6 C-7
H (cm)
D~
IThe
expert in WATER ENVIRONMENTS
182
Annex XV Appendix D
C-18 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure C-12 Recorded flows at the C-1 – C-7 flumes, July-September 2017 (SENAMHI)
C.4 Permanent flume flow data
While qualitative descriptions of historical flows in the system are available from various sources
(Reference 1, Reference 2, Reference 8, Reference 9 of the main report), long-term quantitative
flow time series are only available at two locations, one at the old siltation chambers in Bolivia
around 700m upstream of the border and another close to the border on the Chilean side.
While these continuous flow time series are of paramount importance for the study as
information on the total outflow of the spring system as a whole, they do not contain sufficient
information to understand and quantify the processes in the various parts of the system. Such
understanding is important to quantify how the canalisation and drainage of wetlands may have
affected the natural flows at the border and to assess water requirements of a healthy natural
wetland.
The continuous flow series have therefore been supplemented by a number simultaneous
propeller measurements of the canal flows at various locations and dates in the canal system
upstream the border. This campaign has been intensified and streamlined during May and June
2017 to improve the basis for this flow assessment.
-10.00
40.00
90.00
140.00
190.00
240.00
290.00
14-06-2017 04-07-2017 24-07-2017 13-08-2017 02-09-2017 22-09-2017 12-10-2017
C-1 C-2 C-3 C-4 C-5 C-6 C-7
Q (l/s)
D~
I- -------=- -=-------=-- -- - - - I
Annex XV Appendix D
183
Measured flows
C-19
C.5 Long term flow series from Chile and Bolivia
Previous to the initiation of the intensive flow monitoring program, time series of the flows in the
Silala primary canal were only available at two locations, one at the old siltation chambers in
Bolivia around 700m upstream of the border and the other from Chile’s Direción General Del
Agua (DGA), close to the border on the Chilean side. An initial assessment of the flows from the
two series was made in the surface water report (Reference 10) based on the data available by
mid-June 2017. The present section gives an update of the analyses accounting for the
additional data available by October 15th, 2017.
The two series would be expected to measure almost the same flow rates. Even though some
flow losses between the two stations have been detected by the simultaneous flow
observations, as described in the previous section, the two series would be expected – as a
minimum – to show the same long-term variation and to react in the same way to hydrological
events.
Flow records for the flume at the siltation chambers (Bolivian Territory)
The gauging site is a flume in a rectangular concrete trench constructed along the old siltation
chambers and equipped with a V-notch and automatic (electronic) water level registration by
floater with resolution around one millimetre.
The canal is not expected to carry substantial
peak flows from sudden runoff events and the
station should therefore be almost ideal for
measuring the flows in the canal. Water levels
are measured both manually (two times a day)
by the military personnel and automatically
(hourly).
Each of the two water level series has been
converted to flows by a formula relating specific
water level observations to flows and are shown
with different temporal resolution in Figure C-14,
Figure C-15 and Figure C-16. Particularly for Vnotch
weirs, such as the one installed here,
standard formulae are regarded to be quite
precise with uncertainties as low as 3-5 %.
It is noted that the two series (shown as blue
and yellow lines in the figures) are characterised
by a large constant base flow of 160-200 l/s,
which clearly indicates that the canal is fed
almost entirely by groundwater springs.
However, many abrupt jumps in the calculated
flows, sometimes from one time step to the next,
are also observed. These jumps originate from
similar jumps in the water level observations and
it has, in general, not been possible to relate
them to hydrological events or seasonality.
Figure C-13 The existing flow-gauging flume at the old de-siltation chambers
Consequently, the uncertainty they introduce must be assigned to uncertainty in the
observations, maybe due to jamming of the float or sediment deposition in the stilling canal. The
uncertainty in the two series is substantial, in the order of 25-30 % of the flow rate. This might
also point out to possible faults in the electronic registration.
D~
The expert in WATER ENVIRONMENTS
184
Annex XV Appendix D
C-20 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
It was therefore decided to double the water level sensor in the weir with a pressure sensor of
the same type as those installed in the new continuous weirs and that temporally overlapping
data from both sensors should be collected during 2017. Unfortunately, the old sensor has not
been reporting since start of June 2017 so no overlapping period can be analysed.
Data from the new sensor is shown on the figures in dark green on the above-mentioned
figures. Although the observations from the new pressure sensor start at the same level as the
old automatic floater-based device (of mark: Thalimedes), the pressure sensor increases with
time and has an abrupt jump around June 29th (at the same time as the other pressure
sensors). The increasing trend continues after the jump resulting in flow values around 210 l/s
by the end of September. This is still less than the sum of the two upstream weirs (C5 and C6)
that should represent the same flow as the permanent flume in question (C7) and in the end of
the period higher that measured manually (200l/s rather constantly after May 2017)
It is noteworthy that the upward trend in the observations from the new sensor is in contradiction
with the observations from the DGA gauge in Chile, which shows an abrupt fall from around 200
l/s to less than 106 l/s in the same period.
So even the new sensors still leaves the flow assessment at the border with a significant
uncertainty.
Flow records from Dirección General de Agua (DGA), Chile
The DGA records cover the period from 2001 to 2017, a much longer period than the Bolivian
series.
The data is illustrated as red lines in Figure C-14, Figure C-15 and Figure C-16. This series also
includes abrupt jumps and does not resolve the problem of uncertainty. The DGA series indicate
flow values around 15-25 l/s lower than the Bolivian series in large parts of the observation
period but from January to end July 2017, it measures the same flow levels in the order of 200
l/s. During August, the flow level decreases rapidly to a level in the order of 160 l/s contradicting
the observations in Bolivia.
As described in the foregoing section, sSince the simultaneous measurements indicate flow to
be slightly increasing from around 150 l/s at the siltation chambers to around 160l/s at the
border, it seems unlikely that the generally lower values of the DGA series are due to flow
losses between the two gauging sites.
Although both series shows significant variations over time, 125-225 l/s for the Chilean series
and 160-210 for the shorter Bolivian series, neither shows clear sign of seasonality or a direct
correlation with local rainfall.
D~
Annex XV Appendix D
185
Measured flows
C-21
Figure C-14 Long-term series of Silala flows close to border In Chile and at the desiltation chambers and at
DGA’s Siloli Station in Chile close to the border upstream of the Fcab offtake
Figure C-15 Long-term series of Silala flows close to border In Chile and at the desiltation chambers and
DGA’s Siloli Station in Chile close to the border upstream of the Fcab offtake. Data after
2013
D~
lOO 1(\
l
t..
~ •~· 0
1511
IOQ...L----r--------.------r--------.------r------,----"1""--- ....,_...........,...__ •
0101'2002 01-01 2006 tJl-012008 OH>121H2 01Ol20lfi
Legend
- Sr,1 9'~ - Q. _......n..lffllll - Cklt_SU,_-... - iri .. ,_l'l,a;p °""'
250
:,00
, ..
•w-.c==::::;:::::::::== :::::::::::::::::::= :=:::::::::::::::= ::::::::::::::= :::= ::::=====:::;::::=====::::::::i-g
01-()1-2)1-4 01-01~21)15 0Hl1·l0 &
l ogcnd
- s1•~ :...s• n•..... - OMt_S.WJ,CICmld - SIWl__~-n.t,
The expert in WATER ENVIRONMENTS
186
Annex XV Appendix D
C-22 provisional report 3, climate,waterbalance and flows_rev2.docx /RAJ / 2017-11-15
Figure C-16 Long-term series of Silala flows close to border In Chile and at the desiltation chambers and at
DGA’s Siloli Station in Chile Close to the border upstream of the Fcab offtake. Data from 2017.
D~
230
220
110
200
,so
ii::
t 11C
i5 ,,,,
160
151)
''°
llO
21-06®'1 04-06 ,- trl-o7 1&07 D-Q7 l}(JI! 1009
L_,cl
-0-$, w:.... - Q-S,
Annex XVI
SERNAGEOMIN (National Geology and Mining Service), 2019.
A Brief Review of the Geology presented in Annexes of the
Rejoinder of the Plurinational State of Bolivia
187
188
Annex XVI
189
A BRIEF REVIEW OF THE GEOLOGY PRESENTED IN ANNEXES OF THE
REJOINDER OF THE PLURINATIONAL STATE OF BOLIVIA
Nicolás Blanco P. (MSc)
Geologist Project Manager of the Regional Geology Unit of the Department of Basic
Geology
Edmundo Polanco V. (DSc)
Project Geologist of the Regional Geology Unit of the Department of Basic
Geology
Jorge Vivallos C. (MSc)
Geophysical Unit Manager of the Geophysic Unit of the Department of Basic
Geology
August 2019
190
Annex XVI
GLOSSARY
This glossary of geologic terms is based on the glossary in Earth: An Introduction to
Geologic Change, by S. Judson and S.M. Richardson (Englewood Cliffs, NJ, Prentice
Hall, 1995). Where possible, definitions conform generally, and in some cases
specifically, to definitions given in Robert L. Bates and Julia A. Jackson (editors),
Glossary of Geology, 3rd ed., American Geological Institute, Alexandria, Virginia,
1987. Additionally, used the bibliography of Le Maitre (2002) and Bull and McPhie
(2007) for the specific terms.
39Ar/40Ar method: A different method that was invented to supersede K/Ar method, to
be more accurate.
Amphibole: Any of a group of dark green to black mineral of the often found in
igneous rocks that contain calcium, sodium, magnesium, aluminum, or iron ions or a
combination of them.
Andesite: A fine-grained volcanic rock of intermediate composition, consisting largely
of plagioclase and one or more mafic minerals.
Assemblage: The collection of minerals that characterize a rock or a facies.
Basalt: A dark colored extrusive igneous rock composed chiefly of calcium plagioclase
and pyroxene. Extrusive equivalent of gabbro, underlies the ocean basins and comprises
oceanic crust.
Biotite: A generally black or dark green form of mica that is a constituent of crystalline
rocks and consists of a silicate of iron, magnesium, potassium, and aluminium with
excellent cleavage.
Caldera: A large, basin-shaped volcanic depression, more or less circular in form.
Typically steep-sided, found at the summit of a shield volcano.
Annex XVI
191
Cenozoic: Geological Era that meaning "new life", is the current and most recent of the
three Phanerozoic geological eras, following the Mesozoic Era and extending from
66 million years ago to the present day.
Conformable: Lying parallel to, rather than cutting across surrounding strata.
Crystal: The multi-sided form of a mineral, bounded by planar growth surfaces, that is
the outward expression of the ordered arrangement of atoms within it.
Debris flow: Fast-moving, turbulent mass movement with a high content of both water
and rock debris. The more rapid debris flows rival the speed of rock slides.
Devonian: A geologic period and system of the Paleozoic, spanning 60 million years
from the end of the Silurian, 419.2 million years ago (Mya), to the beginning of the
Carboniferous, 358.9 Ma.
Dextral fault (right lateral-fault): The sense of displacement in strike-slip fault zones
where one block is displaced to the right of the block from which the observation is
made.
Diaclase: Planar discontinuities involving no relative displacement of the adjacent
blocks.
Dome: An uplift or anticlinal structure, roughly circular in its outcrop exposure, in
which beds dip gently away from the center in all directions.
Eutaxitic texture: Bedding-parallel alignment of fiamme in welded ignimbrite (see
Bull and McPhie, 2007).
Extrusive: Pertaining to igneous rocks or features formed from lava released on the
Earth’s surface.
Fault: The fracture or surface along which rock units break apart or rupture, and along
which there has clearly been movement of the rock on either side. A fault plane can be
paper-thin or it can be a zone, metres wide.
Fiamme: Aligned, “flame-like” lenses found in welded ignimbrite (see Bull and
McPhie, 2007).
192
Annex XVI
Hanging wall block: The body of rock that lies above an inclined fault plane.
Hercynian: A geologic mountain-building event caused by Late Paleozoic continental
collision between Euramerica (Laurussia) and Gondwana to form the supercontinent of
Pangaea.
Igneous rock: A rock that has crystallized from a molten state.
Joint: A surface of fracture in a rock, without displacement parallel to the fracture.
Lava: Molten rock that flows at the Earth’s surface.
Magma: Molten rock, containing dissolved gases and suspended solid particles. At the
Earth’s surface, magma is known as lava.
Mesozoic: An interval of geological time from about 252 to 66 million years ago. It is
also called the Age of Reptiles and the Age of Conifers.
Mineral: A naturally occurring inorganic solid that has a well-defined chemical
composition and in which atoms are arranged in an ordered fashion.
nanoTesla (nT): Unit of measurement of magnetic field strength; T = Tesla (Maxwell /
cm2), and nT = 10-9T).
Normal fault: A geological fault where the hanging wall block has moved downwards
relative to the foot wall block.
Oligocene: A geologic epoch of the Paleogene Period and extends from about
33.9 million to 23 million years before the present (33.9±0.1 to 23.03±0.05 Ma).
Olivine: A group of high temperature, dark magnesium iron silicate mineral.
Onlap: The termination of shallowly dipping, younger strata against more steeply
dipping, older strata.
Ordovician: A geologic period and system, the second of six periods of the Paleozoic
Era. The Ordovician spans 41.2 million years from the end of the Cambrian Period
485.4 Ma to the start of the Silurian Period 443.8 Ma.
Petrography: A branch of petrology that focuses on detailed descriptions of rocks.
Annex XVI
193
Pyroclastic: Pertaining to clastic material formed by volcanic explosion or aerial
expulsion from a volcanic vent.
Pyroclastic flow: A dense, hot (sometimes incandescent) cloud of volcanic ash and gas
produced in a Pelean eruption.
Pyroxene: Any of a group of igneous-rock-forming silicate minerals of black color, that
contain calcium, sodium, magnesium, iron, or aluminum.
Reverse fault: A dip-slip fault on which the hanging wall block is offset upward
relative to the foot wall block.
Rock: An aggregate of one or more minerals in varying proportions.
Salt diaper: Type of geologic intrusion in which a more mobile and ductily deformable
material (salt) is forced into brittle overlying rocks.
Silica: Silicon dioxide (SiO2) as a pure crystalline substance makes up quartz and
related forms such as flint and chalcedony. More generally, silica is the basic chemical
constituent common to all silicate minerals and magmas.
Silurian: A spanning 24.6 million years from the end of the Period, at 443.8 Ma, to the
beginning of the Period, 419.2 Ma.
Structural domain: A portion of land, a geographically delimited volume with a
longitude, latitude and height, a set of lithologies, kinematically related and delimited
by a set of major structures (faults) with similar structural characteristics.
Sinistral fault (left lateral-fault): The sense of displacement in strike-slip fault zones
where one block is displaced to the left of the block from which the observation is
made.
Structural Geology: Structural Geology aims to characterise deformation structures
(geometry), to characterize flow paths followed by particles during deformation
(kinematics), and to infer the direction and magnitude of the forces involved in driving
deformation (dynamics).
194
Annex XVI
Structural model: A self-consistent framework providing a coherent explanation for
the observed facts and allows to make verifiable predictions. A model is proven wrong
if key predictions are not verified.
Synsedimentary: That forms or grows within a sediment during sedimentation.
TAS: A binary diagram (“Total Alkali versus Silica”) of the content of silica (axis X)
and content of total alkali (oxides of sodium and potassium) (axis Y) recommended for
the classification of the volcanic rocks.
Tectonics: A general term that refers to the large-scale movements and deformation of
the Earth’s crust.
Tertiary: Geological Period widely used, but obsolete term for the geologic period
from 66 to 2.6 Ma.
Texture: The general appearance of a rock as shown by the size, shape, and
arrangement of the materials composing it.
Tuff: A general term for all consolidated pyroclastic rock. Not to be confused with tufa.
Unconformity: Cutting across surrounding strata.
Vitrophyre: A term for variety of porphyry in which the groundmass is glassy. Also
applied to the basal portions of many welded ignimbrites (see Le Maitre, 2002).
Vesicular: A textural term applied to an igneous rock containing abundant vesicles,
formed by the expansion of gases initially dissolved in the lava.
Volcanic ash: The dust-sized, sharp-edged, glassy particles resulting from an explosive
volcanic eruption.
Volcano: A vent in the surface of the Earth, from which lava, ash, and gases erupt,
forming a structure that is roughly conical.
Welded tuff: A pyroclastic rock in which glassy clasts have been fused by the combination
of the heat retained by the clasts, the weight of overlying material, and hot gases.
σ1: The state of major or main tension acting on a material point.
Annex XVI
195
TABLE OF CONTENTS
1. INTRODUCTION .................................................................................................1
2. STRATIGRAPHY AND GEOLOGICAL MAPPING OF BOLIVIA..................2
2.1 Bolivian stratigraphy........................................................................................3
2.1.1 Observations ............................................................................................4
2.2 Bolivian Petrography .....................................................................................11
2.2.1 Observations ..........................................................................................13
3. STRUCTURAL GEOLOGY...............................................................................16
3.1 Bolivian Structural Interpretation ..................................................................16
3.2 Analysis of Bolivian structural data...............................................................17
3.2.1 The “Silala Fault” ..................................................................................18
3.2.2 The “Silala-Llancor Lineament” ...........................................................25
3.2.3 Conclusions ...........................................................................................30
3.3 Chile’s interpretation of the geological deformation in the Silala River
area .................................................................................................................33
3.3.1 The Uyuni-Khenayani Fault System .....................................................35
3.3.2 Ratio of deformation and crustal depth .................................................38
4. CONCLUSIONS..................................................................................................40
5. ACKNOWLEDGEMENTS.................................................................................43
6. REFERENCES.....................................................................................................44
APPENDIX A
APPENDIX B
196
Annex XVI
Annex XVI
197
1
1. INTRODUCTION
On 15 May 2019 Bolivia submitted to the International Court of Justice (ICJ) the
Rejoinder of the Plurinational State of Bolivia (BR) in the Dispute over the Status and
Use of the Waters of the Silala (Chile v. Bolivia). In this context, the National Director
of the Dirección Nacional de Fronteras y Límites del Estado (DIFROL) of the Ministry
of Foreign Affairs of Chile, Mrs. Ximena Fuentes, asked SERNAGEOMIN for its
technical opinion of the geological content of the Rejoinder of Bolivia.
A major problem for the analysis of the several documents annexed to the BR that
concern the geology of the Silala River area is that the quality of the Bolivian geological
information is in many cases poor, inconsistent and confusing and is not adequate, in
our opinion, to support the geological conclusions determined by Bolivian geologists.
This report discusses the validity of some of the geological statements, radiometric
dates and assumptions made by Bolivian geologists in their reports, which caused them
to arrive at their interpretations of the stratigraphy, rock petrography and structural
geology. The geological understanding of the Silala Basin is fundamental to
understanding the hydrogeology of the region and developing a conceptual model of
groundwater flow to the Bolivian wetland springs and unseen groundwater flow across
the international border into Chile.
This report is based on study and review of the following documents that were
presented with the BR:
1. Annex 23.5: F. Urquidi, “Technical analysis of geological, hydrological,
hydrogeological and hydrochemical surveys completed for the Silala water
system”, June 2018. (BR, Vol. 3, pp. 233-332).
2. Annex 23.5, Appendix a: SERGEOMIN (National Service of Geology and
Mining), Study of the Geology, Hydrology, Hydrogeology and Environment of
the Area of the Silala Springs, June 2000-2001, Final Edition 2003. (BR, Vol. 3,
pp. 333-401).
198
Annex XVI
2
3. Annex 23.5, Appendix b: SERGEOMIN, “Structural Geological Mapping of the
Area Surrounding the Silala Springs”, September 2017. (BR, Vol. 4, pp. 5-136). 1
4. Annex 23.5, Appendix c: Tomás Frías Autonomous University, (TFAU),
“Hydrogeological Characterization of the Silala Springs”, 2018. (BR, Vol. 4,
pp. 137-462).
5. Annex 24: DHI, “Analysis and assessment of Chile’s reply to Bolivia’s counterclaims
on the Silala Case”, March 2019. (BR, Vol. 5, pp. 5-46).
The main aims of the review were to establish the underpinning geological science
behind the Bolivian experts’ interpretation of the stratigraphy of the geological
succession and the ages of the deposits in the area of the Silala River and ravine in
Bolivia as well as the geological structure, including the evidence for the geological
faults that have been interpreted as existing in the area. The stratigraphy and geological
structure have been used to underpin an interpretation of the hydrogeology of the area,
develop a conceptual understanding of groundwater flow and hence construct a
numerical model of the hydrology and hydrogeology of the Silala wetlands and springs,
referred to later as Bofedales Norte (Cajones) and Bofedales Sur (Orientales).
2. STRATIGRAPHY AND GEOLOGICAL MAPPING OF BOLIVIA
The stratigraphy presented by Bolivia in the technical geological annexes, either in
maps or in stratigraphic columns, is inconsistent with the geological units defined in
Chile by Chilean geologists and contains internal inconsistencies with Bolivia’s own
data and maps presented in the annexes of the Bolivian Rejoinder.
1 The SERGEOMIN, 2017 report, including annexes C and D, was submitted by Bolivia on 22 November
2018, in response to Chile’s data request dated 5 November 2018. Bolivia resubmitted the SERGEOMIN,
2017 report with its Rejoinder, but this time only the first two (out of 95) pages of Annex C were included
and Annex D was excluded entirely. Hence, the references contained in the present report to Annex C and
Annex D to SERGEOMIN, 2017, refer to annexes C and D as filed on 22 November 2018. For the
convenience of the Court, Annex C to SERGEOMIN, 2017 is resubmitted as Appendix A and Annex D to
SERGEOMIN, 2017 is resubmitted as Appendix B of the present report.
Annex XVI
199
3
The following provides a series of observations on the Bolivian stratigraphy, followed
by a series of observations on Bolivian petrography:
2.1 Bolivian stratigraphy
The unit “Silala Ignimbrite” (Bolivian name, hereinafter “Bol”), of dacitic-andesitic
composition, is assigned to the Upper Miocene (7.8-6.6 Ma) (BR, Vol. 3, p. 248; BR,
Vol. 4, pp. 39, 43 and 46) and Bolivian geologists affirm that it constitutes the regional
basement (BR, Vol. 4, pp. 39, 125 and 148). According to the geological maps
presented by Bolivia (BR, Vol. 3, p. 245; BR, Vol. 4, pp. 113-115) for the Silala
Ignimbrites (Bol) there is an age of 7.8±0.3 Ma obtained from a sample located south of
Bofedales Norte (Cajones) (BR, Vol. 4, pp. 113-115).
Table 1 summarizes the stratigraphy of the Silala Ignimbrites (Bol) unit, with the ages
indicated for each subunit and the differences between the descriptions among the
different studies conducted by Bolivia.
References SERGEOMIN
(2017)
TFAU (2018) Observations
Annex 23.5b 23.5c
Silala Ignimbrites (Bol)
Silala Ignimbrite 3
(Nis-3) Dacitic Ignimbrites with Na-
Plagioclase
6.6±0.5 Ma
Debris flow (Nfd2)
Silala Ignimbrite 2
(Nis-2) Dacitic Ignimbrite with Andesitic
Crystal vitreous tuff Clast
(Ntcv)
Silala Ignimbrites 1
Hypocrystaline Dacitic Ignimbrites
correlation with
7.8±0.3 Ma
Debris flow 1 (Nfd1)
Table 1. Summary of the stratigraphy of the Silala Ignimbrites (Bol) of Annex 23.5b (BR, Vol. 4,
pp. 44-51) and Annex 23.5c (BR, Vol. 4, pp. 157-159) documents.
200
Annex XVI
4
2.1.1 Observations
The so-called Silala Ignimbrites (Bol) correspond to several pyroclastic flows of
contrasting chemical composition, radiometric age and stratigraphic position. In Annex
23.5c (BR, Vol. 4, pp. 157-160) the Silala Ignimbrites (Bol) succession is reported to
have three units (Table 1), from the oldest to youngest: Dacitic-Hypocrystalline
Ignimbrite, Dacitic ignimbrite with andesitic clasts and Dacitic Ignimbrites (with Na
plagioclase). The Dacitic ignimbrite with andesitic clasts is important because they
“[…] pertain to the first Inacaliri volcanic event” (BR, Vol. 4, p. 158) and are the source
of the andesitic composition. However, since the age of the Inacaliri volcano lavas is
5.84±0.09 Ma (Almendras et al., 2002) the Dacitic Ignimbrite with andesitic clasts must
be younger, indicating that Bolivia’s age of the overlying Dacitic Ignimbrite with Na
Plagioclase (6.6±0.5 Ma) must be incorrect.
On the basis of our field observations in Chile, photointerpretation of satellite images
and observation of photographs in annexes of Bolivian Rejoinder, it is clearly observed
that the unit of the pyroclastic flow that crops out along the course of the Silala River in
Chile, corresponding to the Silala Ignimbrite (Chilean name, herein after Chi) can be
traced with complete confidence in the continuity of outcrop beyond the international
border and to the Bofedales Sur (Orientales) in Bolivia. This deposit corresponds to
several flow units, of andesitic composition, which as a whole constitutes a single
cooling unit. In addition, it includes several slag fluxes, with centimetre to decimetre
sized fragments of vesicular andesitic slag, which according to the Bolivian geology
corresponds to the Debris Flows 1 and 2 units (BR, Vol. 3, pp. 250-251; BR, Vol. 4,
pp. 44 and 49). The Silala Ignimbrite (Chi) is from the Lower Pleistocene and was dated
at 1.61±0.068 Ma (40Ar/39Ar in plagioclase; Blanco and Polanco, 2018). This is
significantly younger than the ages of 7.8±0.3 Ma and 6.6±0.5 Ma assigned by Bolivia
to the so-called Silala Ignimbrites (Bol).
The age of 7.8 Ma for the Silala Ignimbrites (Bol) comes from a regional context and
has been extrapolated to this location (BR, Vol. 4, p. 149), near the “confluencia”
(confluence in English) area of the Cajones and Orientales ravines.
Annex XVI
201
5
In fact, in the regional geological map of the Volcán Juriques and Cerro Zapaleri area,
scale 1:250,000 (Ríos et al., 1997) an age of 7.8±0.3 Ma (K-Ar in biotite) is attributed to
Baker and Francis (1978), and located on that map 16.5 km SE of Bofedales Norte
(Cajones), in an ignimbrite field (Figure1A). However, according to the original work
of Baker and Francis (1978), this age corresponds to andesitic lavas located 8 km E of
the hill Silala Grande (sample B51). On the 2017 map found in BR, Vol. 4. p. 115, this
age is correctly located in the lava of the La Apacheta-Cerro Chico hills (Figure 1B,
Age 1). According to this last map, a large part of this field of ignimbrites corresponds
to the unit “Tobas Pastos Grandes” (Ntpg), dated at 3.2±0.4 Ma (biotite) (Figure 1B
Age 2). From this discussion it is clear that there is considerable inconsistency between
the maps presented in the Bolivian Rejoinder and an erroneous interpretation of the date
for the Silala Ignimbrites (Bol) has been made.
On the other hand, 6.5 km E of Bofedales Sur (Orientales), an age of 6.6±0.5 Ma is
presented for the unit “Silala Ignimbrite 3” (Nis-3) (biotite, BR, Vol. 4, p. 115)
(Figure 1B Age 3). However, to the ENE of Bofedales Sur (Orientales), it can be seen in
Figure 2 (prepared by the authors of this report using satellite imagery) that the Silala
Ignimbrite (Chi) lies under the 1.48 Ma andesitic lava (Figure 1B, Age 4) flow and this
deposit is in unconformable contact (onlap) with the Silala Ignimbrite 3 (Nis-3) (Bol),
which is the uppermost ignimbrite unit described by the Bolivian geologists. This is
quite clearly not the youngest ignimbrite in the sequence because the Silala Ignimbrite
(Chi) overlies this sub-unit, and as already shown (see above) the age of 6.6 Ma must be
incorrect. The Silala Ignimbrite (Chi) is not recognised in any Bolivian maps or
SERGEOMIN reports.
202
Annex XVI
6
ROJAS SF 19-11 VOLCAN JURIQUES Y SF 19-12 CERRO ZAPALERI
75(,01------+------___J
r
- ~-== - =--:-=::=-~-
- -===~-=--~
15!.~-
~t:~, ~ .§
~~
L ~::=:.
E E.=---=:;:~
-~~~.-~~-~= -l-~~ -m :=~ ;· IE~~~• ~-==-==
' ..,..,_,.,,..,.,u:,,..-ru,_
.,,~ .. -.u . ..-.cu~••xr-'>
"'""" ""'"""'Y"""'
,,, ""'""'-:f''•""'A"' ..
~i~:~~~=
Annex XVI
203
7
Figure 1. Source of ages for the Silala Ignimbrites (Bol). The origin of the age of 7.8 Ma of
Baker and Francis (1978) extrapolated to this unit in the area of the Silala River, has been
erroneously mapped in Volcán. Juriques Cerro Zapaleri map (A), but rectified on the 2017 map
of Annex 23.5b (BR, Vol. 4, p. 115) (Figure 1B, Age 1). Part of what was mapped as Silala
Ignimbrites corresponds to the ‘Toba Pasos Grande’, age 3.2 Ma (Figure 1B, Age 2). The age
of 6.6 Ma (Figure 1B, Age 3) corresponds to the Silala Ignimbrite 3 (Bol) unit (Nis-3).
MBOLS
ct
n cen ter
®.Wl_!!ll'S Of 6lOI.OCiKAI. UNITS
...... __ ,
.-
" Olg
am,
•· ---
·'-'.\' - ---..,;:,:..._,:'."". . ..::.__
Nice
Ce,ro La
204
Annex XVI
8
Figure 2. Unconformity or onlap relationship between the Silala Ignimbrite (Chi) and the Silala
Ignimbrite 3 (Bol), located east of Bofedales Sur (Orientales).
It is also mentioned that the Silala Chico (Bolivian name, Cerrito de Silala in Chile)
volcanic dome intrudes the Silala Ignimbrites (Bol) (BR, Vol. 4, pp. 125 and 149). That
statement is based on an age of 6.6 Ma obtained for the Silala Ignimbrites (Bol) (BR,
Vol. 4, p. 115), subunit Silala Ignimbrite 3 (Nis-3), which is the youngest or uppermost
ignimbrite subunit recognised by Bolivia, located 8.5 km to the ENE of the summit of
the Silala Chico hill. As shown above this age is incorrect. According to the geological
cartography carried out by Chile (CM, Vol. 5, Annex VIII) the geological units that are
in contact with the Silala Chico dome are the Silala Ignimbrite (Chi), dated at 1.6 Ma
and the lavas that descend from the Silala Grande (Bol) (Volcán Apagado in Chile)
dated at 1.74 Ma (BR, Complete Copies of Certain Annexes, Vol. 2, Annex 23.5
Appendix a, p. 69); both units cover in onlap (unconformably overlying) the deposits of
this volcanic dome at its base. So, the Bolivian statement above is wrong, because a
lgnimbrite (
1.61 Ma
Bliis
Silala lgnimbrite 3 (Bol.)
6.6Ma
Nis-3
0 300 600 900
Meters
Mercator Pro_iection, WGS 84
Annex XVI
205
9
volcanic dome dated in 6.04±0.07 Ma (biotite) (BR, Vol. 4, pp. 113-115) cannot intrude
and settle on younger rocks that are dated 1.74 to 1.6 Ma.
Further confusion arises from Bolivia’s depiction of the relationship between the Silala
Chico Dome unit (Nevsch on Bolivia’s geological map at Figure 3), with the age
6.04±0.07 Ma, and the Silala Grande volcano deposits (Nevs on Bolivia’s geological
map at Figure 3), with the younger age of 1.74±0.02 Ma. Bolivia’s Generalized
Geologic Section (BR, Vol. 4, p. 125), is inconsistent with these dates (see Figure 4). It
shows the older Silala Chico Dome unit overlying the younger Silala Grande volcano
deposits. The correct stratigraphic relationship is therefore the opposite, namely, the
lava flows of Silala Grande volcano overlie the older volcanic rocks of the Silala Chico
Dome unit.
206
Annex XVI
10
Figure 3. Zoom of the part of Geological Map (BR, Complete Copies of Certain Annexes,
Vol. 2, Annex 23.5 Appendix a, p. 69), showing the location of an age of 1.74±0.02 Ma in a lava
flow of the Silala Grande (Bol) volcano and the location age of 6.04±0.07 Ma of the volcanics
of the Silala Chico (Bol) dome.
/
/ - /
' I
,,,
,,
' \
I I
MAPA No 1
MAPA GEOlOGIA, GENERAL
DEL MANANTIAL DEL Sil.ALA
PROV1NCIA SUR LIPEZ DEL DEPART AMENTO oe
POTOSI
Annex XVI
207
11
Figure 4. Generalized Geologic Section that shows that the ages (added for clarity) cited in
Figure 3 do not support the stratigraphic relationship determined by Bolivian geologists. The
section also shows the ignimbrites underlying the lavas of the Silala Chico dome, which is also
incorrect, since they are younger than the lavas of the dome (BR, Vol. 4, p. 125).
2.2 Bolivian Petrography
Table 2 summarizes the petrographic characteristics of the Silala Ignimbrites (Bol) unit,
and the differences between the descriptions among the different studies conducted by
Bolivia. There are several difficulties with the information contained therein.
ttn..s'.n".11 1.1
,/
NW• NO
Vole.in lnacallrl • lnacalirl Volcano
E:;t ratovolcan • Stratovolcano
l9nimbrita Silala • Silala lgnimbrite
Manantlales d e l Silala • Slla1:, Springs
Domo Si1ala Chico • Silala Chico Dome
Volc.lin Si1:;ila Grande • Sital;,i, Grande Volcano
Grn[AAUlm GWlOGl(Al mTION Of l'H[ lllAlA IP~INGI
Domo Silala Chico
+
+
+
ige,,rt«.ISJal•
.. lffl.lJ'l.ffl.l
~ ~
DIREMAR
lgminbrita Silala
208
Annex XVI
12
SERGEOMIN (2017) TFAU (2018)
Unit Description Assemblage Petrography TAS %
SiO2
Petrography
Silala
Ignimbrite 3
(Nis-3)
Moderate welded tuff
of 12 m of thickness
with lithics (dacite and
andesite) and pumice
(BR, Vol. 4, pp. 50-51)
Pl- K feld-qz-bt
(BR, Vol. 4, p. 51)
Pl-qz-bt±amph±K
feld-Fe oxides
(pp.7-8,23-24, 27-
28; SERGEOMIN,
2017)
Andesite 55-60
Pl Na-qz-K feld
(BR, Vol. 4, p. 50
and pp. 158-159
Debris flow
2 (Nfd2)
Massive and chaotic
unit with igneous clast
subangular to
subrounded (< 40 cm)
in sandy-claytly and
50-180 cm of thickness
with vesicular texture
in some sectors (BR,
Vol. 4, pp. 49-50)
Silala
Ignimbrite 2
(Nis-2)
Ignimbrites (or flow
tuffs) welded, banded
to massive texture of
10 m of thickness with
lithics (andesites) and
pumice (<10 cm) (BR,
Vol. 4, pp. 48-49)
Pl-qz-px-amph
(BR, Vol. 4, p. 49)
Pl-amph±px-Fe
oxides (pp.55-56;
SERGEOMIN,
2017)
Dacite > 66 Pl-qz-K feld (BR,
Vol. 4, p. 158)
Crystalvitreous
tuff
(Ntcv)
Fine ash fall tuff
(andesitic ignimbrite)
of 15 cm of thickness
average, vesicular
texture in some sectors
and an alternation of
lenses of bands of
different colors
(banded and fluidal
texture) (BR, Vol. 4,
pp. 47-48)
K feld-bt-pl±px
(BR, Vol. 4, p. 47)
Pl-px±qz±Fe
oxides (pp.1-4;
SERGEOMIN,
2017)
Silala
Ignimbrite 1
(Nis-1)
3-8 m of thickness with
vertical fractures
parallel and subparallel
to lithics (igneous) and
pumice. Fluidal or
banded microtexture
(BR, Vol. 4, pp. 46-47)
K feld-qz-bt±px
(BR, Vol. 4, p. 46)
Pl-qz-bt-Fe oxides Dacite 63-66 Pl-qz-bt (BR, Vol.
4, p. 157)
Debris flow
1 (Nfd1)
Massive and chaotic
unit with igneous clast
subangular to
subrounded (< 40 cm)
of in sandy-claytly
matrix and 60-140 cm
of thickness (BR, Vol.
4, p. 44)
Table 2. Descriptions of the Silala Ignimbrites of TFAU and SERGEOMIN documents. TAS is a
diagram of classification of the volcanic rock (Total Alcalis versus Silica, Le Maitre, 2002).
Petrography corresponds to petrographic descriptions of the samples in both documents.
Annex XVI
209
13
2.2.1 Observations
The Debris flow 1 (Nfd1) (Tables 1 and 2) is in reality a “scoria blocks tuff” (or tuff
with scoria blocks) with rounded and subrounded fragments of vesicular scoria with
plagioclase and pyroxene and is a flow unit or cooling unit of the ignimbrite of age
1.61 Ma, the Silala Ignimbrite (Chi). This kind of ignimbrite is well studied in other
places (for example, Lohmar et al., 2007).
The Bolivian samples 7702, 7706, 7807 and 7808 are from Ntcv unit, Crystal-vitreous
tuff (“Toba Cristalo Vítrea” in Spanish) (Tables 1 and 2), (BR, Vol. 4, p. 47). This is
named “Andesitic ignimbrite” too (BR, Vol. 4, pp. 134-135) but the name of the sample
7807 has been changed to Andesite of pyroxene lava (Annex C to SERGEOMIN, 2017,
p. 132). In reality this level of “Silala Ignimbrites” is a vitrophyre, a highly welded tuff
with fiammes and eutaxitic texture and normally is located at the base of ignimbrite (for
example, Gimeno et al., 2003).
The Silala Ignimbrite 2 unit (Nis-2) (Bol) (BR, Vol. 4 p. 116) is the same deposit as the
Chilean Silala Ignimbrite (RSP-52t), which can be traced crossing the border into
Bolivia. A pumice sample collected in the Silala ravine in Chile, within approximately 5
metres of the border, of Chilean Silala Ignimbrite (RSP-52t), corresponds to a fragment
that under the petrographic microscope appears as a vesicular pyroxene andesite (see
Figure 5). It is possible to recognize an accumulation of pyroxene crystals, which is a
very common texture. This rock, as found in Chile, at the border, is an andesitic
ignimbrite, not a dacitic ignimbrite. Nevertheless, in all descriptions in the Bolivian
documents, they refer to Nis-2 as a dacitic ignimbrite (see Table 2), which is incorrect.
2 Resubmitted as Appendix A to this report.
210
Annex XVI
14
Figure 5. Photograph of the thin section of RSP-52t sample (Silala Ignimbrite (Chi)) showing
pyroxene and plagioclase crystals. This sample was collected on 7 November, 2018, within
approximately 5 metres of the international border in the south wall of the Silala River ravine.
Another issue with the descriptions of the different units of Silala Ignimbrites (Bol) is
that the mineral assemblage in the main text and the petrographic descriptions are
different and inconsistent. Also these descriptions differ from those of TFAU. For
example, the Silala Ignimbrite 2 (Bol) (Nis-2), is described as having a quartz-like
mineral assemblage in the main text (BR, Vol. 4, p. 158) but quartz does not appear in
the petrographic descriptions of the thin sections (Table 2). The same inconsistency
occurs between the mineral assemblage and petrographic description of Silala
Ignimbrite 3 Nis-3 (Bol) (Table 2). No amphibole appears in the mineral assemblage but
is found in the petrographic description (Table 2).
Annex XVI
211
15
In addition, our examination provides evidence of a lack of systematic nomenclature by
Bolivian geologists for the naming of the rocks in the various units. Normally, the
nomenclature of a volcanic rock is a function of the relative abundance of the mafic
minerals present (olivine, pyroxene, amphibole and biotite) as determined by its
petrography. Table 3, prepared with data from Annex C to SERGEOMIN (2017)
(Annex C to SERGEOMIN, 2017, pp. 49-50 and 53-54), shows two samples with the
minerals and relative content (% in volume). These very similar rocks have been given
different rock names, for example, if samples 7810 and 7811 are compared, it can be
seen they have very similar mineral contents but different petrographic names (basalt
and andesite; Table 3 below).
Sample 7810 7811
Quartz
Plagioclase 31-33% 25-27%
Biotite
K-Feldespate
Hornblende
Clinopyroxene 2-3% 3-5%
Groundmass 58-60% 56-58%
Fe-oxides 1-2%
Calcite
Pumice
Other 1-2%
(very high mafic oxide) 8-10% (lithoclast)
Name Pyroxenic basalt Pyroxenic andesite
Systematic rock Pyroxene andesite Pyroxene andesite
Table 3. Percentage of minerals (crystals content) of two “andesite” samples in Annex C to
SERGEOMIN (2017). Systematic rock names should correspond to the rock name based on the
mineralogy recognized in the rock sample.
Rock samples of the Silala Chico Lava (Cerrito de Silala) unit correspond to a dacitic
dome, but in Table 4, prepared with data from Annex C to SERGEOMIN (2017)
(Annex C to SERGEOMIN, 2017, pp. 5-6, 15-16 and 47-48), three different names are
recognized by Bolivia for the same geological unit, however the systematic name that
can be deduced is simply: biotite and amphibole dacite. There seems no reason for the
three rock names for this same unit. This confusion and inconsistency does not give any
confidence in the Bolivian geological expertise.
212
Annex XVI
16
Sample 7809 7712 7713
Quartz 1-2% 6-8% 1-2%
Plagioclase 25-27% 23-25% 25-28%
Biotite 4-6% 3-5% 3-5%
K-Feldespate
Hornblende 2-3% 2-3% 2-3%
Clinopyroxene 1-2% 1-2% 1-2%
Groundmass 53-55% 50-52% 55-57%
Fe-oxides 2-3% 2-3% 2-3%
Calcite 1-2% 1-2%
Pumice
Rock name Biotitic andesite Biotitic dacite Biotitic andesite
(quartzily)
Systematic rock Biotite and amphibole
dacite
Biotite and
amphibole dacite
Biotite and
amphibole dacite
Table 4. Relative percentage of minerals (crystals content) of selected samples of Silala Chico
Lava unit in the Annex C to SERGEOMIN (2017). Systematic rock correspond to the rock name
based in the mineralogy recognized in the rock sample.
3. STRUCTURAL GEOLOGY
3.1 Bolivian Structural Interpretation
Two main structural systems have been defined by Bolivia in the area of the wetland
springs of the Silala River in Bolivia, which are assigned great importance by Bolivia as
providing high permeability pathways for groundwater and controlling the locations of
the springs in Bolivia (BR, Vol. 3, p. 249), in particular the Bofedales Norte (Cajones)
and Bofedales Sur (Orientales). For the Bofedales Norte (Cajones), a fault called the
“Silala Fault” (BR, Vol. 3, pp. 254 and 283), of NE-SW orientation, has been
interpreted by Bolivia, as part of the Uyuni-Khenayani Fault System (UKFS) (Sempere
et al., 1990; Martínez et al., 1994; Elger et al., 2005). For the Bofedales Sur
(Orientales), a structure linked to the Silala-Llancor lineament (BR, Vol. 4, p. 73), of
ENE-WSW (70°) orientation has been invoked. According to its authors, both structural
systems are due to regional compressive stress (σ1), in general, of East-West orientation
(BR, Vol. 4, p. 66). The structures were determined on the basis of numerous
measurements of fractures and, subordinately, faults. Also, a regional aeromagnetic map
Annex XVI
213
17
was used to define the main magnetic lineaments, some of which, in our opinion, were
forced to coincide with these structures (see discussion in relation to the structures
below).
3.2 Analysis of Bolivian structural data
In geological science a fault is a planar or gently curved fracture in the rocks of the
Earth’s crust, where compressional or tensional forces cause relative displacement of
the rocks on the opposite sides of the fracture. There are three types of fault, normal,
reverse (or inverse) and transcurrent (or strike-slip). The relative displacement of
transcurrent faults can be sinistral or dextral (left or right to the observer).
SERGEOMIN (2017) reports 2754 geographically located structural data items
(Annex D to SERGEOMIN, 20173) (Table 5). Of these, only 487 (dextral, inverse,
normal, sinistral faults) can be used in structural analysis and an attempt to formulate a
structural model of the structural stresses that produced the faults. However, it is clear
that some of the items included are fractures caused by primary cooling of lava flows or
ignimbrite primary cooling (prismatic) joints. These are not indicative of faults. Indeed
in the description of Silala Ignimbrite 1 (Bol) (Table 2) the presence of parallel and
subparallel vertical fractures (columnar jointed) are noted but again, these do not
indicate faults.
Additionally, the data in Table 5 are not ascribed to rock units of particular ages, i.e.,
there is mixing of faults of different ages which make their interpretation uncertain,
unreliable or meaningless.
3 Resubmitted as Appendix B to this report.
214
Annex XVI
18
STRUCTURES QUANTITY
Diaclase 1955
Fault 179
Dextral fault 23
Inverse fault 87
Normal fault 331
Sinistral fault 12
Strike lip fault 6
inverse fault 34
Pseudostratification 127
Structures total 2754
Table 5. Quantitative statistics of the structural data (Annex C to SERGEOMIN, 2017).
179 of these structural data are listed as faults, but none of these in Table 5 above, show
relative movement (by defining the movement, i.e. sinistral, dextral, inverse, normal), so
that one can reasonably think that they correspond to diaclases (fractures or joints).
Also, 127 of the data points correspond to pseudo-stratification, i.e., indicating the flow
direction or spatial disposition of the lava flow or ignimbrite, so the incorporation of
this type of data in a structural model is also incorrect. In other words, many of these
data are not structural and so are not useful to understand local or regional stress
regimes.
3.2.1 The “Silala Fault”
From their structural analysis the Bolivian geologists from TFAU concluded “that the
maximum stress axis has a preferred E-W direction, which gave rise to four structural
domains, each with particular characteristics” (BR, Vol. 3, pp. 257-258).
The Bolivian-described “Falla Silala” is a NE-SW oriented structure, which runs along
the Silala River ravine, from Bofedales Norte (Cajones) following the course of the
river to the SW, crossing the border into Chile (BR, Vol. 3, pp. 254 and 283). The
measurement of fractures by Bolivia in this sector (Domain 4) they indicate is
dominated by a NW-SE pattern (125-305°), corresponding to normal faults, and
coinciding with the orientation of Inacaliri Graben (BR, Vol. 3, p. 267). However,
Annex XVI
215
19
according to the deformation model proposed by Bolivia (BR, Vol. 3, p. 263), with a
main stress vector σ1 WNW-ESE (~ N85°W) such normal faults should have a WNWESE
orientation (~ 275-95), which does not coincide with the preferential or most
frequent fractures measurements (NW-SE) (BR, Vol. 3, p. 267, Figure 13a) or with
orientation of the Graben Inacaliri.
Also, a fault oriented N45°E and inclined 48° towards the SE, with fault stria or
slickenlines forming an angle of 11° to the SW (BR, Vol. 4, p. 322) with respect to the
strike of the fault was measured. The Bolivian authors indicate that this fault plane
coincides with the current direction of the Silala ravine in that area and that the vertical
and almost vertical walls of the ravine are “strong evidence of the formation of the
ravines by tectonism and movement of glacial ice and fluvioglacial waters” (BR, Vol 3,
p. 323). This assertion is inconsistent, because they define a fault with an inclined plane
at 48° to the SE, so that the vertical walls of the ravine must have another origin, not
from one influenced by a structure, or by the action of glacial ice. This has previously
been demonstrated by Chile as has the fluvial origins of the ravine (SERNAGEOMIN,
2017; Latorre and Frugone, 2017).
In relation to the structure that supposedly controls the Silala River ravine
(N45°E/48°SE), it has stria or slickenlines that form an angle of 11° with respect to the
strike of the fault (rake = 11°SW) (Figure 6), which indicates that it would be a fault of
lateral displacement or heading, with very little vertical displacement. In the
deformation model for Domain 4, the NE-SW orientation faults correspond to right
lateral faults, with which the south-eastern block of the fault drops slightly with respect
to the north-western block (Figure 6). This situation contrasts with the assertion that the
units that are located on the eastern side of the river, south of Bofedales Norte
(Cajones), are raised 5 metres from the western side (BR, Vol. 5, p. 24), implying that
the Silala Fault is responsible for that upward displacement (BR, Vol. 5, p. 24; BR, Vol.
4, p. 48). In fact such a fault would result in the opposite displacement, as shown in
Figure 6; the south eastern block would be displaced downwards.
216
Annex XVI
20
Figure 6. Block diagram for the structural model of the Silala Fault, of orientation
N45°E/48°SE, with dextral displacement and southeast block slightly displaced downwards
with respect to the northwestern block according to rake= 11°SW.
In their analysis of fractures in the structural domains (BR, Vol. 3, pp. 260-263; BR,
Vol. 4, pp. 306-325) it is mentioned that in Domains 2 and 3 the orientation of the
predominant fractures coincide with compressive and shear fractures, which are closed
fractures, and that therefore, in those sectors, there are no springs, because there are no
open fractures to facilitate the emergence of groundwater (BR, Vol. 3, pp. 258-259).
This assertion and structural interpretation is clearly in contradiction with what they
interpreted for the Bofedales Norte (Cajones), in which it is asserted that the upwelling
of water is controlled by NE-SW shear structure that coincides with the orientation of
the Silala ravine (BR, Vol. 3, p. 258), also aligned NE-SW. There, a dextral shear
structure is mapped by Bolivia and matches their proposed structural model. But
according to this the Bolivian geologists would postulate that shear fractures or shear
I
I
I
I
I
I
I
Silala river ravine axis
in Bofedales Norte
I
I
I
I
s/ickenline
or stria fault
Annex XVI
217
21
faults are closed and unlikely to support the emergence of springs and, therefore, at
Bofedales Norte (Cajones) spring arisings would not be expected to be favorably
influenced by a NE-SW structure shear structure because it would be closed. There is
clearly another control for water upwelling in that sector but it would not be by a NESW
shear fault.
A possible control for the emergence of groundwater in Bofedales Norte (Cajones)
could be related to its location being on the trace of a regional structure, of N-S
orientation, determined by the alignment of dacitic volcanic domes, which we will call
the Silala Chico-Cerro Negro Lineament. For this reason and, possibly like the
Quebrada Negra spring located in Chilean territory, the emergence of underground
water in Bofedales Norte (Cajones) could be determined by the existence of this
regional structure (Figure 7).
218
Annex XVI
22
Figure 7. Spatial relationship of the emergence of underground water springs possibly
associated with the Silala Chico-Cerro Negro structural lineament, in particular for the
Quebrada Negra springs in Chile and Bofedales Norte (Cajones) in Bolivia.
For the Bolivian cross section of the Silala River ravine located SW of Bofedales Norte
(Cajones), with a NW-SE orientation, it is indicated that there is a displacement of
approximately 5 metres of the rock units located on the southeast side of the river
(Figure 8) (BR, Vol. 5, p. 24). Moreover, this is explicitly said with the phrase
“subdividing the Silala Ignimbrite in two members (Nis1 and Nis2) and it is also an
indicator of possible vertical displacements produced by the faulting” (BR, Vol. 4,
p. 48). This indicator appears to be intended, in our opinion, to reinforce the idea of the
existence of a fault in that sector that is the cause of this displacement. However, if the
hypothesis of the existence of this fault is accepted, as indicated for the Silala Fault
(Figure 6), the movement of the south-eastern block of the fault should be displaced
4
Kilometers
1 ~ BRAZIL
PERU } '""--
PARAGUAY
ARGENTINA
Annex XVI
219
23
downwards according to the dextral shear movement and the orientation of the stria or
slickenlines associated with the fault, that is, the opposite of what is indicated by
Bolivian geologists. On the other hand, a slightly higher position of the SE block can
also be explained because the Silala Ignimbrites (Bol) unit is tilted to the west as
indicated by the Bolivian geologists (BR, Vol. 4, p.149).
Figure 8. Profiles GG’ located SW of Bofedales Norte (Cajones), that indicate there is
displacement of ~ 5 m of the rock units located on righthand side of the river in this figure. (BR,
Vol. 5, p. 24).
In the Bofedales Norte (Cajones) area it is not possible to see or photo-interpret any NESW
lineament or structure. The dominant structural fabric has a NW-SE trend
(Figure 9), as indicated by the fracture rose diagram (BR, Vol. 3, p. 263). The
association of vertical walls with the supposed structure NE-SW is erroneous, and it is
possible to see that the verticality of the slopes of the ravine corresponds to an erosional
form that follows the course of the river (Figure 9).
CORTEG-G'
N - S
___,-
, _
220
Annex XVI
24
Figure 9. This shows the main orientation of NW-SE fractures, transverse to the course of the
Silala ravine. The orientation of vertical walls in the ravine follows the course of the river,
indicating that they are formed by erosion.
In our opinion, the change of direction of the course of the Silala River, starting from
Bofedales Sur (Orientales), is due to a lithological control, that is to say, to the
resistance that the rocks present to the fluvial erosion. Indeed, where the course of the
river intersects the dacitic lavas, both at the northern end of Cerrito de Silala (Chi) hill
and NE of the Inacaliri police station, the course is modified significantly and then it is
restored its general direction to the SW from Bofedales Norte (Cajones) (Figure 10).
Annex XVI
221
25
Figure. 10. Effects of competent lithology (dacitic lavas) on the Silala River course. Light
brown (Msvd code) and light pink (Psvd code) colors represents the envelope of dacitic lavas.
3.2.2 The “Silala-Llancor Lineament”
Bolivia asserts: “The Silala-Llancor lineament – which has an ENE-WSW (75°)
orientation, that coincides pro-parte with the South Canal of the Silala springs – is
modeled in the middle of the Silala Ignimbrite [Bol] and the Silala Grande (Bol) hill
lava” (BR, Vol. 4, p. 106). Its trace towards the East is dextrally displaced by another
system or transversal lineament of NW (300°) direction at the level of the lavas of Cerro
Torito, (Figure 11A). For the Silala-Llancor lineament, a sinistral displacement was
determined (BR, Vol. 4, p. 106), in part, using satellite images and aeromagnetic
geophysics. They indicate this lineament may have some influence on the upwelling of
water in Bofedales Sur (Orientales) (BR, Vol. 4, p. 106).
- Change in the course of the river
when crossing the dacitic lavas
0
M'svd· .
0.5
Kilometers
Mercator Projection, WGS 84
1.5
222
Annex XVI
26
We have the following comments:
1.- In our opinion, this lineament does not correspond to the rectilinear alignment of any
geological element (eg. volcanic emission centers, water drainage systems, escarpments,
etc.) (Figure 11 A). Its layout appears to have been chosen to coincide with and hence
justify the groundwater springs of Bofedales Sur (Orientales). Its “trace”, which would
pass between the lavas of the Silala Grande (Volcán Apagado) and Silala Ignimbrites
(Bol), is not a tectonic feature, and there is not a structural escarpment inclined 45° to
the North (BR, Vol. 4, p. 102). In this area, there is a contact between the ignimbrites
and the front of an andesitic lava with a lobed face (Figure 11 B). The escarpment
corresponds to the end of the andesitic lava flow, whose morphology is sinuous or
lobed, far from being rectilinear as would be expected by the presence of a fault (Figure
11 B). In addition, it is mentioned that this lineament is displaced, in the dextral sense,
by a NW fault. That is based on the supposed displacement between the Cerro Torito
lavas and the lavas of the Silala Grande (Volcán Apagado). However such a
displacement is not real, because the lavas of these hills have very different ages:
5.8 Ma in Cerro Torito lavas (Almendras et al., 2002) and 1.7 Ma for Silala Grande
(Volcán Apagado) lava flows. Thus, this displacement caused by this supposed
structure, is incorrect. The structure does not exist so there can be no displacement.
Annex XVI
223
27
Figure 11. Layout of the Silala-Llancor lineament (A) and its supposed control over Bofedales
Sur (Orientales), displaced dextrally by the NW-SE structure, which uses very different ages of
rocks as displacement reference. The lobed end of Pleistocene lava flows (B) that is interpreted
as an escarpment fault by Bolivian geologists.
224
Annex XVI
28
2. - On a local scale, the Bolivian geologists suggest that the sinistral movement of the
“Silala-Llancor fault” is supported by fractures in the Cerro Torito and Silala Grande
(Volcán Apagado) lava flows. The Bolivian geologists established that in the Cerro
Torito lavas there are tension fractures of NE-SW trend (15 to 35 degrees) arranged
obliquely to the Silala-Llancor lineament forming an angle inferior to 35 degrees (BR,
Vol. 4, p. 103). In the Silala Grande (Volcán Apagado) lava flows, tension fractures
have a similar orientation (BR, Vol. 4, p. 103). The orientation of these tension fractures
involves a tectonic maximum principal stress σ1- oriented NE-SW. However, it is
described that in Silala Grande (Volcán Apagado) lavas there are reverse faults (only 6
inverse faults and 23 unidentified faults) of general orientation ~ N36-38°E / ~75-80°SE
(BR, Vol. 4, p. 95). For this average plane of reverse faulting a maximum principal
stress σ1 oriented NW-SE is required, which would generate tensional fractures or
tensional fault(s) in the NW-SE direction, almost 90° from the tension fractures
observed in Silala Grande (Volcán Apagado) and Cerro Torito lava flows, which
supposedly justify a sinistral movement along Silala-Llancor lineament.
Furthermore, for structural Domain 1 (BR, Vol. 3, p. 260) the maximum principal stress
σ1 determined for the Bofedales Sur (Orientales) area is oriented ENE-WSW,
generating a dextral fault in a NE-SW direction. As determined by the Bolivian
geologists this would be a non-extensional fault. The information provided for the
interpretation of the kinematics of the Silala-Llancor lineament is contradictory and is
not compatible with a sinistral movement for this proposed structure.
3.- To define the trace of the Silala-Llancor lineament at regional scale, a map of total
magnetic intensity reduced to the local pole, first derivative, is used (BR, Vol. 4, p. 118)
(Figure 12). This magnetic map is questionable for the following reasons:
(i) It is indicated that it is a magnetic map processed with the first derivative, but in
the scale of intensities it has magnetic field units in (nT). If it were the correct
scale the units should be nT /m or nT /km.
(ii) The Bolivian report (BR, Vol. 4, p. 118) does not present information about the
spacing, height and orientation of main flight lines. This information is
Annex XVI
225
29
fundamental, since the patterns of anomalies can be caused by the effect of the
direction of flight and not necessarily indicate a real geophysical anomaly. The
flight height is also important to know in order to establish the depth range of
the anomalies (> flight height> depth of the anomaly, and vice-versa). Due to the
attenuation of magnetic field anomalies with altitude, it may not be possible to
provide information to the required scale for recognition of important structures.
(iii)The map presents a marked trend E-W to ENE-WSW, which could reflect a
flight direction and not a real anomaly. (Note that the magnetic anomalies cross
the international boundary in an approximate EW to WNW direction, which
suggests that the direction of the flight line could have the same path and not a
path, for example, in a N-S direction.)
The magnetic anomaly used to define the trace of the Silala-Llancor lineament is more
consistent with the clearer definition of the southern segment of the Pastos Largos
caldera boundary, because this lineament is not clearly traceable beyond the limits of
this caldera (Figure 12). The magnetic anomalies in the area of the springs of the Silala
River could be explained, alternatively, by the presence of lavas and andesitic volcanic
edifices of the Pleistocene age and not a structure. For this it is essential to know the
flight height of the data collection, in order to know if these anomalies are deep or
shallow, however this information was not presented.
226
Annex XVI
30
Figure 12. Total magnetic intensity map local pole reduced, first derivative (BR, Vol. 4, p. 118).
Note that the magnetic information traverses the international border (solid yellow line), which
infers a possible E-W to ENE-WSW flight direction (uninformed data), thus favorably
conditioning the anomaly trend of this map. For clarity, yellow highlighting has been applied to
the international border, Silala-Llancor Lineament, and edge of the Pastos Largos Caldera.
Grey highlighting has been applied to the borders of Area 1, Area 2, and Area 3, where Area 3
is equivalent to the hydrological catchment area and Area 1 encompasses the Orientales and
Cajones wetlands.
3.2.3 Conclusions
The main lineaments in the near Silala River area are markedly oriented to the NW-SE,
followed by a secondary NE-SW trend and, subordinately a N-S trend (Figure 13). The
main and objective geological elements to define these lineaments are the dispositions
of eruptive centers (Sellés and Gardeweg, 2017; Tibaldi et al., 2017), and none of these
agree with the orientation of the regional structures proposed in the Bolivian technical
reports (Figures 13 and 14).
M~neticlnt t mity
oT
IUFEIUNCES
~:-=.7 lnt~natlooal...boundary
Regional structures
.L.L ..... .-.-... .. , .....
Area
O A,eal
0 Au:a2
D Araaa
~ I
DIREMAR
Annex XVI
227
31
Figure 13. Regional lineaments located in the vicinity of the Silala River. Yellow label added.
Those are objectively supported, by lineament of eruptive centers (Sellés and Gardeweg, 2017).
.-= =-=-.a.--=·-:.-.-•-=·-----
-=..===:--= ~:===-.--
ESQUEMA MORFOESTRUCTURAL
c:J Area AscotAll-Cerro lnacaliri
~ Sec1or Complejo vo1can100 Cordon lnacalm
C:J Sierra t.l~ M~dio
~ Depres1on del rio Loa.
- c~"hU:J6~ol\~~t~:ci~:i~:-~e~~:~8~1=i~c8a~~~!
2 Con:16n vok:an:co Araral-4scotan-Barrancane
3 Cordhn volr.An:co Azufre-A9ui1L1cho-Apach~la
4 Volcanos Son Pedro-son PE!.blo
CJ
5 Con:16n cerros Colorado-Lallal•Colana
6 GralJ,;m h1a1.-&liri
Depresiones in1ermontana:1 de la Cordillera de ros Andes
7 Salar de Azc0(3n
8 Quebrada Polapi
9 Ouebrada Perdiz
1 O Rios San Pedro y Silala
--- Fala geo!6gica
--1--1-- Fala normal
- - - Al:n~c1mier1to d~ c1:mtros volcan cos * Centro de emisi6n \'OIC8niea
- • • - L1ml1e Internacional
'f- _.+-tT
- --'t-· ~ ---~:

• '''l\"""·' l" .. ,
228
Annex XVI
32
Figure 14. Structural map around Silala River area with main Neogene-Quaternary faults and
folds (Tibaldi et al., 2017). Yellow label added.
.\ lihcldi e• al ,'TtttiJnqJT:xics699 (1017; )fi-41
Annex XVI
229
33
3.3 Chile’s interpretation of the geological deformation in the Silala River area
In order to better understand the errors in Bolivian Structural geological interpretations
it is necessary to understand Chile’s knowledge and interpretations from recent
geological mapping in the Silala River area in Chile.
The most specific deformation history recorded in the Silala River area corresponds to
the activity of the Cabana reverse fault, located in Chilean territory. This structure, from
N-S to NNW-SSE orientation, is not exposed, but is inferred by the alignment of water
drainages and by the deformation of adjacent units, tilting to the East (11°) in both the
Cabana Ignimbrite (Chi) (4.1 Ma) as well as the dacitic lavas of 2.6 Ma
(SERNAGEOMIN, 2017) that overlie it. This deformation does not affect the Silala
Ignimbrite (Chi), which seals or covers its trace and fills depressions formed by
subsidiary normal faults that accommodate the rise and rotation in the deformation front
(Figure 15). This deformation is located in the time period between 2.6 and 1.6 Ma
(Lower Pleistocene).
230
Annex XVI
34
Figure 15. Pleistocene deformation in the Silala River area, represented by Cabana reverse
fault activity (Blanco and Polanco, 2018).
GEO.OJVO,T>C-..--...--ClMl.ll ~-:- _- ~7 ,
ll_ :[ 111,
I
Ii
- - -
-=------
,,
I•
l= ............... ~ I . , 10UUU CHI~~,. ... ~ .... 1
'
N-S normal fault system (2.6-1.6 Ma), \ Dacitic lava
morphologically is "sofr flexure \ (2.6 Ma)
Pliic Andesitic t~ff (1.6 Ma) \ Pslvd Plii
Plus Pliis \
-------=----~- I , ~ ... -;+-~ -,~">-
•--- -c--P--lli-i-c-~~ """l '.:-,-.-,-:,,: , : ;:-:-•~ ;-:-·-.,- ~-~ - l I ~~ '','' ' ., '.',1'
/,', - ' - __.. ._...,.\- -" ,. .-. ' I ~1 1I~ Msvd __ _,.- ;;---; ,._ -~ ,-,,.._ - -- __,_. ,. ~ ~- YJ
Msvd SCHEMATIC STRUCTURAL MODEL FOR REVERSE
FAULT CONTEMPORARY WITH NORMAL FAULT
Annex XVI
231
35
3.3.1 The Uyuni-Khenayani Fault System
This system “corresponds to an east vergent thrust zone, which separates the western
sector of the southern Altiplano from the Lipez Basin, a Cenozoic intramontane basin
located between that area of thrusts and the converging eastern system, Falla San
Vicente [SVFZ on Figure 16]. The upper block of the Uyuni-Khenayani thrust system
involves an Ordovician and Silurian-Devonian basement; which folded, fractured and
elevated, supports some Mesozoic remnants and an incomplete coverage of Cenozoic”
(Martínez et al., 1994).
232
Annex XVI
36
Figure 16. Uyuni-Khenayani fault system, located 31 km to ENE of the Silala River basin
groundwater catchment (Elger, 2003). The abbreviation KUFZ refers to the Uyuni-Khenayani
Fault System used in this report.
69"W 68-W
·~
CHILE f BOLIVIA
AP EC SA
studied section
CENTRAL ANDES AT 21°S
6TW
"' .. rt\
l 11
c, I
"\ j1
01 <; I
g\ I
>1
Alo 't ia
Safar de
.5 Uyuni
N
~
BOLIVIA
2o·s
(/1
"-
San Pablo
de Lipez ---·
ARGENTIN
Annex XVI
233
37
“The structural complexity of the upper hanging wall of the Uyuni-Khenayani crustal
thrust system (UKFS) results from the arrangement of Andean deformation to a
substratum previously deformed by Hercynian tectonics and then subdivided into
smaller, scaled and eroded blocks during the Upper Cretaceous. The successive
deformations, synsedimentary in the Tertiary, reactivated the paleo-structures and
caused the propagation, to the east, of a system of thrusts and associated folds,
accompanied by superficial landslides” (Martínez et al., 1994).
In several studies it has been documented that the UKFS was active between the
Oligocene and Middle Miocene (27-10 Ma) (Sempere et al., 1990; Martínez et al., 1994;
Elger, 2003; Elger et al., 2005). This deformation would have finished between 11 and
10 Ma when its trace was sealed by subhorizontal tuffs and dacitic lavas dated at 10±0.3
Ma and 11±0.5 Ma, respectively. (Silva-González, 2004 in Elger et al., 2005). The
Upper Miocene, sinistral faults, of NW-SE orientation, tear the UKFS (Martínez et al.,
1994).
On the other hand, some authors indicate that the UKFS extends beyond Bolivia and
into Chile and is related to the system of thrusts of the Cordillera de Domeyko - Salar de
Atacama in Chile, with similar structural characteristics (Buddin et al., 1993; Martínez
et al., 1994). In the Cordillera de Domeyko - Salar de Atacama area, tectonic activity
has been documented in the Upper Oligocene with normal faults and a system of reverse
faults in the Upper Miocene, including salt diapirism during Quaternary (Mpodozis et
al., 2000; Henríquez et al., 2014). Such an extension of the fault system would not pass
through the Silala River groundwater catchment (Figure 16).
At item 9.1 “Regional Geology of Bolivia, chapter 9, Conclusions and
recommendations” (BR, Vol. 3, p. 397), the Bolivian authors write the following:
“The area of the Silala Springs was geologically formed during the Upper Miocene (7.5
to 8 Myr), when the Silala Ignimbrites were deposited. The latter were strongly
fractured and jointed by tectonic movements caused by the Khenayani Faulting system.”
234
Annex XVI
38
There is clearly a mistake in this official translation because there are two very
important omissions that change the sense of exposed ideas. The omissions are: the age
“of 27-17 Ma” of the Khenayani Fault System and the phrase “"that is, before the
ignimbrite deposition”.
A literal translation of the original Spanish document (SERGEOMIN, 2003) is:
“The Silala Ignimbrites are deposited during the Upper Miocene (between 8 to 7.5 Ma)
(A).
These rocks are strongly fractured and diaclased by the tectonic movements caused by
the Khenayani Fault System of 27-17 Ma, that is, before the ignimbrite deposition (B).”
We have the following comments:
(1) The oldest age obtained in the Silala Ignimbrites (Bol), by Bolivia is 6.6±0.5 Ma
(K-Ar in biotite; BR, Vol. 4, p. 115), so the Bolivian statement (A), above, is
incorrect.
(2) The assertion (B) is a contradiction. It is not possible that an older tectonic
process (27-17 Ma) can affect younger rocks. The fracturing in the Silala
Ignimbrites (Bol) must have been caused by an event after the deposition of these
ignimbrites, i.e., younger than 6.6 Ma.
(3) It would appear that the incorrect age of 7.8±0.3 Ma attributed to the Silala
Ignimbrites (Bol) has been used to justify the proposed faults as active structures of
the Uyuni-Khenayani Fault System, even though this fault system had ceased to be
active more recently than 10-8 Ma.
3.3.2 Ratio of deformation and crustal depth
In relation to fracturing found in the Silala Ignimbrite (Chi), it is most probable that
these structures have been formed by cooling or gravitational adjustments rather than by
tectonic effects. Indeed, much experimental data in rocks show that in the upper crust
the differential stress due to the tectonic forces increases linearly from the surface,
Annex XVI
235
39
where it has a zero value, with depth (Brace and Kohlstedt, 1980; Kohlstedt et al., 1995;
Townend, 2006; Scholz, 2019) (Figure 17).
Figure. 17. Graph showing the linear increase of the deformation stress with the depth in the
crust, with a value of zero at the earth's surface (Scholz, 2019).
Since the Silala Ignimbrite (Chi) constitutes a thin sheet on the surface of the land, with
a free face (the alluvial cover is not considered because it is very thin), it is very
unlikely that it is affected by tectonic stresses and, therefore, the family of fractures that
affect it are most likely to be cooling and/or gravitational fractures, and cannot be
attributed to a regional structural system such as the UKFS, which also was most active
over the Oligo-Miocene period, well before the dated Silala Ignimbrite (Chi) or the
Cabana Ignimbrite (Chi) was deposited, or the Silala Ignimbrites (Bol).
20
SHEAR STRENGTH CMPo>
r-....;;•00,=..---=""':.=----='°":,:.-....;;-,;:.--;'°°'
PLASTIC Fl.OW LAW, WET OUARTZITE
236
Annex XVI
40
4. CONCLUSIONS
1. The so-called Silala Ignimbrites (Bol), correspond to several pyroclastic flows of
contrasting chemical composition, radiometric age and stratigraphic position. This
Bolivian unit is composed of three pyroclastic flows, two of them of dacitic-rhyolitic
composition, of 6.6 Ma, although we suspect that this date is incorrect (see section
2.1.1) and 3.2 Ma, and a third of andesitic composition, of 1.6 Ma (Chilean date). The
latter corresponds to the Silala Ignimbrite (Chi) that overlaps unconformably onto the
ignimbrite of 6.6 Ma. found in Bofedales Sur (Orientales) and that in Chilean territory is
deposited on top of the Cabana Ignimbrite of 4.12 Ma. (SERNAGEOMIN, 2017).
Bolivian ignimbrites of 6.6 and 3.2 Ma have not been recognized in the area of the
Silala River basin in Chilean territory.
2. The Bolivian affirmation that Silala Chico (Cerrito de Silala) volcanic dome intrudes
the Silala Ignimbrites (Bol), which was dated at 6.04±0.07 Ma (biotite), is not correct.
The Silala Ignimbrite (Chi), dated 1.6 Ma covers in onlap the deposits of this volcanic
dome at its base.
3. As a general conclusion, the unit Silala Ignimbrites (Bol) is assigned, erroneously, to
the Upper Miocene (7.8 Ma). The supposed structures that affect it and that control the
upwelling of groundwater in the springs of Silala River (e.g. the proposed Silala Fault)
are attributed to the activity of the Uyuni-Khenayani Fault System, a structural system
which was active until ca. 10 Ma and, furthermore, is 31 kilometres to ENE away from
the Silala River area. We know that the ignimbrite units that are exposed in the Silala
River ravine correspond to Silala Ignimbrite (Chi) unit, dated at 1.6 Ma. It would appear
that the incorrect age attributed to these rocks has been used to justify the proposed
faults as active structures of the Uyuni-Khenayani Fault System, even though this fault
system had ceased to be active more recently than 10-8 Ma.
4. The incorrectly interpreted regional faults in the area of the Bofedales Sur
(Orientales) and Bofedales Norte (Cajones) springs that feed the Silala River, are
Annex XVI
237
41
conveniently located where the groundwater sources are located. The interpreted data
for these proposed faults are found in four structural domains. Structural domains 2 and
3 are of a different nature to domains 1 and 4. That is, domains 2 and 3 are shear or
compression fractures, which do not conduct water because these types of fractures are
closed. However, this criterion has not been considered for the Bofedales Norte
(Cajones) springs, where Bolivian geologists interpret the existence of a NE-SW dextral
fault through which groundwater is conducted and emerges. This structure corresponds
to a shear fracture or closed fracture, therefore there should be no groundwater springs
there. This is a clear contradiction.
5. The family of fractures that affect the Silala Ignimbrite (Chi), 1.6 Ma, which is
considered as a thin exposed sheet on the surface of the land, correspond to cooling
fractures and/or gravitational adjustments during and soon after deposition, and they
cannot be attributed to the effects of crustal tectonics, nor to the regional structural
system such as the Uyuni-Khenayani Fault System, which was active between the
Oligocene and the Upper Miocene, ending its activity ca. 10-8 Ma.
6. The normal faults of the principal structural trend in the Silala River area are of NWSE
orientation (125 to 305 degrees) and these have been related by Bolivia to the
Inacaliri Graben. However, according to the determined stress model, particularly for
Domain 4, normal faults should have a WNW-ESE orientation (275 to 95 degrees). This
suggests that the Graben Inacaliri is a structure linked to the magmatic chambers of the
effusive centres and not to a result of deep and ancient regional faults.
7. The Silala-Llancor lineament has been used by Bolivia as a geological artefact related
to the upwelling of water in the Bofedales Sur (Orientales) area. The presented data
contradict the kinematics deduced for this structure and the Bolivian model of the
orientation of the regional stress field. The fault escarpments supposedly associated with
it correspond to fronts of lobate lava flows.
8. The magnetic data presented by Bolivia to justify the regional lineaments are not
valid, since the basic information is not presented (height of flight, direction of flight
238
Annex XVI
42
lines, spacing of flight lines), which would allow correction for geophysical artefacts
conditioned by the direction of the flight lines and depth of investigation.
9. The only evidence of compressive deformation registered in the area is documented
between 2.6-1.6 Ma (Lower Pleistocene), and is linked to the activity of the Cabana
Fault, in Chilean territory, and is not linked to an Oligo-Miocene deformation as
proposed by the Bolivian geologists.
10. It is stated that the Silala River ravine was carved by erosive activity of the glacial
ice through a Silala fault trace, which is attributed to the Uyuni-Khenayani Fault System
activity. It has been clearly established that the origin of the Silala River ravine has been
excavated by river action during the Upper Pleistocene and 8,400 cal. year BP, and that
the ice action had no part in the formation of the ravine (SERNAGEOMIN, 2017;
Latorre and Frugone, 2017). It should be noted that glacial activity never generates
valleys as narrow as 80 meters (the ravine of the Silala River to SW of Bofedales Norte
(Cajones)). In the Silala River area, where vestiges of glacial activity are found, the
valleys formed by the action of the ice and that descend from the volcanic edifices have
dimensions of 480 to 740 metres wide, far greater than the channel of fluvial origin of
the Silala River.
11. This review of several Bolivian technical documents has identified many errors in
the mapping of the ignimbrite units in Bolivia. It demonstrates that the contact
relationships and stratigraphic position proposed by Bolivia have been mistaken, data
have been ignored, and the Bolivian mineralogical description of the ignimbrites is
confused and contradictory. They have been grouped into a single age-bounded unit, yet
there are published age dates that indicate they can be separated into at least two
separate units of distinctly different ages.
Annex XVI
239
43
5. ACKNOWLEDGEMENTS
The authors thanks to colleague Andrew J. Tomlinson, PhD in structural geology,
SERNAGEOMIN geologist, for his contributions to the discussion of faults and
structures in general as well as providing specialized literature in the area of crustal
deformation. We also thank the librarian of SERNAGEOMIN, Mrs. María Teresa
Cortés, who provided us with access to the technical bibliography.
240
Annex XVI
44
6. REFERENCES
Almendras, A.O., Balderrama, Z.B., Menacho, L.M., and Quezada, C.G., 2002. Mapa
geológico hoja Volcán Ollagüe, escala 1:250.000. Mapas Temáticos de Recursos
Minerales de Bolivia. SERGEOMIN, Bolivia.
Baker, M.C.W. and Francis, P.W., 1978. Upper Cenozoic volcanism in the central
Andes - ages and volumes. Earth and Planetary Science Letters, 41 (2), 175–187.
Blanco, N. and Polanco, E., 2018. Geology of the Silala River Basin, Northern Chile.
Servicio Nacional de Geología y Minería (SERNAGEOMIN) (Chile’s Reply, Vol. 3,
Appendix C to Annex XIV).
Brace, W.F. and Kohlstedt, D.L., 1980. Limits on lithospheric stress imposed by
laboratory experiments. Journal of Geophysical Research: Solid Earth, 85 (B11), 6248-
6252.
Buddin, T., Stimpson, I. and Williams, G., 1993. North Chilean forearc tectonics and
Cenozoic plate kinematics. Tectonophysics, 220, 193-203.
Danish Hydraulic Institute (DHI), 2019. Analysis and assessment of Chile’s reply to
Bolivia’s counter-claims on the Silala Case. (Bolivia’s Rejoinder, Vol. 5, Annex 24).
Elger, K., 2003. Analysis of deformation and tectonic history of the Southern Altiplano
Plateau (Bolivia) and their importance for plateau formation, Phd Thesis. Scientific
Technical Report STR; 03/05, Potsdam: Deutsches GeoForschungsZentrum GFZ.
Elger, K., Oncken, O. and Glodny, J., 2005. Plateau-style accumulation of deformation:
Southern Altiplano. Tectonics, 24 (4), TC4020.
Gimeno, D., Díaz, N., García-Vellés, M. and Martínez-Manent, S., 2003. Genesis of
botton vitrophyre facies in rhyolitic pyroclastic flow: a case study of syneruptive glass
weldind (nuraxu unit, Sulcis, SW Sardinia, Italy). Journal of Non-Crystalline Solids,
323, 91-96.
Henríquez, S., Becerra, J. and Arriagada, C., 2014. Geología del Área San Pedro de
Atacama Geológica, Región de Antofagasta. Servicio Nacional de Geología y Minería,
Carta Geológica de Chile, Serie Geología Básica 171, 1 mapa, escala 1:100.000.
Santiago.
Kohlstedt, D.L., Evans, B. and Mackwell, S.J., 1995. Strength of the lithosphere:
Constraints imposed by laboratory experiments. Journal of Geophysical Research: Solid
Earth, 100 (B9), 17587-17602.
Annex XVI
241
45
Latorre, C. and Frugone, M., 2017. Holocene sedimentary history of the Río Silala
(Antofagasta Region, Chile). (Chile’s Memorial, Vol. 5, Annex IV).
Le Maitre, R.W., 2002. Igneous Rocks. A Classification and Glossary of Terms.
Recommendations of the International Union of Geological Sciences Subcommission on
the Systematics of Igneous Rocks, Cambridge University Press, Cambridge, England.
Lohmar, S., Robin, C., Gourgaud, A., Clavero, J., Parada, M.A., Moreno, H., Ersoy, O.,
López-Escobar, L. and Naranjo, J.A., 2007. Evidence of magma-water interaction
during the 13,800 years BP explosive cycle of the Licán Ignimbrite, Villarrica volcano
(southern Chile). Revista Geológica de Chile, 34 (2), 233-247.
Martínez, C., Soria, E., Uribe, H., Escobar, A. and Hinojosa, A., 1994. Estructura y
evolución del altiplano suroccidental: el sistema de cabalgamientos de Uyuni-
Khenayani y su relación con la sedimentación terciaria. Revista Técnica de Yacimientos
Petrolíferos Fiscales Bolivianos, 15 (3-4), 245-264.
Mpodozis, C., Blanco, N., Jordan, T. and Gardeweg, M.C., 2000. Estratigrafía y
deformación del Cenozoico Tardío en la región norte de la Cuenca del Salar de
Atacama: la zona de Vilama-Pampa Vizcachitas, IX Congreso Geológico de Chile,
Puerto Varas.
Ríos, H., Baldellón, E., Mobarec, R. and Aparicio, H., 1997. Mapa Geológico Hojas
Volcán Inacaliri y Cerro Zapaleri, escala 1:250.000. Mapas Temáticos de Recursos
Minerales de Bolivia, SGM Serie II-MTB-15B. SERGEOMIN.
Scholz, C.H., 2019. The mechanics of earthquakes and faulting. Cambridge University
Press, Cambridge, England.
Sellés, D. and Gardeweg, M., 2017. Geología del área Ascotán-Cerro Inacaliri, Región
de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile,
Serie Geología Básica 190, 1 mapa escala 1:100.000. Santiago. (Chile’s Memorial,
Vol. 6, Appendix G).
Sempere, T., Herail, G., Oller, J. and Bonhomme, M., 1990. Late Oligocene-early
Miocene major tectonic crisis and related basins in Bolivia. Geology, 18, 946-949.
SERGEOMIN (National Service of Geology and Mining), 2003. Study of the Geology,
Hydrology, Hydrogeology and Environment of the Area of the Silala Springs. (Bolivia’s
Rejoinder, Vol. 3, Annex 23.5, Appendix a).
SERGEOMIN (National Service of Geology and Mining), 2017. Structural Geological
Mapping of the Area Surrounding the Silala Springs. (Bolivia’s Rejoinder, Vol. 4,
Annex 23.5, Appendix b). NB: Annex C is submitted as Appendix A to the present
report. Annex D is submitted as Appendix B to the present report.
242
Annex XVI
46
SERNAGEOMIN (National Geology and Mining Service), 2017. Geology of the Silala
River Basin. (Chile’s Memorial, Vol. 5, Annex VIII).
Silva-González, P. (2004), Der su¨dliche Altiplano im Tertia¨r: Sedimenta¨re
Entwicklung und tektonische Implikationen, Ph.D. thesis, Freie Univ., Berlin, Germany.
Tibaldi A., Bonali, F. and Corazzato, C., 2017. Structural control on volcanoes and
magma paths from local- to orogen-scale: The central Andes case. Tectonophysics, 699,
16–41.
Tomás Frías Autonomous University (TFAU), 2018. Hydrogeological Characterization
of the Silala Springs. (Bolivia’s Rejoinder, Vol. 4, Annex 23.5, Appendix c).
Townend, J., 2006. What do faults feel? Observational constraints on the stresses acting
on seismogenic faults. Washington DC American Geophysical Union Geophysical
Monograph Series, 170, 313-327.
Urquidi, F., 2018. Technical analysis of geological, hydrological, hydrogeological and
hydrochemical surveys completed for the Silala water system. (Bolivia’s Rejoinder,
Vol. 3, Annex 23.5).
Annex XVI Appendix A
243
CONVENIO DE COOPERACIÓN INTERINSTITUCIONAL Y
CONTRATO DE CONSULTORIA DIREMAR - SERGEOMIN
ANEXO C
RESULTADOS DE ANÁLISIS DE
LABORATORIO
APPENDIX A
I'
/ \
SERGE~ MIN
$1EIRl.¥'11C~ ~lc<OJILOODC<Ol ~Dlli!IIEIRl.<Ol
ln_
71 I
ln
·c _
__J
- I
~
I'
, I
I
I
J
_J
-----Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
244
Annex XVI Appendix A
N° ESTE (UTM) NORTE
(UTM)
ELEVACION
(m.s.n.m)
CODIGO
MUESTRA
ENVIADOS
LABORATORIO NOMBRE DE LA ROCA RESULTADO PETROGRÁFICO RESULTADO MINERAGRAFICO
(Asociaciones Minerales)
1 601181 7565996 4457 7801 SERGEOMIN LAVA INTERMEDIA ANDESITA BIOTITICA
2 604895 7567297 4541 7802 SERGEOMIN TOBA VITRO CRISTALINA DACITA BIOTITICA
3 605449 7566078 4602 7803 SERGEOMIN LAVA INTERMEDIA ANDESITA PIROXENICA
4 608499 7567690 4595 7804 SERGEOMIN LAVA INTERMEDIA ANDESITA BIOTITICA
5 609737 7568016 4597 7805 SERGEOMIN LAVA ACIDA DACITA BIOTITICA
6 606789 7561214 5649 7806 SERGEOMIN LAVA INTERMEDIA ANDESITA PIROXENICA
7 606758 7562878 5041 7807 SERGEOMIN TOBA CRISTALO VITREA IGNIMBRITA ANDESITICA Magnetita-Hematita-Limonita
8 607192 7567230 4601 7808 SERGEOMIN TOBA CRISTALO VITREA IGNINBRITA ANDESITICA Magnetita-Hematita-Limonita
9 600816 7566953 4485 7809 SERGEOMIN LAVA INTERMEDIA ANDESITA BIOTITICA
10 600661 7567938 4547 7810 SERGEOMIN LAVA BASICA BASALTO PIROXENICO
11 600166 7569312 4671 7811 SERGEOMIN TOBA LITICA INTERMEDIA ANDESITA PIROXENICA
12 599317 7568831 4759 7813 SERGEOMIN TOBA SOLDADA INTERMEDIA IGNIMBRITA ANDESITICA
13 603126 7565890 4422 7814 SERGEOMIN TOBA INTERMEDIA ANDESITA HORNBLENDICA
14 603483 7564079 4558 7816 SERGEOMIN LAVA INTERMEDIA ANDESITA PIROXENICA
15 606447 7562228 5165 7817 SERGEOMIN LAVA INTERMEDIA ANDESITA PIROXENICA
16 606447 7562228 5165 7818 SERGEOMIN LAVA INTERMEDIA ANDESITA PIROXENICA
17 607792 7564663 4802 7820 SERGEOMIN LAVA INTERMEDIA ANDESITA PIROXENICA
18 601256 7572117 5181 7821 SERGEOMIN LAVA INTERMEDIA ANDESITA HORNBLENDICA
19 601256 7572117 5181 7822 SERGEOMIN LAVA INTERMEDIA ANDESITA HORNBLENDICA
20 606578 7568225 4555 7824 SERGEOMIN VOLCANO SEDIMENTARIA ARCILLITA
21 600813 7566226 4367 7702 SERGEOMIN TOBA CRISTALO VITREA IGNINBRITA ANDESITICA Hematita-Magnetita-Calcopirita Limonita
22 600973 7566397 4395 7706 SERGEOMIN TOBA CRISTALO VITREA IGNINBRITA ANDESITICA Hematita-Magnetita-Calcopirita Limonita
23 604396 7576010 4522 7708 SERGEOMIN TOBA IGNIMBRITA ANDESITICA
24 601942 7564641 4606 7712 SERGEOMIN LAVA ACIDA DACITA BIOTITICA
25 602052 7564099 4756 7713 SERGEOMIN LAVA INTERMEDIA ANDESITA BIOTITICA CUARZOSA
26 606242 7568071 4593 7716 SERGEOMIN TOBA VITRO CRISTALINA DACITA BIOTITICA
27 600879 7566738 4437 7717 SERGEOMIN TOBA VITRO CRISTALINA DACITA BIOTITICA
28 603557 7567635 4500 7720 SERGEOMIN LAVA INTERMEDIA ANDESITA CUARZOSA
29 605051 7569399 4580 7721 SERGEOMIN TOBA VITRO CRISTALINA DACITA BIOTITICA
N° ESTE (UTM) NORTE
(UTM)
ELEVACION
(m.s.n.m)
CODIGO
MUESTRA
ENVIADOS
LABORATORIO NOMBRE DE LA ROCA RESULTADO PETROGRÁFICO RESULTADO MINERAGRAFICO
(Asociaciones Minerales)
30 611232 7567663 4626 7722 SERGEOMIN TOBA VITRO CRISTALINA DACITA BIOTITICA
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS
HIDRICOS INTERNACIONALES MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
TABLA RESUMINDA DE RESULTADOS DE LABORATORIO
SERGE~ MIN
~Gll!OII...CcrldcclllllHI~
-~·. * * * * .. *
~ e_......
~ :::::
DIREMAR
Annex XVI Appendix A
245
31 611225 7567577 4640 7723 SERGEOMIN TOBA VITRO CRISTALINA DACITA BIOTITICA
32 609442 7569033 4630 7726 SERGEOMIN LAVA ACIDA DACITA DE BIOTITA Y HORBLENDA
33 601557 7573260 4834 7727 SERGEOMIN LAVA INTERMEDIA ANDESITA BIOTITICA OXIDADA
34 605330 7574972 4741 7729 SERGEOMIN LAVA INTERMEDIA ANDESITA BIOTITICA OXIDADA
35 602573 7575219 4607 7732 SERGEOMIN LAVA INTERMEDIA ANDESITA BIOTITICA OXIDADA
36 610800 7562642 4647 7825 SERGEOMIN LAVA INTERMEDIA ANDESITA PIROXENICA
37 619857 7562113 5107 7827 SERGEOMIN LAVA ACIDA DACITA PIROXENICA
38 608546 7556911 5420 7830 SERGEOMIN LAVA INTERMEDIA ANDESITA HORNBLENDICA
39 598653 7567307 4609 7833 SERGEOMIN LAVA INTERMEDIA ANDESITA HORNBLENDICA
40 620023 7566597 4864 7737 SERGEOMIN LAVA INTERMEDIA ANDESITA PIROXENICA
41 595872 7569264 5631 7743 SERGEOMIN LAVA INTERMEDIA ANDESITA HORNBLENDICA
246
Annex XVI Appendix A
CONVENIO DE COOPERACIÓN INTERINSTITUCIONAL Y
CONTRATO DE CONSULTORIA DIREMAR - SERGEOMIN
RESULTADOS
ANÁLISIS DE PETROGRAFÍA
----
SERGE~ MIN
~lc!Rl.¥'11~0@ @IE@ILOOU~@ ~O~lc!Rl.@
I
l l
' ]
I I
b
I 1 •1
! '
1u~ r,-- ----J u
LJ
u
I'
\[ I
I
L. I
L:=::J
I
[_ <I
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236- Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix A
247
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen piroclástico (toba ignimbrítica) de composición intermedia,
muestra estructura bandeada o fluidal y textura porfídica de grano medio (>1 mm), donde se
observa una intercalación entre bandas lenticulares de color marrón y bandas de tono
negruzco, ambas muestran cristales de feldespatos blanquecinos, escaso cuarzo, piroxenos,
pómez alargadas y óxidos de hierro diseminados, rodeados por una pasta ferruginosa y vítrea,
con mayor presencia de hierro en las bandas negruzcas. La toba cristalo-vítrea presenta alto
grado de soldadura (ignimbrita), por lo que muestra elevada dureza y compactación, y también
es llamada toba soldada.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente muy reducido de la toba, presente en forma de cristales
anhedrales con bordes sub-angulosos, de hasta 0,5 mm de largo, muestran fracturas y
engolfamientos, también se presentan como fragmentos de bordes angulosos (Fig. 1).
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2 mm de largo, muestran maclas polisintéticas tipo Albita, y
combinada Albita-Carlsbad, con inclusiones de la pasta vítrea, corresponden a la variedad
Oligoclasa (An: 25), se hallan fracturadas y ligeramente orientadas (Fig. 1).
Clinopiroxenos.- Se observan en moderado porcentaje, fenocristales subhedrales de hábito
prismático y tabular de clinopiroxenos de tono pardo pálido, algunos con maclas polisintéticas,
alcanzan hasta 0,7 mm de largo y probablemente se tratan del tipo augita (Fig. 1).
Pasta.- La pasta de la toba es abundante y está conformada principalmente por óxidos de
hierro de tono marrón-rojizo del tipo limonita (ferruginosa), más abundante en las bandas
oscuras, junto a vidrio volcánico de tonalidad parda oscura que muestra textura masiva, y en
menor porcentaje por microlitos de plagioclasas, rodeando a los fenocristales (Fig. 1).
Pómez.- Se observan en reducido porcentaje, pómez blanquecinas de formas ovaladas y
alargadas con bordes irregulares, formados por esquirlas de vidrio volcánico, que alcanzan
hasta 3 mm de largo, contienen cristales de plagioclasas y minerales máficos muy oxidados.
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito subhedral, diseminados en la pasta también ferruginosa, que corresponderían a las
variedades hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 22 de Junio de 2016
Nº LAB: SGM-087/17 Muestra 7702.
1
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
248
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….…. 2-3 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….………..…….…...………... 28-30 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-5 %
Pasta (Óxidos de hierro y Vidrio volcánico)............…............................……. 53-55 %
Pómez (Vidrio volcánico)…………...............……………..……………...….….. 3-4 %
Óxidos de Hierro (Hematita y magnetita).…….……..………….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- La toba presenta una estructura bandeada o fluidal y textura porfídica
de grano medio (>1 mm), con pasta ferruginosa y vítrea de textura masiva, pómez y
diseminación de óxidos de hierro (Fig. 1).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una roca piroclástica (toba cristalovítrea
soldada) de composición intermedia, que corresponde a una Ignimbrita ANDESÍTICA.
Fig. 1. Muestra 7702, aumento 4x, polarizadores X. Toba Ignimbrítica Andesítica, con fenocristales
de plagioclasas (Pl), poco cuarzo (Qz), clinopiroxenos (CPx), pómez, y una pasta ferruginosa-vítrea.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
2
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
249
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen piroclástico (toba ignimbrítica) de composición intermedia,
muestra estructura bandeada o fluidal y textura porfídica de grano medio (>1 mm), donde se
observa una intercalación entre bandas lenticulares de color marrón y otras bandas de tono
negruzco, ambas muestran cristales de feldespatos blanquecinos, muy escaso cuarzo,
piroxenos, pómez alargadas y abundantes óxidos de hierro diseminados, rodeados por una
pasta ferruginosa y vítrea, con mayor contenido de hierro en las bandas negruzcas. La toba
cristalo-vítrea presenta alto grado de soldadura (ignimbrita), por lo que muestra elevada dureza
y compactación, y también es llamada toba soldada.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente escaso de la toba, presente en forma de cristales anhedrales con
bordes sub-angulosos, de tamaño inferior a 0,5 mm de largo, muestran fracturas y
engolfamientos, también se observan como fragmentos de bordes angulosos (Fig. 2).
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de fenocristales
subhedrales tabulares y prismáticos, de hasta 1,5 mm de largo, muestran maclas polisintéticas
tipo Albita, y combinada Albita-Carlsbad, con inclusiones de la pasta vítrea, corresponden al
límite entre los tipos Oligoclasa-Andesina (An: 30), se hallan fracturadas y orientadas (Fig. 2).
Clinopiroxenos.- Se observan en reducido porcentaje, fenocristales subhedrales de hábito
prismático y tabular de clinopiroxenos de tono pardo pálido, algunos con maclas polisintéticas,
alcanzan hasta 0,6 mm de largo y probablemente se tratan del tipo augita (Fig. 2).
Pasta.- La pasta de la toba es abundante y está conformada principalmente por óxidos de
hierro de tono marrón-rojizo del tipo limonita (ferruginosa), que es más abundante en las
bandas oscuras, junto a vidrio volcánico de tono pardo oscuro que muestra textura masiva, y en
menor porcentaje por microlitos de plagioclasas, rodeando a los fenocristales (Fig. 2).
Pómez.- Se observan en reducido porcentaje, pómez blanquecinas de formas ovaladas y
alargadas con bordes irregulares, formados por esquirlas de vidrio volcánico, que alcanzan
hasta 2,5 mm de largo, contienen micro-cristales de plagioclasas.
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito subhedral, diseminados en la pasta también ferruginosa, que corresponderían a las
variedades hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 23 de Junio de 2016
Nº LAB: SGM-088/17 Muestra 7706.
3
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
250
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….…. 1-2 %
Plagioclasas (Oligoclasa-Andesina) NaCaAl(Si3O8)………….……….………... 31-33 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-4 %
Pasta (Óxidos de hierro y Vidrio volcánico)............…............................……. 53-55 %
Pómez (Vidrio volcánico)…………...............……………..……………...….….. 2-3 %
Óxidos de Hierro (Hematita y magnetita).…….……..………….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- La toba presenta estructura bandeada o fluidal y textura porfídica de
grano medio (>1 mm), con pasta ferruginosa y vítrea de textura masiva, pómez y diseminación
de óxidos de hierro (Fig. 2).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una roca piroclástica (toba cristalovítrea
soldada) de composición intermedia, que corresponde a una Ignimbrita ANDESÍTICA.
Fig. 2. Muestra 7706, aumento 4x, polarizadores X. Toba Ignimbrítica Andesítica, con fenocristales
de plagioclasas (Pl), escaso cuarzo (Qz), clinopiroxenos (CPx), pómez, y una pasta ferruginosa-vítrea.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
4
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
251
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con superficies de
meteorización, composición ácida, muestra estructura holocristalina y textura porfídica de grano
medio (>2 mm), donde se observan cristales de feldespatos blanquecinos, escaso cuarzo,
biotita, anfíboles, piroxenos y óxidos de hierro diseminados, rodeados por una pasta de grano
muy fino, contiene agregados de calcita rellenando pequeñas cavidades de la roca, la cual
muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente moderado de la lava, presente en forma de fenocristales
anhedrales con bordes sub-redondeados de hasta 2,5 mm de largo, muestran fracturas y
engolfamientos, también se presentan como fragmentos de bordes sub-angulosos (Fig. 3).
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de fenocristales
subhedrales tabulares y prismáticos, de hasta 5 mm de largo, muestran zonación, maclas
polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción, corresponden a
la variedad Andesina (An: 35), se hallan fracturadas y ligeramente orientadas (Fig. 3).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
y euhedrales poligonales que alcanzan hasta 4 mm de largo, de color marrón oscuro por la
oxidación de sus bordes y planos de exfoliación, con inclusiones de plagioclasas.
Clinopiroxenos.- Se observan en reducido porcentaje, fenocristales subhedrales de hábito
prismático y de tono verdoso pálido, de hasta 1 mm de largo, se trata del tipo augita (Fig. 3).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales poligonales de
color marrón, se hallan reemplazados parcialmente por limonita, alcanzan hasta 3 mm de largo.
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas ligeramente orientados con textura afieltrada, y en menor porcentaje por óxidos de
hierro diseminados de tono marrón oscuro del tipo limonita y hematita (Fig. 3); también se
observan en escaso porcentaje micro-cristales de apatito de hábito prismático.
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita y
hornblenda, que corresponderían a las variedades hematita y limonita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 04 de Julio de 2017
Nº LAB: SGM-115/17 Muestra 7712.
5
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
252
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Calcita.- Se observan agregados anhedrales de calcita secundaria de grano fino y de color
blanquecino, rellenando pequeñas cavidades, mejor observables en la muestra de mano.
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 6-8 %
Plagioclasas (Andesina) NaCaAl(Si3O8)………….….……..…….…...………... 23-25 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 3-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Pasta (microlitos de plagioclasas)…………………............………….....….….. 50-52 %
Óxidos de Hierro (Hematita y limonita).…….……..…………………..…..….… 2-3 %
Calcita (CaCO3).…………………………………………………….…….…......... 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura holocristalina y textura porfídica de grano medio (>2
mm), con pasta microlítica de textura afieltrada y diseminación de óxidos de hierro (Fig. 3).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición ácida,
que corresponde a una DACITA Biotítica, ligeramente oxidada, contiene cavidades con calcita.
Fig. 3. Muestra 7712, aumento 4x, polarizadores X. Lava Dacítica, con fenocristales de
plagioclasas (Pl), cuarzo (Qz), clinopiroxenos (CPx) y pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
6
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
253
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con
superficies de meteorización, de composición ácida, muestra estructura hipocristalina y textura
porfídica de grano medio (>1 mm), donde se observan cristales de feldespatos, cuarzo, biotita
con orientación, pómez blanquecinas y óxidos de hierro diseminados, rodeados por una pasta
vítrea, muestra moderado grado de soldadura y de dureza.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente moderado de la toba, presente en forma de fenocristales
anhedrales con bordes sub-angulosos de hasta 2 mm de largo, muestran fracturas y
engolfamientos, también se presentan como fragmentos de bordes angulosos (Fig. 4).
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción, corresponden a la variedad
Oligoclasa (An: 25), se hallan también como fragmentos angulosos (Fig. 4).
Feldespato potásico.- Se observan en reducido porcentaje, fenocristales anhedrales y
subhedrales de feldespatos potásicos, sin maclas, de hasta 1,5 mm de largo (sanidina).
Biotita.- Se presenta en moderada proporción, como fenocristales subhedrales prismáticos y
euhedrales poligonales que alcanzan hasta 2 mm de largo, de color marrón oscuro por la
oxidación de sus bordes y planos de exfoliación, con inclusiones de plagioclasas (Fig. 4).
Pasta.- La pasta de la toba es abundante y está formada principalmente por esquirlas de vidrio
volcánico de tono pardo oscuro con textura masiva, junto a óxidos de hierro del tipo limonita
(Fig. 2); también se observan en muy escaso porcentaje micro-cristales prismáticos de circón.
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita, que
corresponderían a las variedades hematita y limonita.
Pómez.- Se observan en moderado porcentaje, pómez blanquecinas de forma ovalada,
constituidas por esquirlas de vidrio volcánico de tono pardo y textura masiva que contienen
cristales de plagioclasas, cuarzo y biotita, que alcanzan hasta 1 mm de largo en la sección
delgada y hasta 2,5 cm en la muestra de mano.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 04 de Julio de 2017
Nº LAB: SGM-116/17 Muestra 7716.
7
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
254
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 13-15 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...………. 23-25 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-5 %
Feldespato Potásico (K)AlSi3O8..............………….……….…….……….…..... 2-3 %
Pasta (Vidrio volcánico)………...........…………………………..…….....….….. 45-47 %
Óxidos de Hierro (Hematita y limonita).…….………..………….……..…..….… 2-3 %
Pómez (vidrio volcánico)…………. ……………………………….…….…......... 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura hipocristalina y textura porfídica de grano medio (>1
mm), con pasta vítrea de textura masiva, pómez y diseminación de óxidos de hierro (Fig.4).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una toba vitro-cristalina de
composición ácida, que corresponde a una DACITA Biotítica, con contenido de pómez.
Fig. 4. Muestra 7716, aumento 4x, polarizadores X. Toba Dacítica, con fenocristales de
plagioclasas (Pl), cuarzo (Qz), biotita oxidada (Bt), pómez y pasta vítrea de textura masiva.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
8
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
255
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro con superficies de
meteorización, de composición intermedia, muestra estructura holocristalina y textura porfídica
de grano medio (>1 mm), donde se observan abundantes cristales de feldespatos blanquecinos,
biotita oxidada, piroxenos y óxidos de hierro diseminados, rodeados por una pasta de grano
muy fino. La lava muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de fenocristales
subhedrales tabulares y prismáticos, de hasta 2 mm de largo, muestran zonación, maclas
polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción, corresponden a
la variedad Andesina (An: 35), se hallan fracturadas y marcadamente orientadas (Fig. 5).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales y tabulares
que alcanzan hasta 0,5 mm de largo, de color marrón oscuro por la oxidación de sus bordes y
planos de exfoliación.
Clinopiroxenos.- Se observan en reducido porcentaje, en forma de fenocristales subhedrales
de hábito prismático y de tono verdoso pálido, de hasta 0,5 mm de largo, se hallan fracturados y
se trata del tipo augita (Fig. 5).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas marcadamente orientados de acuerdo al flujo de la lava, con textura afieltrada,
rodeando a fenocristales, y en menor porcentaje por óxidos de hierro diseminados de tono
marrón oscuro del tipo limonita, hematita y magnetita (Fig. 5).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y cúbico, diseminados en la pasta y alterando a fenocristales de biotita, que
corresponderían a las variedades hematita, limonita y probablemente magnetita.
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)………….….……..…….…...………... 28-30 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 3-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 1-2 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 05 de Julio de 2017
Nº LAB: SGM-117/17 Muestra 7804.
9
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
256
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Pasta (microlitos de plagioclasas)…………………............………….....….….. 58-60 %
Óxidos de Hierro (Hematita, limonita, magnetita).…….…….………..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>1 mm), con pasta microlítica de textura afieltrada y diseminación de óxidos de hierro (Fig. 5).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Biotítica, ligeramente oxidada.
Fig. 5. Muestra 7804, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), escasos clinopiroxenos (CPx) y pasta con microlitos de plagioclasas orientadas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
10
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
257
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con superficies de
meteorización, de composición ácida, muestra estructura holocristalina y textura porfídica de
grano medio (>3 mm), donde se observan grandes cristales de feldespatos blanquecinos,
cuarzo, biotita, anfíboles, piroxenos y óxidos de hierro diseminados, rodeados por una pasta de
grano muy fino. La lava muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente moderado de la lava, presente como fenocristales anhedrales y
subhedrales con bordes sub-redondeados de hasta 2 mm de largo, muestran fracturas y
engolfamientos, también se presentan como fragmentos de bordes sub-angulosos (Fig. 6).
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de fenocristales
subhedrales tabulares y prismáticos de hasta 7 mm de largo, muestran zonación, maclas
polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción e inclusiones de
la pasta, corresponden a la variedad Oligoclasa (An: 25), se hallan fracturadas (Fig. 6).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 1,5 mm de largo, de color marrón oscuro por la oxidación de sus bordes y
planos de exfoliación, con inclusiones de plagioclasas.
Clinopiroxenos.- Se observan en reducido porcentaje, fenocristales subhedrales de hábito
prismático y euhedrales poligonales de tono verdoso pálido, de hasta 1 mm de largo, se trata de
la variedad augita (Fig. 6).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales romboédricos de
color marrón oscuro, que se hallan reemplazados parcialmente en sus bordes por limonita,
alcanzan hasta 1 mm de largo (Fig. 6).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas ligeramente orientados con textura afieltrada, y en menor porcentaje por óxidos de
hierro diseminados de tono marrón oscuro del tipo limonita y hematita (Fig. 6).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita y
hornblenda, que corresponderían a las variedades limonita, hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 05 de Julio de 2017
Nº LAB: SGM-118/17 Muestra 7805.
11
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
258
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….….…..….… 10-12 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...……….. 23-25 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Pasta (microlitos de plagioclasas)…………………............………….....….….. 48-50 %
Óxidos de Hierro (Hematita, limonita, magnetita). ……………….…..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura holocristalina y textura porfídica de grano medio (>3
mm), con pasta microlítica de textura afieltrada y diseminación de óxidos de hierro (Fig. 6).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición ácida,
que corresponde a una DACITA Biotítica, ligeramente oxidada.
Fig. 6. Muestra 7805, aumento 4x, polarizadores X. Lava Dacítica, con fenocristales de plagioclasas
(Pl), cuarzo (Qz), clinopiroxenos (CPx), hornblenda oxidada, y pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
12
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
259
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 05 de Julio de 2017
Nº LAB: SGM-119/17 Muestra 7807.
13
Descripción Macroscópica.-
Fragmento de una roca de origen volcanico (flujo de lava) de composición intermedia,
muestra estructura ligeramente bandeada y textura porfídica de grano medio (>1 mm), donde se
observa una intercalación entre bandas lenticulares de color marrón-rojizo y bandas de tono gris
oscuro, ambas muestran cristales de feldespatos blanquecinos, biotita, piroxenos y óxidos
de hierro diseminados, rodeados por una pasta ferruginosa y vítrea, con más presencia de
hierro en las bandas grises. La toba presenta coloracion gris-verdusca, por lo que muestra
elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de
fenocristales subhedrales tabulares y prismáticos de hasta 2,5 mm de largo, muestran
zonación, maclas polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción
e inclusiones de la pasta, corresponden a la variedad Andesina (An: 35), se hallan como
fragmentos (Fig. 7).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 1 mm de largo, de color marrón oscuro por la oxidación de sus bordes
y planos de exfoliación, con inclusiones de plagioclasas (Fig. 7).
Clinopiroxenos.- Se observan en moderado porcentaje, fenocristales subhedrales de hábito
prismático y euhedrales poligonales de tono verdoso pálido con maclas de dos
individuos, alcanzan hasta 1 mm de largo, se trata de la variedad augita (Fig. 7).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales romboédricos de
color marrón-rojizo, que se hallan reemplazados parcialmente en sus bordes por
limonita, alcanzan hasta 0,5 mm de largo (Fig. 7).
Pasta.- La pasta de la toba es abundante y está formada principalmente por esquirlas de vidrio
volcánico de tono pardo oscuro de textura masiva, junto a óxidos de hierro diseminados de tono
marrón del tipo limonita y en menor porcentaje por microlitos de plagioclasas
ligeramente orientados (Fig. 7).
Óxidos de Hierro.- Se presentan en moderado porcentaje, como pequeños minerales opacos
de hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de
biotita y hornblenda, que corresponderían a las variedades limonita, hematita y magnetita.
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
260
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)………….….……...…….…...……….. 30-32 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 3-4 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-5 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 2-3 %
Pasta (vidrio, limonita y microlitos)…………………............………….....….…. 50-53 %
Óxidos de Hierro (Hematita, limonita, magnetita). ……………….…..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Fig. 7. Muestra 7807, aumento 4x, polarizadores X. Ignimbrita Andesítica, con fenocristales de plagioclasas
(Pl), clinopiroxenos (CPx), biotita (Bt), hornblenda (Hb) y pasta vítrea-ferruginosa con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORI
14
Textura y estructura.- Presenta estructura bandeada y lenticular, y textura porfídica de
grano medio (>1 mm), con pasta vítrea masiva, ferruginosa y en menor grado
microlítica. La roca se presenta compacta y dura (Fig. 7).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una roca volcanica (cristalo-vítrea)
de composición intermedia, que corresponde a una ANDESÍTICA piroxenica.
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
261
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono rosáceo, presenta
superficies de meteorización, de composición intermedia, muestra estructura holocristalina y
textura porfídica de grano medio (>2 mm), donde se observan grandes cristales de feldespatos
blanquecinos, escaso cuarzo, biotita, anfíboles, piroxenos y óxidos de hierro diseminados,
rodeados por una pasta de grano muy fino. La lava muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente presente en escaso porcentaje, en forma de fenocristales
anhedrales con bordes sub-redondeados, de hasta 0,5 mm de largo, muestran fracturas y
engolfamientos (Fig. 8).
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de fenocristales
subhedrales tabulares y prismáticos de hasta 3 mm de largo, muestran zonación, maclas
polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción e inclusiones de
la pasta, corresponden al límite entre las variedades Oligoclasa-Andesina (An: 30) (Fig. 8).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 2 mm de largo, de color marrón oscuro por la oxidación de sus bordes y
planos de exfoliación, contienen pequeñas inclusiones de plagioclasas.
Clinopiroxenos.- Se observan en reducido porcentaje, fenocristales subhedrales de hábito
prismático y tabular, de tono verdoso pálido, de hasta 0,4 mm de largo, se trata de la variedad
augita (Fig. 8).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales romboédricos de
color marrón oscuro, que se hallan reemplazados parcialmente por limonita, alcanzan hasta 2,5
mm de largo (Fig. 8).
Pasta.- La pasta de la lava es abundante y está formada principalmente por vidrio volcánico de
textura masiva, y en menor porcentaje por microlitos de plagioclasas sin orientación, y óxidos de
hierro diseminados de tono marrón oscuro del tipo limonita y hematita (Fig. 8).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita y
hornblenda, que corresponderían a las variedades limonita y hematita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 06 de Julio de 2017
Nº LAB: SGM-120/17 Muestra 7713.
15
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
262
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….….…..….… 1-2 %
Plagioclasas (Oligoclasa-Andesina) NaCaAl(Si3O8)………….….…...……….. 25-28 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 3-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 1-2 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 2-3 %
Pasta (Vidrio volcánico, microlitos de plagioclasas) ………….……......….….. 55-57 %
Óxidos de Hierro (Hematita, limonita). …………………………….…..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>1 mm), con pasta vítrea y microlítica, junto a óxidos de hierro (Fig. 8).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Biotítica (cuarzosa), ligeramente oxidada.
Fig. 8. Muestra 7713, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de plagioclasas (Pl),
escaso cuarzo (Qz), clinopiroxenos (CPx), hornblenda oxidada y pasta vítrea con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
16
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
263
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 19 de Julio de 2017
Nº LAB: SGM-121/17 Muestra 7708.
17
Descripción Macroscópica.-
Fragmento de una roca de origen volcanico (lava) de composición acida, muestra
estructura bandeada y textura porfídica de grano medio (>1 mm), donde se observa una
intercalación entre delgadas bandas lenticulares de color marrón-negruzco y bandas de
tono gris claro, ambas muestran cristales de feldespatos blanquecinos, biotita,piroxenos y
óxidos de hierro diseminados, rodeados por una pasta vítrea, con más presencia de hierro
en las bandas oscuras. La roca se presenta masiva, compacta, por lo que muestra elevada
dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de
fenocristales subhedrales tabulares y prismáticos de hasta 2,5 mm de largo, muestran
zonación, maclas polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción
e inclusiones de la pasta y de piroxenos, corresponden a la variedad Andesina (An: 40) (Fig. 9).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 0,7 mm de largo, de color marrón oscuro por la oxidación de sus bordes
y planos de exfoliación, con inclusiones de plagioclasas.
Clinopiroxenos.- Se observan en moderado porcentaje, fenocristales subhedrales de
hábito prismático y euhedrales poligonales de tono verdoso pálido con maclas de dos
individuos, alcanzan hasta 1 mm de largo, se trata de la variedad augita (Fig. 9).
Pasta.- La pasta de la toba es abundante y está formada principalmente por esquirlas de vidrio
volcánico de tono pardo oscuro de textura masiva y localmente esferulítica, junto a óxidos
de hierro diseminados de tono marrón del tipo limonita (Fig. 9).
Óxidos de Hierro.- Se presentan en moderado porcentaje, como pequeños minerales opacos
de hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita,
que corresponderían a las variedades limonita (Fig. 9), hematita y magnetita (magnética).
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)………….….……...…….…...……….. 30-32 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 5-7 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… <1 %
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
264
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Fig. 9. Muestra 7708, aumento 4x, polarizadores X. Ignimbrita Andesítica, con fenocristales
de plagioclasas (Pl), clinopiroxenos (CPx), limonita diseminada (Lm) y pasta vítrea masiva.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
18
Pasta (vidrio, limonita y microlitos)…………………............………….....….…. 51-55 %
Óxidos de Hierro (Hematita, limonita, magnetita)..……………….…..…..….… <1 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura bandeada y textura porfídica de grano medio
(>1 mm), con pasta vítrea masiva y esferulítica. La roca es masiva, compacta y presenta
elevada dureza (Fig. 9).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una roca volcanica (cristalo-vítrea) de
composición intermedia, que corresponde a una DACITICA biotitica.
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
265
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 24 de Julio de 2017
Nº LAB: SGM-123/17 Muestra 7717.
19
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico, de color gris oscuro con superficies de
meteorización, de composición ácida, muestra estructura vitro-cristalina y textura porfídica de
grano medio (>3 mm), donde se observan grandes cristales de feldespatos
blanquecinos, cuarzo, biotita, anfíboles, escasos piroxenos, pómez alargadas de tono
rosáceo y óxidos de hierro diseminados, rodeados por una pasta vítrea, muestra moderada
dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente moderado de la lava, presente como fenocristales anhedrales
y subhedrales con bordes sub-redondeados de hasta 2 mm de largo, muestran
fracturas y engolfamientos, también se presentan como fragmentos de bordes sub-angulosos
(Fig. 10).
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos de hasta 5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción e inclusiones de la
pasta, corresponden a la variedad Oligoclasa (An: 25), se hallan fracturadas (Fig. 10).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 3,5 mm de largo, de color marrón oscuro por la intensa oxidación de
sus bordes y planos de exfoliación, con inclusiones de plagioclasas y muestran orientación
(Fig.10).
Clinopiroxenos.- Se observan en muy reducido porcentaje, como fenocristales
subhedrales de hábito prismático y anhedral, de tono verdoso pálido, de hasta 0,5 mm de largo,
corresponden a la variedad augita.
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales romboédricos de
color marrón-rojizo, que se hallan reemplazados parcialmente en sus bordes por
limonita, alcanzan hasta 1 mm de largo (Fig. 10).
Pasta.- La pasta de la toba es abundante y está formada principalmente por vidrio volcánico de
textura masiva y en menor porcentaje por microlitos de plagioclasas y óxidos de
hierro diseminados de tono marrón oscuro del tipo limonita (Fig. 10).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y alterando a cristales de biotita y hornblenda,
que corresponderían a las variedades limonita, hematita y magnetita.
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
266
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Fig. 10. Muestra 7717, aumento 4x, polarizadores ll. Toba Dacítica, con fenocristales de
plagioclasas (Pl), cuarzo (Qz), biotita (Bt), hornblenda (Hb), pómez y pasta vítrea masiva.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
20
Textura y estructura.- Presenta estructura vitro-cristalina y textura porfídica de grano medio
(>3 mm), con pasta vítrea y microlítica, y pómez alargadas (Fig. 10).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una roca vitro-cristalina
de composición ácida, que corresponde a una DACITA Biotítica, débilmente oxidada.
Pómez.- Se observan ocacionalmente, clastos de pómez de forma sub-redondeada y
otra alargada formadas por esquirlas de vidrio volcánico y micro-cristales de plagioclasas,
biotita y hornblenda (Fig. 10).
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….….…..…… 8-10 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...………. 20-22 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……….……………………….….. 4-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… < 1 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 2-3 %
Pasta (vidrio volcánico y microlitos)…………………............………….....…… 48-50 %
Óxidos de Hierro (Hematita, limonita, magnetita). ……………….…..…..….… 2-3 %
Pómez ( vidrio y micro-cristales).……………….…………………………..….… < 1%
Total…………………………………………………...………………….….……… 100 %
:;;;;;;;.--------~-- --------
./ . " .
• , ., >,"'
t( ., ~-'t
~ ;_,. '<,'>.-
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
267
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris, presenta superficies de
meteorización, de composición intermedia, muestra estructura cavernosa o vesicular y textura
porfídica de grano medio (>2 mm), donde se observan cristales de feldespatos blanquecinos,
escaso cuarzo, piroxenos y óxidos de hierro diseminados, rodeados por una pasta de grano
muy fino. La lava muestra moderada dureza y compactación, y cavidades rellenas por cuarzo.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente presente en escaso porcentaje, en forma de fenocristales
anhedrales y subhedrales con bordes sub-redondeados, de hasta 0,5 mm de largo, muestran
fracturas y engolfamientos.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos de hasta 4 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción e inclusiones de la pasta,
corresponden a la variedad Andesina (An: 45) (Fig. 11).
Clinopiroxenos.- Se observan en reducido porcentaje, fenocristales subhedrales de hábito
prismático, de tono verdoso pálido, de hasta 0,5 mm de largo, se trata de la variedad augita.
Pasta.- La pasta es abundante y está formada principalmente por microlitos de plagioclasas con
textura afieltrada (sin orientación), y en menor porcentaje por vidrio volcánico de textura masiva
y óxidos de hierro de tono marrón oscuro del tipo limonita y hematita (Fig. 11).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita y
hornblenda, que corresponderían a las variedades limonita y hematita.
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….….…..….… 1-2 %
Plagioclasas (Andesina) NaCaAl(Si3O8)………………….….…….…...……….. 30-32 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 1-2 %
Pasta (Microlitos de plagioclasas).………….…………………….….......….….. 58-60 %
Óxidos de Hierro (Hematita, limonita). …………………………….…..…..….… 3-4 %
Total…………………………………………………...………………….….……… 100 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 24 de Julio de 2017
Nº LAB: SGM-124/17 Muestra 7720.
21
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
268
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Textura y estructura.- Presenta una estructura cavernosa o vesicular y textura porfídica de
grano medio (>2 mm), con pasta microlítica, junto a óxidos de hierro (Fig. 11).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA (cuarzosa), ligeramente oxidada.
Fig. 11. Muestra 7720, aumento 4x, polarizadores ll. Lava Andesítica, con fenocristales de
plagioclasas (Pl), óxidos de hierro, y pasta con microlitos de plagioclasas y vidrio volcánico.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
22
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
269
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (toba), de color marrón con tono grisáceo, tiene
superficies de meteorización, de composición ácida, muestra estructura vitro-cristalina y textura
porfídica de grano medio (>2 mm), donde se observan cristales de feldespatos blanquecinos,
cuarzo, biotita oxidad, litoclastos y óxidos de hierro diseminados, rodeados por una pasta vítrea,
muestra moderada dureza y grado de soldadura.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos de hasta 2 mm de largo, muestran fracturas, zonación, maclas
polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción e inclusiones de
la pasta, corresponden a la variedad Oligoclasa (An: 25) (Fig. 12).
Feldespato potásico.- Se observan en reducido porcentaje, fenocristales anhedrales y
subhedrales tabulares de feldespatos potásicos, con maclas tipo Carlsbad, de hasta 1,5 mm de
largo (posiblemente de la variedad sanidina).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
y prismáticos que alcanzan hasta 3 mm de largo, de color marrón-rojizo por la oxidación de sus
bordes y planos de exfoliación, con inclusiones de plagioclasas (Fig. 12).
Pasta.- La pasta de la toba es abundante, está formada principalmente por vidrio volcánico de
textura masiva y localmente esferulítica y en menor porcentaje por óxidos de hierro diseminados
de tono marrón oscuro del tipo limonita (Fig. 12).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y alterando a cristales de biotita, que corresponderían
a las variedades limonita y hematita.
Litoclastos.- Se observan algunos litoclastos formados por rocas volcánicas con cristales de
plagioclasas y óxidos de hierro, así como de rocas ferruginosas de tono rojizo, alcanzan hasta 2
mm de largo.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 24 de Julio de 2017
Nº LAB: SGM-125/17 Muestra 7721.
23
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
270
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….….…..…… 13-15 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...………. 23-25 %
Feldespato Potásico (K)AlSi3O8………....……….…………..…………..….….. 2-3 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))..……................................................…… 4-5 %
Pasta (vidrio volcánico)………………………..….............………….….....…… 45-47 %
Óxidos de Hierro (limonita, hematita,).…………………………….…..…..….… 2-3 %
Litoclastos (volcánicos y ferruginosos)…………….……………………...….… 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura vitro-cristalina y textura porfídica de grano medio
(>2 mm), con pasta vítrea y litoclastos (Fig. 12).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una toba vitro-cristalina de
composición ácida, que corresponde a una DACITA Biotítica, débilmente oxidada.
Fig. 12. Muestra , aumento 4x, polarizadores X. Toba Dacítica, con fenocristales de
plagioclasas (Pl), cuarzo (Qz), biotita oxidada (Bt), y pasta vítrea de textura masiva.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
24
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
271
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris, presenta superficies de
meteorización, de composición intermedia, muestra estructura holocristalina y textura porfídica
de grano medio (>2 mm), donde se observan cristales de feldespatos blanquecinos, biotita y
anfíboles muy oxidados, piroxenos y óxidos de hierro diseminados, rodeados por una pasta de
grano muy fino. La lava muestra moderada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos de hasta 2,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción e inclusiones de la pasta, se
hallan ligeramente argilizadas y corresponden a la variedad Andesina (An: 40) (Fig. 13).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
y prismáticos que alcanzan hasta 2 mm de largo, de color marrón-rojizo por la intensa oxidación
de sus bordes y planos de exfoliación (Fig. 13).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales romboédricos de
color marrón-rojizo reemplazados parcialmente por limonita, de hasta 1,5 mm de largo (Fig. 13).
Clinopiroxenos.- Se observan en reducido porcentaje, fenocristales subhedrales y prismáticos,
de tono verdoso pálido de hasta 0,5 mm de largo, se trata de la variedad augita (Fig. 13).
Pasta.- La pasta es abundante y está formada principalmente por microlitos de plagioclasas con
textura afieltrada que muestran orientación, y en menor porcentaje por vidrio volcánico de
textura masiva (Fig. 13).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita y
hornblenda, que corresponderían a las variedades limonita, hematita y magnetita.
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)…………………..….….…..…..….… 23-25 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))...………………….….…..….…...……….. 4-6 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2……………………………….. 2-3 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 25 de Julio de 2017
Nº LAB: SGM-126/17 Muestra 7801.
25
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
272
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Pasta (Microlitos de plagioclasas).………….…………………….….......….….. 58-60 %
Óxidos de Hierro (Hematita, limonita, magnetita)………………..….…..…..…. 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), con pasta microlítica y vítrea (Fig. 13).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Biotítica, débilmente oxidada.
Fig. 13. Muestra 7801, aumento 4x, polarizadores ll. Lava Andesítica, con fenocristales de plagioclasas (Pl),
biotita (Bt), hornblenda (Hb), clinopiroxenos (CPx) y pasta con microlitos de plagioclasas y vidrio volcánico.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
26
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
273
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (toba), de color marrón con tono rosáceo, tiene
superficies de meteorización, de composición ácida, muestra estructura vitro-cristalina y textura
porfídica de grano medio (>2 mm), donde se observan cristales de feldespatos blanquecinos,
biotita muy oxidada, anfíboles, pómez alargadas de tono blanquecino y óxidos de hierro,
rodeados por una pasta vítrea y ferruginosa, muestra moderada dureza y grado de soldadura.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente reducido de la toba, presente como fenocristales anhedrales y
subhedrales con bordes sub-redondeados, de hasta 1 mm de largo, muestran fracturas.
Plagioclasas.- Se presentan en abundante porcentaje como fenocristales subhedrales y
prismáticos de tamaño muy variable, entre 0,5 a 4 mm de largo, predominando los de grano
fino, muestran zonación, maclas polisintéticas tipo Albita y combinadas Albita-Carlsbad, con
bordes de reacción e inclusiones de la pasta, corresponden a la variedad Oligoclasa (An: 20),
se hallan fracturadas y orientadas (Fig. 14).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 2,5 mm de largo, de color marrón oscuro por la intensa oxidación de sus
bordes y planos de exfoliación, muestran cierta orientación (Fig. 14).
Hornblenda.- Se observan en reducido porcentaje fenocristales subhedrales y euhedrales
romboédricos de color marrón-rojizo, que se hallan reemplazados parcialmente en sus bordes
por limonita, alcanzan hasta 1 mm de largo (Fig. 14).
Pasta.- La pasta de la toba es abundante y está formada principalmente por vidrio volcánico de
textura masiva y en menor porcentaje por óxidos de hierro diseminados (ferruginosa) de tono
marrón oscuro del tipo limonita (Fig. 14).
Óxidos de Hierro.- Se presentan en moderado porcentaje, como pequeños minerales opacos
de hábito anhedral, diseminados en la pasta y alterando a cristales de biotita y hornblenda, que
corresponden a las variedades limonita y hematita.
Pómez.- Se observan pómez blanquecinas y deformadas (alargadas), formadas por esquirlas
de vidrio volcánico y micro-cristales de plagioclasas y biotita oxidada, que se observan mejor en
la muestra de mano, alcanzando varios cm de largo.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 25 de Julio de 2017
Nº LAB: SGM-127/17 Muestra 7802.
27
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
274
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….….…..…… 3-5 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...………. 30-32 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……….……………………….….. 4-5 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 2-3 %
Pasta (vidrio volcánico y limonita)…………….……..............………….....…… 45-47 %
Óxidos de Hierro (Limonita y hematita)…………..……………….…...…..….… 2-3 %
Pómez (vidrio y micro-cristales).……………….…………………………...….… 3-5 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura vitro-cristalina y textura porfídica de grano medio
(>2 mm), con pasta vítrea-ferruginosa y pómez alargadas (Fig. 14).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una toba vitro-cristalina de
composición ácida, que corresponde a una DACITA Biotítica, moderadamente oxidada.
Fig. 14. Muestra 7802, aumento 4x, polarizadores ll. Toba Dacítica, con fenocristales de
plagioclasas (Pl), biotita (Bt) y hornblenda (Hb) oxidadas, y una pasta vítrea-ferruginosa.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
28
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
275
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro con superficies de
meteorización, de composición intermedia, muestra estructura holocristalina y textura porfídica
de grano medio (>1 mm), donde se observan abundantes cristales de feldespatos blanquecinos
orientados, biotita oxidada, piroxenos y óxidos de hierro diseminados, rodeados por una pasta
de grano fino. La lava muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de fenocristales
subhedrales tabulares y prismáticos, de hasta 2,5 mm de largo, muestran zonación, maclas
polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción, corresponden a
la variedad Andesina (An: 35), se hallan fracturadas y orientadas (Fig. 15).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales y
tabulares que alcanzan hasta 2 mm de largo, de color marrón oscuro por la oxidación de sus
bordes y planos de exfoliación, con inclusiones de plagioclasas (Fig. 15).
Hornblenda.- Se observan en reducido porcentaje fenocristales subhedrales y anhedrales de
color marrón-rojizo, que se hallan reemplazados parcialmente en sus bordes por limonita,
alcanzan hasta 1 mm de largo.
Clinopiroxenos.- Se observan en moderado porcentaje, en forma de fenocristales subhedrales
de hábito prismático y de tono verdoso pálido, de hasta 1,5 mm de largo, se hallan fracturados,
con maclas de dos individuos, se trata del tipo augita (Fig. 15).
Pasta.- La pasta de la lava es abundante y está formada principalmente por micro-cristales y
microlitos de plagioclasas marcadamente orientados de acuerdo al flujo de la lava, con textura
afieltrada, rodeando a los fenocristales, y en menor porcentaje por óxidos de hierro diseminados
de tono marrón oscuro del tipo limonita, hematita y magnetita (Fig. 15).
Óxidos de Hierro.- Se presentan en moderado porcentaje, como pequeños minerales opacos
de hábito anhedral y cúbico, diseminados en la pasta y alterando a fenocristales de biotita, que
corresponderían a las variedades hematita, limonita y probablemente magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 26 de Julio de 2017
Nº LAB: SGM-128/17 Muestra 7803.
29
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
276
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)………….….……..…….…...………... 28-30 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 2-3 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 4-5 %
Pasta (microlitos de plagioclasas)…………………............………….....….….. 55-57 %
Óxidos de Hierro (Hematita, limonita, magnetita).…….…….………..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>1 mm), con pasta microlítica de textura afieltrada y diseminación de óxidos de hierro (Fig. 15).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Piroxénica, ligeramente oxidada.
Fig. 15. Muestra 7803, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxenos (CPx), biotita (Bt) y pasta con microlitos de plagioclasas orientadas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
30
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
277
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, tiene superficies de
meteorización, de composición intermedia, muestra estructura holocristalina y textura porfídica
de grano medio (>1 mm), donde se observan abundantes cristales de feldespatos blanquecinos
orientados, biotita oxidada, piroxenos y óxidos de hierro diseminados, rodeados por una pasta
de grano muy fino. La lava muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en muy abundante porcentaje, en forma de fenocristales
subhedrales tabulares y prismáticos, de tamaño variable, entre 0,3 hasta 2 mm de largo,
muestran zonación, maclas polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes
de reacción, corresponden a la variedad Oligoclasa (An: 25), se hallan fracturadas y orientadas
(Fig. 16).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales y tabulares
que alcanzan hasta 1 mm de largo, de color marrón oscuro por la oxidación de sus bordes y
planos de exfoliación (Fig. 16).
Hornblenda.- Se observan en muy reducido porcentaje fenocristales subhedrales y anhedrales
de color marrón-rojizo por la oxidación de sus bordes, alcanzan hasta 0,5 mm de largo.
Clinopiroxenos.- Se observan en moderado porcentaje, en forma de fenocristales subhedrales
de hábito prismático y euhedrales poligonales de tono verdoso pálido, de hasta 1 mm de largo,
se hallan fracturados, de la variedad augita (Fig. 16).
Pasta.- La pasta de la lava es abundante y está formada principalmente por micro-cristales y
microlitos de plagioclasas marcadamente orientados de acuerdo al flujo de la lava, con textura
afieltrada, y en menor porcentaje por óxidos de hierro diseminados de tono marrón oscuro del
tipo limonita, hematita y magnetita (Fig. 16).
Óxidos de Hierro.- Se presentan en moderado porcentaje, como pequeños minerales opacos
de hábito anhedral y cúbico, diseminados en la pasta y alterando a fenocristales de biotita, que
corresponderían a las variedades hematita, limonita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 26 de Julio de 2017
Nº LAB: SGM-129/17 Muestra 7806.
31
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
278
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...………. 25-27 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 2-3 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-5 %
Pasta (microlitos de plagioclasas)…………………............………….....….….. 58-60 %
Óxidos de Hierro (Hematita, limonita, magnetita).…….…….………..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>1 mm), con pasta microlítica de textura afieltrada y diseminación de óxidos de hierro (Fig. 16).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Piroxénica, ligeramente oxidada.
Fig. 16. Muestra 7806, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxenos (CPx), biotita (Bt) y pasta con microlitos de plagioclasas orientadas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
32
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
279
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen piroclástico (toba ignimbrítica) de composición intermedia,
muestra estructura bandeada y textura porfídica de grano medio (>1 mm), donde se observa
una intercalación entre bandas lenticulares de tono gris oscuro y bandas de color marrón-rojizo,
ambas muestran cristales de feldespatos blanquecinos, biotita, piroxenos y óxidos de hierro
diseminados, rodeados por una pasta ferruginosa y vítrea, con más presencia de hierro en las
bandas grises. La toba presenta alto grado de soldadura (ignimbrita), por lo que muestra
elevada dureza y compactación, también es llamada toba soldada.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos de hasta 1,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción e inclusiones de la pasta,
corresponden a la variedad Oligoclasa (An: 25) (Fig. 17).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 0,5 mm de largo, de color marrón oscuro por la oxidación de sus bordes y
planos de exfoliación (Fig. 17).
Clinopiroxenos.- Se observan en moderado porcentaje, fenocristales subhedrales de hábito
prismático y euhedrales poligonales de tono verdoso pálido con maclas de dos individuos,
alcanzan hasta 0,8 mm de largo, se trata de la variedad augita (Fig. 17).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales romboédricos y
subhedrales prismáticos de color marrón-rojizo, que se hallan reemplazados parcialmente en
sus bordes por limonita, alcanzan hasta 0,5 mm de largo.
Pasta.- La pasta de la toba es abundante, está formada principalmente por microlitos de
plagioclasas ligeramente orientados y en menor porcentaje por esquirlas de vidrio volcánico de
tono pardo oscuro y de textura masiva, junto a óxidos de hierro diseminados de tono marrón del
tipo limonita y hematita (Fig. 17).
Óxidos de Hierro.- Se presentan en moderado porcentaje, como pequeños minerales opacos
de hábito anhedral y subhedral, diseminados en la pasta y alterando a cristales de biotita y
hornblenda, que corresponderían a las variedades limonita, hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 26 de Julio de 2017
Nº LAB: SGM-130/17 Muestra 7808.
33
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
280
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……...…….…...……… 30-32 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 2-3 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-5 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Pasta (Microlitos y vidrio volcánico)…………………............………….....…… 53-55 %
Óxidos de Hierro (Hematita, limonita y magnetita)………..……...…..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura bandeada y lenticular, y textura porfídica de grano
medio (>1 mm), con pasta microlítica y vítrea masiva, y en menor grado ferruginosa. La toba
muestra elevado grado de soldadura y dureza (Fig. 17).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una roca piroclástica (toba cristalovítrea
soldada) de composición intermedia, que corresponde a una Ignimbrita ANDESÍTICA.
Fig. 17. Muestra 7808, aumento 4x, polarizadores X. Ignimbrita Andesítica, con fenocristales de plagioclasas
(Pl), clinopiroxenos (CPx), biotita (Bt) y pasta con microlitos de plagioclasas, vidrio y óxidos de hierro.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
34
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
281
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen piroclástico (toba vitro-cristalina), de color gris-blanquecino
con superficies de meteorización, de composición ácida, muestra estructura hipocristalina y
textura porfídica de grano medio (>1 mm), donde se observan cristales de feldespatos, cuarzo,
biotita con orientación, litoclastos de rocas volcánicas y óxidos de hierro diseminados, rodeados
por una pasta vítrea, muestra reducido grado de dureza y soldadura, por lo que es deleznable.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente abundante de la toba, presente en forma de fenocristales
anhedrales con bordes sub-angulosos de hasta 1,5 mm de largo, muestran fracturas y
engolfamientos, también se presentan como fragmentos de bordes angulosos (Fig. 18).
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2 mm de largo, con zonación, maclas polisintéticas tipo Albita
y combinadas Albita-Carlsbad, con bordes de reacción, corresponden a la variedad Oligoclasa
(An: 25), se hallan también como fragmentos angulosos, y muestran meteorización (Fig. 18).
Biotita.- Se presenta en moderada proporción, como fenocristales subhedrales prismáticos y
tabulares que alcanzan hasta 1 mm de largo, de color marrón oscuro por la oxidación de sus
bordes y planos de exfoliación, con pequeñas inclusiones de apatito y muestran orientación
preferencial (Fig. 18).
Pasta.- La pasta de la toba es muy abundante y está formada principalmente por esquirlas de
vidrio volcánico de tono pardo oscuro que muestran textura masiva, junto a pequeños
fragmentos de cuarzo y feldespatos (Fig. 18).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita, que
corresponderían a la variedad limonita.
Litoclastos.- Se observan en reducido porcentaje, litoclastos de bordes sub-redondeados
formados por rocas volcánicas de grano fino, con cristales de cuarzo, plagioclasas y biotita,
alcanzan hasta 2,5 mm de largo.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 21 de Agosto de 2017
Nº LAB: SGM-142/17 Muestra 7722.
35
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
282
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 13-15 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...………. 18-20 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-6 %
Pasta (Vidrio volcánico)………...........…………………………..…….....….….. 53-55 %
Óxidos de Hierro (Limonita).…….………..………….……..……………....….… 1-2 %
Litoclastos (rocas volcánicas)…………………….………….…….…….…......... 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura hipocristalina y textura porfídica de grano medio
(>1 mm), con pasta vítrea de textura masiva y algunos litoclastos (Fig. 18).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una toba vitro-cristalina de
composición ácida, que corresponde a una DACITA Biotítica, con pasta vítrea.
Fig. 18. Muestra 7722, aumento 4x, polarizadores X. Toba Dacítica, con fenocristales
de plagioclasas (Pl), cuarzo (Qz), biotita oxidada (Bt), y pasta vítrea de textura masiva.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
36
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
283
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen piroclástico (toba vitro-cristalina), de color gris-blanquecino
con superficies de meteorización, de composición ácida, muestra estructura hipocristalina y
textura porfídica de grano medio (>1 mm), donde se observan cristales de feldespatos, cuarzo,
biotita con orientación y óxidos de hierro diseminados, rodeados por una pasta vítrea, muestra
moderado grado de dureza y soldadura.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente muy abundante de la toba, presente en forma de fenocristales
anhedrales con bordes sub-angulosos de hasta 2 mm de largo, muestran fracturas,
engolfamientos e inclusiones de la pasta vítrea, también se presentan como fragmentos de
bordes angulosos (Fig. 19).
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2,5 mm de largo, con zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción, corresponden a la variedad
Oligoclasa (An: 25-30), se hallan también como pequeños fragmentos angulosos (Fig. 19).
Biotita.- Se presenta en moderada proporción, como fenocristales subhedrales prismáticos y
tabulares que alcanzan hasta 1,5 mm de largo, de color marrón oscuro por la oxidación de sus
bordes y planos de exfoliación, con pequeñas inclusiones de apatito y muestran orientación
preferencial (Fig. 19).
Hornblenda.- Se observan en reducido porcentaje fenocristales anhedrales y subhedrales de
color marrón-verdoso, se hallan ligeramente oxidados, alcanzan hasta 1 mm de largo.
Pasta.- La pasta de la toba es abundante y está formada principalmente por esquirlas de vidrio
volcánico de tono pardo oscuro que muestran una textura masiva, junto a pequeños fragmentos
de cuarzo, feldespatos y circón (Fig. 19).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y alterando a cristales de biotita y hornblenda, que
corresponden a la variedad limonita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 21 de Agosto de 2017
Nº LAB: SGM-143/17 Muestra 7723.
37
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
284
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 20-22 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...………. 18-20 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-6 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Pasta (Vidrio volcánico)………...........…………………………..…….....….….. 46-48 %
Óxidos de Hierro (Limonita).…….………..………….……..……………....….… 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura hipocristalina y textura porfídica de grano medio
(>1 mm), con pasta vítrea de textura masiva (Fig. 19).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una toba vitro-cristalina de
composición ácida, que corresponde a una DACITA Biotítica, con pasta vítrea.
Fig. 19. Muestra 7723, aumento 4x, polarizadores X. Toba Dacítica, con fenocristales
de plagioclasas (Pl), cuarzo (Qz), biotita oxidada (Bt), y pasta vítrea de textura masiva.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
38
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
285
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con superficies de
meteorización, composición relativamente ácida, muestra estructura holocristalina y textura
porfídica de grano medio (>2 mm), donde se observan grandes cristales de feldespatos
blanquecinos, escaso cuarzo, biotita, anfíboles, piroxenos y óxidos de hierro diseminados,
rodeados por una pasta de grano muy fino, contiene agregados de calcita rellenando pequeñas
cavidades, la roca muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente reducido de la lava, presente en forma de fenocristales anhedrales
con bordes sub-redondeados de hasta 1 mm de largo, muestran fracturas y engolfamientos,
también se presentan como fragmentos de bordes sub-angulosos.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a la
variedad Oligoclasa (An: 25-30) (Fig. 20).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 2 mm de largo, de color marrón oscuro por la intensa oxidación de sus
bordes y planos de exfoliación, con inclusiones de plagioclasas (Fig.20).
Clinopiroxenos.- Se observan en moderado porcentaje fenocristales euhedrales poligonales y
subhedrales prismáticos de tono verdoso pálido, que alcanzan hasta 2 mm de largo, se trata del
tipo augita. En escaso porcentaje se observan ortopiroxenos de hábito prismático (Fig. 20).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales poligonales de
color marrón, se hallan reemplazados parcialmente por limonita, alcanzan hasta 3 mm de largo.
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas sin orientación y con textura afieltrada, y en menor porcentaje por vidrio volcánico
de tono pardo y textura masiva (Fig. 20).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y sobre todo alterando a cristales de biotita y
hornblenda, corresponderían a las variedades limonita, hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 21 de Agosto de 2017
Nº LAB: SGM-144/17 Muestra 7726.
39
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
286
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Calcita.- Se observan en escaso porcentaje, agregados anhedrales de calcita secundaria de
grano fino y de color blanquecino, rellenando pequeñas cavidades de la lava.
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 4-5 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………….….……..…….…...………. 25-27 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-4 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Pasta (microlitos de plagioclasas)…………………............………….....….….. 50-52 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Calcita (CaCO3).…………………………………………………….…….…......... 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura holocristalina y textura porfídica de grano medio (>2
mm), con pasta vítrea y microlítica de textura afieltrada (Fig. 20).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición ácida,
que corresponde a una DACITA de Biotita y Hornblenda, cercana a una Andesita cuarzosa,
ligeramente oxidada, con cavidades de calcita.
Fig. 20. Muestra 7726, aumento 4x, polarizadores ll. Lava Dacítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), biotita (Bt) y pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
40
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
287
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono oscuro y superficies de
meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de
grano medio (>2 mm), donde se observan cristales de feldespatos blanquecinos, muy escaso
cuarzo, biotita y anfíboles oxidados, piroxenos y óxidos de hierro diseminados, rodeados por
una pasta de grano muy fino, la lava muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente muy reducido de la lava, presente en forma de fenocristales
anhedrales con bordes sub-redondeados de hasta 0,5 mm de largo, muestran fracturas y
engolfamientos.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 3 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción, fracturas e inclusiones de la
pasta, corresponden a la variedad Andesina (An: 35) (Fig. 21).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 1,5 mm de largo, de color marrón oscuro por la oxidación de sus bordes y
planos de exfoliación (Fig. 21).
Clinopiroxenos.- Se observan en reducido porcentaje fenocristales subhedrales prismáticos de
tono verdoso pálido, que alcanzan hasta 0,5 mm de largo, se trata del tipo augita.
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales poligonales de
color marrón, están reemplazados parcialmente por limonita, alcanzan hasta 0,5 mm de largo.
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas con cierta orientación y textura afieltrada, y en menor porcentaje por vidrio
volcánico de tono pardo y textura masiva (Fig. 21).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y alterando a cristales de biotita y hornblenda,
corresponderían a las variedades limonita, hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 22 de Agosto de 2017
Nº LAB: SGM-145/17 Muestra 7727.
41
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
288
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 1-2 %
Plagioclasas (Andesina) NaCaAl(Si3O8)….………..….……..…….…...………. 23-25 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Pasta (microlitos de plagioclasas)…………………............………….....….….. 58-60 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta estructura holocristalina y textura porfídica de grano medio (>2
mm), con pasta vítrea y microlítica de textura afieltrada (Fig. 21).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia que corresponde a una ANDESITA Biotítica, ligeramente oxidada.
Fig. 21. Muestra 7727, aumento 4x, polarizadores ll. Lava Andesítica, con fenocristales de
plagioclasas (Pl), biotita oxidada (Bt), y una pasta con microlitos de plagioclasas y vidrio.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
42
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
289
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono rosáceo, presenta
superficies de intensa meteorización, composición intermedia, muestra estructura holocristalina
y textura porfídica de grano medio (>2 mm), donde se observan cristales de feldespatos
blanquecinos, muy escaso cuarzo, biotita oxidada y óxidos de hierro diseminados, rodeados por
una pasta de grano muy fino, la lava muestra moderada dureza y compactación, por lo que es
ligeramente deleznable.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente escaso de la lava, presente en forma de fenocristales anhedrales
con bordes sub-redondeados de hasta 1 mm de largo, muestran fracturas y engolfamientos.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 4 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción, muchas fracturas e inclusiones de
la pasta, corresponden al límite entre las variedades Andesina-Oligoclasa (An: 30) (Fig. 22).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 2 mm de largo, de color marrón oscuro por la fuerte oxidación de sus
bordes y planos de exfoliación; es posible que algunos cristales correspondan a hornblenda, los
que no pueden ser diferenciados de la biotita por su intensa oxidación (Fig. 22).
Clinopiroxenos.- Se observan en escaso porcentaje fenocristales subhedrales prismáticos de
tono verdoso pálido, que alcanzan menos de 0,5 mm de largo, se trata del tipo augita (Fig. 22).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas sin orientación y con textura afieltrada, y en menor porcentaje por vidrio volcánico
de tono pardo y textura masiva (Fig. 22.
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y alterando a cristales de biotita, corresponderían a
las variedades limonita y hematita (Fig. 22).
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 22 de Agosto de 2017
Nº LAB: SGM-146/17 Muestra 7729.
43
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
290
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 1-2 %
Plagioclasas (Andesina-Oligoclasa) NaCaAl(Si3O8)………..…….…...………. 24-26 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-6 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 1-2 %
Pasta (microlitos de plagioclasas y vidrio)………..............………….....….….. 58-60 %
Óxidos de Hierro (Limonita y hematita).…….….….…………………..…..….… 3-4 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), con pasta microlítica de textura afieltrada y vidrio volcánico (Fig. 22).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia que corresponde a una ANDESITA Biotítica, moderadamente oxidada.
Fig.22. Muestra 7729, aumento 4x, polarizadores ll. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), biotita oxidada (Bt) y pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
44
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
291
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, presenta superficies de
meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de
grano medio (>2 mm), donde se observan cristales de feldespatos blanquecinos, muy escaso
cuarzo, biotita y anfíboles oxidados y óxidos de hierro diseminados, rodeados por una pasta de
grano muy fino, la lava muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente escaso de la lava, presente en forma de fenocristales anhedrales
con bordes sub-redondeados de hasta 0,5 mm de largo, muestran fracturas y engolfamientos.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 3 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción, muchas fracturas e inclusiones de
la pasta, corresponden a la variedad Oligoclasa (An: 25) (Fig. 23).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 1,5 mm de largo, de color marrón oscuro por la fuerte oxidación de sus
bordes y planos de exfoliación, muestran cierta orientación preferencial (Fig. 23).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales poligonales y
subhedrales prismáticos de color marrón-rojizo, están reemplazados parcialmente por limonita,
y alcanzan hasta 0,5 mm de largo (Fig. 23).
Clinopiroxenos.- Se observan en escaso porcentaje fenocristales anhedrales de tono pardo
pálido, que alcanzan hasta 0,5 mm de largo, se trata del tipo augita, y se encuentran rodeados
por micro-cristales de hornblenda formando aureolas de alteración (Fig. 23).
Pasta.- La pasta de la lava es abundante y está formada principalmente por vidrio volcánico de
tono pardo y textura fluidal, junto a pequeños fragmentos de plagioclasas (Fig. 23).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral, diseminados en la pasta y alterando a cristales de biotita y hornblenda,
corresponderían a las variedades limonita, hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 22 de Agosto de 2017
Nº LAB: SGM-147/17 Muestra 7732.
45
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
292
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 1-2 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)………..……………..….…...………. 23-25 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-5 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 1-2 %
Pasta (vidrio volcánico)………........................................……………...….….. 58-60 %
Óxidos de Hierro (Limonita, hematita y magnetita).……….………….…..….… 3-4 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), con pasta vítrea de textura fluidal (Fig. 23).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia que corresponde a una ANDESITA Biotítica, moderadamente oxidada.
Fig. 23. Muestra 7732, aumento 4x, polarizadores ll. Lava Andesítica, con fenocristales de
plagioclasas (Pl), biotita (Bt) y hornblenda (Hb) oxidadas, clinopiroxeno (CPx) y pasta vítrea.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
46
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
293
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris, presenta superficies de intensa
meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de
grano medio (>2 mm), donde se observan cristales de feldespatos blanquecinos, muy escaso
cuarzo, biotita y anfíboles oxidados, piroxenos y óxidos de hierro diseminados, rodeados por
una pasta de grano muy fino, la lava muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente escaso de la lava, presente en forma de fenocristales anhedrales
con bordes sub-redondeados inferiores a 0,5 mm de largo, muestran fracturas y engolfamientos.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 3 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción, fracturas e inclusiones de la
pasta, corresponden a la variedad Andesina (An: 30-35) (Fig. 24).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 2 mm de largo, de color marrón oscuro por la fuerte oxidación de sus
bordes y planos de exfoliación, muestran cierta orientación preferencial (Fig.24).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales poligonales y
subhedrales prismáticos de color marrón-rojizo, están reemplazados parcialmente por limonita,
y alcanzan hasta 0,5 mm de largo (Fig. 7).
Clinopiroxenos.- Se observan en escaso porcentaje, fenocristales subhedrales y prismáticos
de tono pardo pálido, que alcanzan hasta 0,5 mm de largo, se trata del tipo augita.
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas, junto a vidrio volcánico de tono pardo y textura masiva (Fig. 24).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como minerales opacos de hábito
anhedral, diseminados en la pasta y alterando a cristales de biotita y hornblenda,
corresponderían a las variedades limonita, hematita y magnetita.
Calcita.- Se observan en reducido porcentaje, agregados anhedrales de calcita secundaria de
grano muy fino y de color blanquecino, rellenando pequeñas cavidades de la lava.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 23 de Agosto de 2017
Nº LAB: SGM-148/17 Muestra 7809.
47
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
294
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 1-2 %
Plagioclasas (Andesina) NaCaAl(Si3O8)………………………..….…...………. 25-27 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-6 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 2-3 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 1-2 %
Pasta (Microlitos de plagioclasas y vidrio)………................…………...….….. 53-55 %
Óxidos de Hierro (Limonita, hematita y magnetita).……….………….…..….… 2-3 %
Calcita (CaCO3)............................................................................................. 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), con pasta de microlitos de plagioclasas y vidrio de textura masiva (Fig. 24).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia que corresponde a una ANDESITA Biotítica, meteorizada.
Fig. 24. Muestra 7809, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), biotita (Bt), hornblenda (Hb), y pasta con microlitos de plagioclasas y vidrio.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
48
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
295
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono negruzco, presenta
superficies de meteorización y composición básica, muestra estructura holocristalina y textura
porfídica de grano medio a fino (>1 mm), donde se observan cristales de feldespatos
blanquecinos con orientación, minerales máficos muy oxidados, piroxenos y óxidos de hierro
diseminados, rodeados por una pasta de grano muy fino, la lava muestra elevada dureza y
compactación, así como numerosas cavidades o amígdalas vacías.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Son los principales componentes de la lava, se presentan en forma de
fenocristales subhedrales de hábito tabular y prismático, alcanzan hasta 2 mm de largo,
muestran zonación, maclas polisintéticas tipo Albita y combinadas Albita-Carlsbad, con
orientación preferencial que sigue el flujo de la lava, bordes de reacción, e inclusiones de la
pasta, corresponden a la variedad Andesina (An: 40) (Fig. 25).
Minerales Máficos oxidados.- Se presenta en reducida proporción, en forma de pseudomorfos
de fenocristales subhedrales de hasta 0,5 mm de largo, tienen color marrón oscuro por la
completa oxidación de los cristales, probablemente correspondían a hornblendas originales.
Clinopiroxenos.- Se observan en escaso porcentaje, fenocristales anhedrales y subhedrales
de hábito prismático y de tono pardo pálido, que alcanzan menos de 0,5 mm de largo, se trata
de la variedad augita (Fig. 25).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos muy finos
de plagioclasas, junto a vidrio volcánico de tono pardo y textura masiva (Fig. 25).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como minerales opacos de hábito
anhedral, diseminados en la pasta y reemplazando a cristales de minerales máficos,
corresponderían a las variedades limonita, hematita y magnetita.
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)………………………..….…....………. 31-33 %
Minerales Máficos muy oxidados………....…………………..………….….…... 1-2 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Pasta (Microlitos de plagioclasas y vidrio)………................…………...….….. 58-60 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 23 de Agosto de 2017
Nº LAB: SGM-149/17 Muestra 7810.
49
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
296
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Óxidos de Hierro (Limonita, hematita y magnetita).……….………….…..….… 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y cavernosa con textura porfídica
de grano medio a fino (>1 mm), con pasta de microlitos de plagioclasas y vidrio de textura
masiva (Fig. 25).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición básica
que corresponde a un BASALTO Piroxénico.
Fig. 25. Muestra 7810, aumento 4x, polarizadores X. Lava Basáltica, con fenocristales de
plagioclasas (Pl), clinopiroxenos (CPx) y una pasta con microlitos de plagioclasas y vidrio.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
50
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
297
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 24 de Agosto de 2017
Nº LAB: SGM-151/17 Muestra 7813.
51
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico ( lava andesitica ) de composición
intermedia, muestra estructura bandeada o fluidal y textura porfídica de grano medio
(>1 mm), donde se observa una intercalación entre bandas lenticulares de color marrón-rojizo y
bandas de tono negruzco, ambas muestran cristales de feldespatos blanquecinos, muy escaso
cuarzo, piroxenos, rodeados por una pasta ferruginosa y vítrea, con mayor presencia de hierro en las
bandas negruzcas. La roca presenta coloracion verdusca oscura y elevada dureza y
compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinada Albita-Carlsbad, con inclusiones de la pasta, corresponden al tipo Andesina
(An: 35-40), se hallan muy fracturadas y también como fragmentos angulosos (Fig. 26).
Clinopiroxenos.- Se observan en moderado porcentaje, como fenocristales anhedrales
y subhedrales de hábito prismático y tabular de clinopiroxenos de tono pardo pálido, algunos
con maclas polisintéticas, alcanzan hasta 0,7 mm de largo y se tratan del tipo augita (Fig. 26).
Cuarzo.- Es un componente muy escaso, presente en forma de cristales anhedrales con bordes
sub-angulosos, inferiores a 0,5 mm de largo, muestran fracturas y engolfamientos.
Pasta.- La pasta es abundante y está conformada principalmente por óxidos de hierro de tono
marrón-rojizo del tipo limonita-goethita (ferruginosa), que es más abundante en las
bandas lenticulares oscuras, junto a vidrio volcánico de tono pardo oscuro que muestra textura
masiva con esquirlas aplanadas por el alto grado de soldadura de la roca, y en escaso
porcentaje por microlitos de plagioclasas (Fig. 26).
Litoclastos.- Se observan litoclastos de bordes angulosos, formados por rocas volcánicas
de similar composición que la roca hospedante, con mayor contenido de plagioclasas,
pocos piroxenos y óxidos de hierro diseminados, alcanzan hasta 1 cm de largo.
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….…. 0,5-1 %
Plagioclasas (Andesina) NaCaAl(Si3O8)……………………..…..…….………... 28-30 %
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
298
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-5 %
Pasta (Óxidos de hierro y Vidrio volcánico)............…............................…… 58-60 %
Litoclastos (rocas volcánicas)…………........................………………...….….. 3-4 %
Total…………………………………………………...………………….….……… 100 %
Fig. 26. Muestra 7813, aumento 4x, polarizadores X. Toba Ignimbrítica Andesítica, con fenocristales
de plagioclasas (Pl), clinopiroxenos (CPx), y abundante pasta ferruginosa (limonita-goethita) y vítrea.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
52
Textura y estructura.- La roca presenta estructura bandeada (lenticular) o fluidal y
textura porfídica de grano medio (>1 mm), con abundante pasta ferruginosa y vítrea de textura
masiva (Fig. 26).
Nombre de la roca.- De acuerdo al análisis petrográfico, se trataría de un flujo de lava de
composición intermedia, que correspondería a una roca ANDESÍTICA. Si bien es muy similar a
una lava, por las esquirlas de vidrio deformadas y aplanadas, junto a la textura bandeada
lenticular puede constituirse en parte de una brecha basal de flujo volcanico.
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
299
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 24 de Agosto de 2017
Nº LAB: SGM-150/17 Muestra 7811.
53
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico de composición intermedia y color violáceo
oscuro, muestra estructura aglomerada y textura porfídica de grano medio (>2 mm), donde
se observan abundantes cristales de feldespatos blanquecinos, piroxenos y grandes
litoclastos de rocas volcánicas de tono gris, rodeados por una pasta ferruginosa de
tono violáceo. La roca presenta moderado grado de dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinada Albita-Carlsbad, con inclusiones de la pasta, corresponden a la
variedad Andesina (An: 35), se hallan fracturadas y también como fragmentos angulosos (Fig. 27).
Clinopiroxenos.- Se observan en moderado porcentaje, como fenocristales anhedrales
y subhedrales de hábito prismático y tabular de clinopiroxenos de tono pardo pálido, algunos
con maclas polisintéticas, alcanzan hasta 1,5 mm de largo y se tratan del tipo augita.
Pasta.- La pasta es abundante y está conformada fundamentalmente por óxidos de hierro de
tono marrón-rojizo y hábito terroso del tipo limonita-goethita (ferruginosa), probablemente junto
a pequeños contenidos de vidrio volcánico de textura masiva, enmascarado por los óxidos de
hierro que se observan como minerales opacos (Fig. 27).
Litoclastos.- Se observan grandes litoclastos de bordes angulosos, formados por
rocas volcánicas de tono gris y similar composición que la roca hospedante, con mayor
contenido de plagioclasas, pocos piroxenos y óxidos de hierro diseminados de habito anhedral
y cúbico que corresponderían a hematita, magnetita y limonita, alcanzan hasta 2 cm de largo
en la sección delgada y hasta 4 cm en la muestra de mano (Fig. 27).
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)……………………..…..…….………... 25-27 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-5 %
Pasta (Óxidos de hierro)..........................................…............................….. 56-58 %
Litoclastos (rocas volcánicas)…………........................………………...….….. 8-10 %
Total…………………………………………………...………………….….……… 100 %
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
300
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Fig. 27. Muestra 7811, aumento 4x, polarizadores ll. Toba Lítica Andesítica, con fenocristales
de plagioclasas (Pl), litoclasto volcánico (Litv) y abundante pasta ferruginosa (limonita-goethita).
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
54
Textura y estructura.- La roca presenta estructura aglomerada y textura porfídica de
grano medio (>2 mm), con abundante pasta ferruginosa de limonita-goethita (Fig. 27).
Nombre de la roca.- De acuerdo al análisis petrográfico, se trataría probablemente de una roca
de composición intermedia, que correspondería a una ANDESITA Piroxénica con pasta
muy ferruginosa. y por los contenidos de litoclastos de una brecha basal de un flujo de lava
andesitico.
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
301
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Óxidos de Hierro (Limonita).…….….….………………………………..…..…… 2-3 %
Total…………………………………………………...………………….….……… 100 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 24 de Agosto de 2017
Nº LAB: SGM-152/17 Muestra 7814.
55
Descripción Macroscópica.-
Fragmento de una roca de origen piroclástico (toba), de color gris con tono rosáceo,
muestra superficies de meteorización, composición acida, con estructura masiva y textura porfídica
de grano medio (>1 mm), donde se observan cristales de feldespatos blanquecinos,
anfíboles, piroxenos y óxidos de hierro diseminados, rodeados por una pasta
de grano muy fino, la roca muestra moderada dureza y compactación, y presenta costras delgadas
de malaquita.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales
subhedrales tabulares y prismáticos, de hasta 1,5 mm de largo, muestran zonación, maclas
polisintéticas tipo Albita y combinadas Albita-Carlsbad, con bordes de reacción y
fracturas, corresponden a la variedad Andesina (An: 35) (Fig. 28).
Clinopiroxenos.- Se observan en reducido porcentaje pequeños fenocristales anhedrales
y subhedrales prismáticos de tono verdoso pálido, que alcanzan hasta 0,5 mm de largo, se
trata del tipo augita (Fig. 28).
Hornblenda.- Se observan en moderado porcentaje fenocristales euhedrales
poligonales de color marrón, se hallan reemplazados parcialmente por limonita en los bordes,
alcanzan hasta 1 mm de largo (Fig. 28).
Pasta.- La pasta es abundante y está formada principalmente por microlitos de plagioclasas sin
orientación, en menor porcentaje por vidrio volcánico de tono pardo y textura masiva, y óxidos
de hierro de grano muy fino (Fig. 28).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como minerales opacos anhedrales,
diseminados en la pasta y alterando cristales de hornblenda, corresponden al tipo limonita.
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)…………...….……..…….…...………. 23-25 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… <1 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 3-5 %
Pasta (microlitos de plagioclasas y vidrio)…....................………….....….….. 63-65 %
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
302
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Fig. 28. Muestra 7814, aumento 4x, polarizadores X. Toba Andesítica, con fenocristales de
plagioclasas (Pl), hornblenda (Hb), clinopiroxeno (CPx), y una pasta con microlitos y vidrio.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
56
Textura y estructura.- Presenta estructura masiva y textura porfídica de grano medio (>1 mm),
con pasta vítrea y microlitos de plagioclasas, presenta delgadas costras superficiales
de malaquita verdosa (Fig. 28).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una toba de
composición acida, que corresponde a una DACITA Hornbléndica, ligeramente oxidada.
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
303
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro con superficies de
meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de
grano medio (>1 mm), donde se observan cristales de feldespatos blanquecinos, biotita,
piroxenos y óxidos de hierro diseminados, rodeados por una pasta de grano fino, contiene
agregados de calcita rellenando pequeñas cavidades, la roca muestra elevada dureza y
compactación, y contiene algunos litoclastos de rocas volcánicas.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a la
variedad Andesina (An: 35), se hallan débilmente alterados a calcita (Fig. 29).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 1 mm de largo, de color marrón oscuro por la oxidación de sus bordes y
planos de exfoliación, con inclusiones de plagioclasas.
Clinopiroxenos.- Se observan en moderado porcentaje fenocristales euhedrales poligonales y
subhedrales prismáticos de tono verdoso pálido, que alcanzan hasta 1 mm de largo, se trata del
tipo augita, algunos presentan maclas polisintéticas (Fig. 29).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas con marcada orientación y textura traquítica, y en menor porcentaje por vidrio
volcánico de tono pardo y textura masiva (Fig. 29).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral, diseminados en la pasta y alterando a cristales de biotita,
corresponderían a las variedades limonita, hematita y magnetita.
Calcita.- Se observan en escaso porcentaje, agregados anhedrales de calcita secundaria de
grano fino y de color blanquecino, rellenando pequeñas cavidades de la lava.
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)……………….……..…….…...………. 28-30 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 2-3 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 25 de Agosto de 2017
Nº LAB: SGM-153/17 Muestra 7816.
57
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
304
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 5-7 %
Pasta (microlitos de plagioclasas)…………………............………….....….….. 53-55 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Calcita (CaCO3).…………………………………………………….…….…......... 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>1 mm), con pasta microlítica de textura traquítica (Fig. 29).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Piroxénica, débilmente carbonatada.
Fig. 29 Muestra 7816, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), y pasta con microlitos de plagioclasas y vidrio.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
58
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
305
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro con superficies de
intensa meteorización, composición intermedia, muestra estructura holocristalina y textura
porfídica de grano medio (>1 mm), donde se observan cristales de feldespatos blanquecinos,
biotita y anfíboles muy oxidados, piroxenos y óxidos de hierro diseminados, rodeados por una
pasta de grano fino, la roca muestra moderada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 4 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a la
variedad Oligoclasa (An: 25-30), muestran ligera orientación preferencial (Fig. 30).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 0,7 mm de largo, de color marrón oscuro por la intensa oxidación de sus
bordes y planos de exfoliación (Fig. 30).
Clinopiroxenos.- Se observan en moderado porcentaje fenocristales euhedrales poligonales y
subhedrales prismáticos de tono verdoso pálido, que alcanzan hasta 2 mm de largo, se trata del
tipo augita, algunos cristales muestran cierta oxidación de los bordes (Fig. 30).
Hornblenda.- Se observan en moderado porcentaje como fenocristales euhedrales poligonales
y subhedrales de color marrón, se hallan intensamente oxidados en los bordes, alcanzan hasta
1 mm de largo (Fig. 30).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas con marcada orientación y textura traquítica, y en menor porcentaje por vidrio
volcánico de tono pardo y textura masiva (Fig. 30).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral, diseminados en la pasta y alterando a cristales de biotita,
corresponderían a las variedades limonita, hematita y escasa magnetita.
Composición porcentual observada.-
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)……………….……..…….…...…….. 30-32 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 1-2 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 25 de Agosto de 2017
Nº LAB: SGM-154/17 Muestra 7817.
59
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
306
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 4-5 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 2-3 %
Pasta (microlitos de plagioclasas)…………………............………….....….….. 53-55 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>1 mm), con pasta microlítica de textura traquítica (Fig. 30).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Piroxénica, débilmente oxidada.
Fig. 30. Muestra 7817, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), hornblenda (Hb), biotita (Bt) y pasta con microlitos.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
60
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
307
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con superficies de intensa
meteorización, composición intermedia, muestra estructura holocristalina y cavernosa, con
textura porfídica de grano medio (>1 mm), donde se observan abundantes cristales de
feldespatos blanquecinos, biotita oxidada, piroxenos y óxidos de hierro diseminados, rodeados
por una pasta de grano fino, la roca muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 3 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a la
variedad Andesina (An: 35), muestran ligera orientación preferencial (Fig. 31).
Biotita.- Se presenta en reducida proporción, como fenocristales subhedrales tabulares que
alcanzan hasta 1 mm de largo, de color marrón oscuro por la oxidación de sus bordes (Fig. 31).
Clinopiroxenos.- Se observan en moderado porcentaje fenocristales subhedrales prismáticos y
anhedrales de tono verdoso pálido, que alcanzan hasta 2 mm de largo, se trata del tipo augita,
algunos cristales muestran fracturas y oxidación de los bordes (Fig. 31).
Pasta.- La pasta de la lava es abundante y está formada principalmente por micro-cristales y
microlitos de plagioclasas sin orientación, y en menor porcentaje por vidrio volcánico de tono
pardo y textura fluidal (Fig. 31).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral, diseminados en la pasta y alterando a cristales de biotita,
corresponderían a las variedades limonita, hematita y magnetita.
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)…………..…….……..…….…...…….. 30-32 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 3-4 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 4-6 %
Pasta (microlitos de plagioclasas y vidrio)…..……..........………….......….…. 53-55 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 28 de Agosto de 2017
Nº LAB: SGM-155/17 Muestra 7818.
61
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
308
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Textura y estructura.- Presenta una estructura holocristalina y cavernosa, con textura porfídica
de grano medio (>1 mm), la pasta es microlítica y vítrea (Fig. 31).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Piroxénica.
Fig. 31. Muestra 7818, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), biotita oxidada (Bt) y pasta con microlitos y vidrio fluidal.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
62
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
309
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono rosáceo, tiene
superficies de meteorización, composición intermedia, muestra estructura holocristalina y
textura porfídica de grano medio (>2 mm), donde se observan abundantes cristales de
feldespatos blanquecinos, biotita y anfíboles oxidados, piroxenos, óxidos de hierro diseminados
y pequeños litoclastos de rocas volcánicas, rodeados por una pasta de grano fino, la roca
muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 3 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden al límite
entre Oligoclasa-Andesina (An: 30), muestran ligera orientación preferencial (Fig. 32).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales y tabulares
que alcanzan hasta 0,5 mm de largo, de color marrón oscuro por una débil oxidación de sus
bordes.
Clinopiroxenos.- Se observan en moderado porcentaje fenocristales subhedrales prismáticos y
anhedrales de tono verdoso pálido, que alcanzan hasta 1 mm de largo del tipo augita, algunos
cristales muestran fracturas y oxidación de los bordes (Fig. 32).
Hornblenda.- Se observan en reducido porcentaje como fenocristales euhedrales poligonales y
subhedrales prismáticos de color marrón, se hallan oxidados en los bordes, alcanzan hasta 0,5
mm de largo (Fig. 32).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas sin orientación, y en menor porcentaje por óxidos de hierro de grano fino (Fig. 32).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral, diseminados en la pasta y alterando a cristales de biotita y
hornblenda, corresponderían a las variedades limonita, hematita y poca magnetita.
Litoclastos.- Se observan pequeños litoclastos de bordes sub-angulosos, formados por rocas
volcánicas de tono gris y similar composición que la roca hospedante, contienen plagioclasas,
piroxenos y anfíboles oxidados, alcanzan hasta 2 mm de largo.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 28 de Agosto de 2017
Nº LAB: SGM-156/17 Muestra 7820.
63
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
310
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)…………..…….……..…….…...…….. 30-32 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 1-2 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 3-5 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 2-3 %
Pasta (microlitos de plagioclasas)…..……..........…………………….......….… 51-53 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Litoclastos (rocas volcánicas)…..……..........………….……………….......…… 1-2 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), la pasta es microlítica (Fig. 32).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Piroxénica, débilmente oxidada.
Fig. 32. Muestra 7820, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), hornblenda (Hb) y pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
64
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
311
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, composición intermedia,
muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde se
observan abundantes cristales de feldespatos blanquecinos, biotita y anfíboles oxidados,
escaso cuarzo y piroxenos, y óxidos de hierro diseminados, rodeados por una pasta de grano
fino, la roca muestra elevada dureza y compactación, en general se halla fresca.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente escaso, presente en forma de fenocristales anhedrales con bordes
sub-angulosos, de hasta 1 mm de largo, muestran fracturas y engolfamientos.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 4 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden al tipo
Oligoclasa (An: 25-30) (Fig. 33).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales y tabulares
que alcanzan hasta 2,5 mm de largo, de color marrón oscuro por una débil oxidación de sus
bordes, contienen pequeñas inclusiones de plagioclasas.
Clinopiroxenos.- Se observan en reducido porcentaje como fenocristales anhedrales de tono
verdoso pálido, que alcanzan hasta 0,5 mm de largo del tipo augita, algunos cristales muestran
fracturas y oxidación de los bordes (Fig. 33).
Hornblenda.- Se observan en moderado porcentaje como fenocristales euhedrales poligonales
y subhedrales prismáticos de color marrón, se hallan oxidados en los bordes, alcanzan hasta
1,5 mm de largo (Fig. 33).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas sin orientación, y en menor porcentaje por vidrio volcánico de textura masiva y
óxidos de hierro de grano muy fino (Fig. 33).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral, diseminados en la pasta y alterando a cristales de biotita y
hornblenda, corresponderían a las variedades limonita, hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 28 de Agosto de 2017
Nº LAB: SGM-157/17 Muestra 7821.
65
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
312
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 1-2 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)…………..…….……..…….…...…… 20-22 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 2-3 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 4-5 %
Pasta (microlitos de plagioclasas)…..……..........…………………….......….… 60-62 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), la pasta es principalmente microlítica (Fig. 33).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Hornbléndica.
Fig. 33. Muestra 7821, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), hornblenda (Hb) y pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
66
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
313
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono rosáceo, composición
intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde
se observan abundantes cristales de feldespatos blanquecinos, biotita y anfíboles oxidados,
escaso cuarzo y óxidos de hierro diseminados, rodeados por una pasta de grano fino, la roca
muestra moderada dureza y compactación, en general se halla meteorizada.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente reducido, presente en forma de fenocristales anhedrales con
bordes sub-redondeados, de hasta 1,5 mm de largo, muestran fracturas y bordes de reacción.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 3 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y muchas fracturas, corresponden
al tipo Oligoclasa (An: 25-30) (Fig. 34).
Biotita.- Se presenta en moderada proporción, en forma de fenocristales subhedrales y
tabulares que alcanzan hasta 1,5 mm de largo, de color marrón oscuro por una débil oxidación
de sus bordes, contienen pequeñas inclusiones de plagioclasas (Fig. 34).
Hornblenda.- Se observan en reducido porcentaje como fenocristales euhedrales poligonales y
subhedrales prismáticos de color marrón, se hallan oxidados en los bordes y alcanzan hasta 1
mm de largo (Fig. 34).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas sin orientación, y en menor porcentaje por vidrio volcánico de textura masiva y
óxidos de hierro de grano muy fino (Fig. 34).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral, diseminados en la pasta y alterando a cristales de biotita y
hornblenda, corresponderían a las variedades limonita, hematita y escasa magnetita.
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 2-3 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)…………..…….……..…….…...…… 25-27 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 5-7 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 28 de Agosto de 2017
Nº LAB: SGM-158/17 Muestra 7822.
67
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
314
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 2-3 %
Pasta (microlitos de plagioclasas)…..……..........…………………….......….… 55-57 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), la pasta es principalmente microlítica (Fig. 34).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Biotítica (con escaso Cuarzo).
Fig. 34. Muestra 7822, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), biotita (Bt), hornblenda (Hb), y una pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
68
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
315
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca sedimentaria pelítica (probablemente una arcillita) y color marróngrisáceo,
presenta una estructura masiva y terrosa con indicios de estratificación y textura
clástica de grano muy fino (<0,5 mm), donde se observan bandas formadas por abundantes
limos y arcillas, junto a óxidos de hierro y probablemente polvo de vidrio volcánico, por lo que la
roca es muy suave, con reducida compactación y es deleznable.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en escaso porcentaje, en forma de micro-clastos anhedrales de
bordes angulosos, con tamaño variable de 0,1 a 0,5 mm de largo, muestran zonación y maclas
polisintéticas tipo Albita, diseminados dentro de un abundante material arcilloso-limoso (Fig. 35).
Cuarzo.- Se presenta en muy escaso porcentaje, como micro-clastos anhedrales con bordes
angulosos de grano muy fino, entre 0,1 a 0,4 mm de largo, diseminados dentro del abundante
material arcilloso-limoso (Fig. 35).
Piroxenos.- Se observan diseminados en muy escaso porcentaje, como micro-clastos
subhedrales de tono verdoso pálido, que alcanzan hasta 0,5 mm de largo, del tipo augita.
Arcillas y Limos.- Son los principales componentes de la roca argilácea, se observan en forma
de agregados de grano muy fino (<0,1 mm) y de tono marrón-rojizo, estrechamente asociados
con micro-cristales de limonita y probablemente de polvo de vidrio volcánico pardo (Fig. 18).
Óxidos de Hierro.- Ocurren como pequeños minerales opacos diseminados en moderado
porcentaje dentro del material arcillosos-limoso, muestran hábito terroso, tono marrón-rojizo y
corresponderían a la variedad limonita (Fig. 35).
Composición porcentual observada.-
Plagioclasas NaCaAl(Si3O8)……………...……….………….……….……...…. 1-2 %
Cuarzo (SiO2)..........................................................................................…. <1 %
Piroxenos (Augita) (Mg,Fe)(SiO3)..……................................................…… <1 %
Arcillas y Limos …..............................................................................….…. 92-94 %
Óxidos de Hierro (Limonita).................. …............................................…… 4-5 %
Total…………………………………………………...………………….…..……. 100 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 28 de Agosto de 2017
Nº LAB: SGM-159/17 Muestra 7824.
69
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
316
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Textura y estructura.- La roca argilácea presenta estructura masiva y terrosa con textura
clástica de grano muy fino (<0,1 mm), con escasos micro-clastos de plagioclasas cuarzo y
piroxenos. Es deleznable y muestra escasa dureza y cohesión por el abundante contenido de
arcillas y limos (Fig. 35).
Nombre de la roca.- De acuerdo al análisis petrográfico, corresponde a una roca sedimentaria
o volcano-sedimentaria de composición pelítica (argilácea), clasificada como una ARCILLITA,
cuyos escasos micro-clastos corresponden a minerales originales que fueron erosionados de
rocas volcánicas; probablemente se trata de una roca de edad cuaternaria.
Fig. 35. Muestra 7824, aumento 4x, polarizadores ll. Arcillita, formada fundamentalmente por arcillas
y limos de tono marrón, con escasos micro-clastos de plagioclasas (Pl), cuarzo (Qz) y limonita (Lm).
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
70
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
317
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono oscuro, tiene
superficies de meteorización, composición intermedia, muestra estructura cavernosa con
cavidades vacías y textura porfídica de grano medio (>2 mm), donde se observan abundantes
cristales de feldespatos blanquecinos, biotita muy oxidada, piroxenos y óxidos de hierro
diseminados, rodeados por una pasta de grano muy fino, la roca muestra moderada dureza y
compactación y un aspecto escoriáceo por sus numerosas cavidades.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 3,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a la
variedad Andesina (An: 30-35), muestran ligera orientación preferencial (Fig. 36).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales anhedrales y
subhedrales tabulares que alcanzan hasta 1 mm de largo, de color marrón oscuro por la intensa
oxidación de gran parte de sus cristales.
Clinopiroxenos.- Se observan en moderado porcentaje fenocristales subhedrales prismáticos y
anhedrales de tono verdoso pálido, que alcanzan hasta 0,7 mm de largo del tipo augita, algunos
cristales muestran fracturas y oxidación de los bordes (Fig. 36).
Pasta.- La pasta de la lava es abundante y está formada principalmente por micro-cristales y
microlitos de plagioclasas con cierta orientación, y en menor porcentaje por vidrio volcánico
masivo y óxidos de hierro de grano fino (Fig. 36).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral (cúbico), diseminados en la pasta y alterando a cristales de biotita,
corresponderían a las variedades limonita, hematita y poca magnetita.
Composición porcentual observada.-
Plagioclasas (Andesina) NaCaAl(Si3O8)…………..…….……..…….…...…….. 32-34 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 2-3 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 4-5 %
Pasta (microlitos de plagioclasas)…..……..........…………………….......….… 53-55 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 28 de Agosto de 2017
Nº LAB: SGM-160/17 Muestra 7825.
71
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
318
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura cavernosa y textura porfídica de grano medio
(>2 mm), la pasta es microlítica y vítrea (Fig. 36).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Piroxénica, débilmente oxidada.
Fig. 36. Muestra 7825, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), y pasta con microlitos de plagioclasas y vidrio.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
72
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
319
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris, muestra superficies de
meteorización, composición relativamente ácida, muestra estructura holocristalina y textura
porfídica de grano medio (>2 mm), donde se observan abundantes cristales de feldespatos
blanquecinos, cuarzo, biotita muy oxidada, piroxenos y óxidos de hierro diseminados, rodeados
por una pasta de grano muy fino, la roca muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente presente en moderado porcentaje forma de cristales anhedrales y
subhedrales con bordes sub-angulosos, que alcanzan hasta 2 mm de largo, muestran fracturas,
engolfamientos e inclusiones de la pasta (Fig. 37).
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a la
variedad Oligoclasa (An: 25-30) (Fig. 37).
Biotita.- Se presenta en moderada proporción en forma de fenocristales euhedrales poligonales
y subhedrales tabulares que alcanzan hasta 2 mm de largo, de color marrón oscuro por la
intensa oxidación de gran parte de sus cristales.
Clinopiroxenos.- Se observan en moderado porcentaje fenocristales subhedrales prismáticos y
euhedrales poligonales de tono verdoso pálido, que alcanzan hasta 1,5 mm de largo del tipo
augita, algunos muestran fracturas y maclas polisintéticas (Fig. 37).
Pasta.- La pasta es abundante y está formada principalmente por microlitos de plagioclasas con
cierta orientación, y en menor porcentaje por óxidos de hierro de grano muy fino (Fig. 37).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral (trapezoidal), diseminados en la pasta y alterando a cristales de
biotita, corresponderían a las variedades limonita, hematita y magnetita.
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 5-7 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)…………..…….……..…….…...…… 20-22 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 3-4 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 29 de Agosto de 2017
Nº LAB: SGM-161/17 Muestra 7827.
73
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
320
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 4-6 %
Pasta (microlitos de plagioclasas)…..……..........…………………….......….… 56-58 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), la pasta es microlítica (Fig. 37).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición ácida,
que corresponde a una DACITA Piroxénica, débilmente oxidada.
Fig. 37. Muestra 7827, aumento 4x, polarizadores X. Lava Dacítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), cuarzo (Qz) y pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
74
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
321
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono oscuro, tiene
superficies de meteorización, composición intermedia, muestra estructura holocristalina y
textura porfídica de grano medio (>2 mm), donde se observan abundantes cristales de
feldespatos blanquecinos, anfíboles, biotita, piroxenos y óxidos de hierro diseminados,
rodeados por una pasta de grano muy fino, la roca muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 3,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a la
variedad Oligoclasa (An: 25), muestran ligera orientación preferencial (Fig. 38).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales anhedrales y
subhedrales tabulares que alcanzan hasta 1 mm de largo, de color marrón (Fig. 38).
Hornblenda.- Se observan en moderado porcentaje fenocristales euhedrales poligonales y
subhedrales prismáticos de color marrón, con maclas y se hallan reemplazados parcialmente
por limonita en los bordes, alcanzan hasta 1,5 mm de largo (Fig. 38).
Clinopiroxenos.- Se observan en reducido porcentaje fenocristales subhedrales prismáticos y
anhedrales de tono verdoso pálido, que alcanzan hasta 1 mm de largo del tipo augita, algunos
cristales muestran oxidación de los bordes (Fig. 38).
Pasta.- La pasta de la lava es abundante y está formada principalmente por microlitos de
plagioclasas con cierta orientación, y en menor porcentaje por vidrio volcánico masivo y óxidos
de hierro de grano fino (Fig. 38).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral, diseminados en la pasta, corresponderían a las variedades
limonita, hematita y magnetita.
Composición porcentual observada.-
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)…………..…….……..…….…...…… 28-30 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 2-3 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 3-5 %
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 29 de Agosto de 2017
Nº LAB: SGM-162/17 Muestra 7830.
75
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
322
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Pasta (microlitos de plagioclasas)…..……..........…………………….......….… 54-56 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), la pasta es microlítica y vítrea (Fig. 38).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Hornbléndica.
Fig. 38. Muestra 7830, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de plagioclasas (Pl),
clinopiroxeno (CPx), hornblenda (Hb), biotita (Bt) y pasta con microlitos de plagioclasas y poco vidrio.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
76
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
323
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris con tono oscuro, tiene
superficies de intensa meteorización, composición intermedia, muestra estructura holocristalina
y textura porfídica de grano medio (>2 mm), donde se observan abundantes cristales de
feldespatos, anfíboles, biotita, piroxenos, poco cuarzo y óxidos de hierro diseminados, rodeados
por una pasta de grano muy fino, la roca muestra moderada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Cuarzo.- Es un componente presente en reducido porcentaje forma de cristales anhedrales y
subhedrales con bordes sub-angulosos, que alcanzan hasta 0,5 mm de largo, muestran
fracturas, engolfamientos e inclusiones de la pasta.
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a la
variedad Oligoclasa (An: 25), muestran ligera orientación preferencial (Fig. 39).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales euhedrales poligonales
y subhedrales tabulares que alcanzan hasta 2 mm de largo, de color marrón, contienen
pequeñas inclusiones de plagioclasas (Fig. 39).
Hornblenda.- Se observan en moderado porcentaje fenocristales euhedrales poligonales y
subhedrales prismáticos de color marrón, se hallan reemplazados parcialmente por limonita en
los bordes, alcanzan hasta 2,5 mm de largo.
Clinopiroxenos.- Se observan en reducido porcentaje fenocristales subhedrales prismáticos y
anhedrales de tono verdoso pálido, que alcanzan hasta 1,5 mm de largo del tipo augita, algunos
cristales muestran oxidación de los bordes y maclas (Fig. 4).
Pasta.- La pasta es abundante y está formada principalmente por microlitos de plagioclasas con
cierta orientación, y en menor porcentaje por vidrio volcánico masivo y óxidos de hierro de
grano fino (Fig. 39).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral, diseminados en la pasta y como alteración de hornblendas y
biotitas, corresponderían a las variedades limonita, hematita y magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 29 de Agosto de 2017
Nº LAB: SGM-163/17 Muestra 7833.
77
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
324
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Cuarzo (SiO2)…….……….……………………………………..…….……..….… 1-2 %
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)…………..…….……..…….…...…… 26-28 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 2-3 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 4-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Pasta (microlitos de plagioclasas)…..……..........…………………….......….… 53-55 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 3-4 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), la pasta es mayoritariamente microlítica (Fig. 39).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Hornbléndica, débilmente oxidada.
Fig. 39. Muestra 7833, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), biotita (Bt) y pasta con microlitos de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
78
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
325
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 29 de Agosto de 2017
Nº LAB: SGM-164/17 Muestra 7737.
79
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, tiene superficies
de meteorización, composición acida, muestra estructura holocristalina y textura porfídica de
grano medio (>2 mm), donde se observan abundantes y grandes cristales de
feldespatos, anfíboles, biotita, escasos piroxenos y óxidos de hierro diseminados, rodeados
por una pasta de grano muy fino, la roca muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 2,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción y fracturas, corresponden a
la variedad Oligoclasa (An: 25-30) (Fig. 40).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 1 mm de largo, de color marrón, contienen pequeñas inclusiones
de plagioclasas, están ligeramente oxidados (Fig. 40).
Hornblenda.- Se observan en reducido porcentaje fenocristales euhedrales poligonales
y subhedrales prismáticos de color marrón, se hallan reemplazados parcialmente por limonita
en los bordes, alcanzan hasta 1 mm de largo.
Clinopiroxenos.- Se observan en escaso porcentaje fenocristales subhedrales prismáticos y
anhedrales de tono verdoso pálido, que alcanzan hasta 2 mm de largo del tipo augita, algunos
cristales muestran oxidación de los bordes y se hallan aglomerados en grupos (Fig. 5).
Pasta.- La pasta es muy abundante y está formada principalmente por vidrio volcánico
de textura masiva y perlítica, y en menor porcentaje por microlitos de plagioclasas y
óxidos de hierro de grano muy fino (Fig. 40).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral (cúbico), diseminados en la pasta y como
alteración de
hornblendas y biotitas, corresponderían a las variedades limonita, hematita y magnetita.
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
326
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Fig. 40. Muestra 7737, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales
de plagioclasas (Pl), clinopiroxeno (CPx), biotita (Bt) y pasta vítrea con textura perlítica.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
80
Composición porcentual observada.-
Plagioclasas (Oligoclasa) NaCaAl(Si3O8)…………..…….……..…….…...…… 23-25 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 4-5 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 1-2 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… <1%
Pasta (vidrio volcánico)…..……..........……………………….………........….… 58-60 %
Textura y estructura.- Presenta una estructura holocristalina y textura porfídica de grano medio
(>2 mm), la pasta es vítrea con textura perlítica (Fig. 40).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de
composición acida, que corresponde a una DACITA Biotitica.
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
327
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
ANÁLISIS PETROGRÁFICO
Descripción Macroscópica.-
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, tiene superficies de
meteorización, composición intermedia, muestra estructura bandeada o fluidal y textura
porfídica de grano medio a fino (>1 mm), donde se observan abundantes cristales de
feldespatos, anfíboles, biotita, piroxenos y óxidos de hierro diseminados, rodeados por una
pasta de grano muy fino, la roca muestra elevada dureza y compactación.
Descripción Microscópica.-
Mineralogía.-
Plagioclasas.- Se presentan en abundante porcentaje, en forma de fenocristales subhedrales
tabulares y prismáticos, de hasta 1,5 mm de largo, muestran zonación, maclas polisintéticas tipo
Albita y combinadas Albita-Carlsbad, con bordes de reacción, fracturas y tienen orientación
preferencial, corresponden al límite entre las variedades Oligoclasa-Andesina (An: 30) (Fig. 41).
Biotita.- Se presenta en reducida proporción, en forma de fenocristales subhedrales tabulares
que alcanzan hasta 0,8 mm de largo, de color marrón, están ligeramente oxidados en los
bordes.
Hornblenda.- Se observan en moderado porcentaje fenocristales euhedrales poligonales y
subhedrales prismáticos de color marrón, se hallan reemplazados parcialmente por limonita en
los bordes, alcanzan hasta 1 mm de largo (Fig. 41).
Clinopiroxenos.- Se observan en reducido porcentaje fenocristales subhedrales prismáticos y
anhedrales de tono verdoso pálido, que alcanzan hasta 0,5 mm de largo del tipo augita, algunos
cristales muestran oxidación de los bordes (Fig. 41).
Pasta.- La pasta es abundante y está formada principalmente por microlitos de plagioclasas con
orientación preferencial siguiendo la dirección de flujo de la lava (textura eutáxica), y en menor
porcentaje por vidrio volcánico de textura masiva, junto a óxidos de hierro de grano muy fino
(Fig. 41).
Óxidos de Hierro.- Se presentan en reducido porcentaje, como pequeños minerales opacos de
hábito anhedral y subhedral (cúbico), diseminados en la pasta y como alteración de
hornblendas y biotitas, corresponderían a las variedades limonita, hematita y poca magnetita.
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 29 de Agosto de 2017
Nº LAB: SGM-165/17 Muestra 7743.
81
:;;;111--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
328
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
Composición porcentual observada.-
Plagioclasas (Oligoclasa-Andesina) NaCaAl(Si3O8)……...…….…….…...…… 25-27 %
Biotita (K2(Mg,Fe)2(OH)2(AlSiO10))………....……………………………….…... 1-2 %
Hornblenda Ca2(Mg,Fe,Al)5(OH)2{(Si,Al)4O11}2…………………….……….….. 4-5 %
Clinopiroxenos (Augita) (Mg,Fe)(SiO3)..……..........................................…… 2-3 %
Pasta (microlitos de plagioclasas)…….........……………….…….…........….… 58-60 %
Óxidos de Hierro (Limonita, hematita y magnetita).…….….….……..…..….… 2-3 %
Total…………………………………………………...………………….….……… 100 %
Textura y estructura.- Presenta una estructura bandeada o fluidal y textura porfídica de grano
medio a fino (>1 mm), la pasta es microlítica de textura pilotáxica (Fig. 41).
Nombre de la roca.- De acuerdo al análisis petrográfico, es una lava de composición
intermedia, que corresponde a una ANDESITA Hornbléndica.
Fig. 41. Muestra 7743, aumento 4x, polarizadores X. Lava Andesítica, con fenocristales de
plagioclasas (Pl), clinopiroxeno (CPx), hornblenda (Hb), y pasta microlítica de plagioclasas.
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
82
:;;;;;;;.--------~-- --------
SERGE~ MIN
~~«:ll<Ol (GIIE<OJll..000«:<0J MIDIMIElli<Ol
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 -2) 2330987 - 2331236 - Fax 239 1725 - 23 18295
www.sergeomin.gob.bo
Annex XVI Appendix A
329
CONVENIO DE COOPERACIÓN INTERINSTITUCIONAL Y
CONTRATO DE CONSULTORIA DIREMAR - SERGEOMIN
RESULTADOS
ANÁLISIS DE MINERAGRAFÍA
----
SERGE~ MIN
~lc!Rl.¥'11~0@ @IE@ILOOU~@ ~O~lc!Rl.@
'L__ I I
'. _j ; I- -
~1 I In
I c:::-:--
I --
I c= ::::=i
I _J
-.. -
1--··
- ~
~ I L_J
1"1 r
J
~ -
~
~
·1 1
I -·
L:_
I.
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236- Fax 2391725 - 2318295
www.sergeomin.gob.bo
330
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
1
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 27 de Julio de 2016
Nº LAB: SGM-131/17 Muestra 7807.
ANÁLISIS MINERAGRÁFICO
DESCRIPCIÓN MACROSCÓPICA
Fragmento de una roca piroclástica (toba ignimbrítica) de composición intermedia, muestra
estructura bandeada y textura porfídica de grano medio (>1 mm), donde se observa una
intercalación entre bandas lenticulares de color marrón-rojizo y bandas de tono gris oscuro,
ambas muestran cristales de feldespatos, biotita, piroxenos y óxidos de hierro del tipo hematita
y magnetita diseminados, rodeados por una pasta ferruginosa y vítrea, con más presencia de
hierro en las bandas grises. La toba presenta alto grado de soldadura (ignimbrita), muestra
elevada dureza y compactación, y también es llamada toba soldada.
MINERALES OBSERVADOS EN SECCIÓN PULIDA
En la muestra se observan los siguientes minerales y sus porcentajes aproximados (Fig. 1).
Minerales Observados Porcentaje
Hematita (Fe2O3) 2-3 %
Magnetita (Fe3O4) <1 %
Limonita (FeOOH) (pasta de la toba) 1-2 %
Feldespatos de la toba soldada 93-95 %
Total 100 %
DESCRIPCIÓN DE MINERALES
Hematita
Está presente en reducido porcentaje como cristales anhedrales de grano muy fino (<0,1 a 0,5
mm), diseminados en la toba soldada y asociados con magnetita y limonita. Este óxido de hierro
cristaliza en el sistema hexagonal, de color gris en la muestra de mano y gris-blanquecino en
sección pulida, con brillo metálico, reflectancia media a alta, débil pleocroísmo, moderada
anisotropía y dureza alta al pulido, muestra texturas de reemplazamiento de magnetita (Fig. 1).
Magnetita
La magnetita está presente en escaso porcentaje, muestra texturas de reemplazamiento por
cristales de hematita, rellenando sus planos de clivaje. Este óxido de hierro es magnético,
muestra color gris opaco en la muestra de mano, y gris con tinte marrón pálido en sección
pulida, tiene brillo metálico, reflectancia media, es isótropo, con dureza alta al pulido (Fig. 1).
Limonita
La limonita es un óxido de hierro presente en la pasta de la toba soldada, muestra hábito
masivo, color marrón-rojizo en la muestra de mano y gris-oscuro en sección pulida, brillo opaco,
reflectancia baja, moderada anisotropía, reflejos internos rojos y dureza media al pulido.
===---_.----------------- SERGE~MIN
~IE~'¥'11~0(0) IGllE(O)ILOOD~(O) ~ Dfii!IIE~(O)
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix A
331
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
2
ASOCIACIONES MINERALES
Se observan asociaciones minerales entre: Hematita-Magnetita-Limonita.
SECUENCIA PARAGENETICA
Primera Fase: Magnetita- Hematita.
Segunda Fase: Limonita.
Fig. 1. Muestra 7807. Aumento 20X, Polarizadores ll. Toba Ignimbrítica, con plagioclasas (Pl) y
diseminación de micro-cristales de magnetita (Mg) reemplazados parcialmente por hematita (Hm).
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
===---_.----------------- SERGE~MIN
~IE~'¥'11~0(0) !Gll!(O)ILOOD~(O) ~ Dfii!IIE~(O)
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
332
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
3
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 27 de Julio de 2016
Nº LAB: SGM-132/17 Muestra 7808.
ANÁLISIS MINERAGRÁFICO
DESCRIPCIÓN MACROSCÓPICA
Fragmento de una roca piroclástica (toba ignimbrítica) de composición intermedia, muestra
estructura bandeada y textura porfídica de grano medio (>1 mm), donde se observa una
intercalación entre bandas lenticulares de tono gris oscuro y bandas de color marrón-rojizo,
ambas muestran cristales de feldespatos, biotita, piroxenos y óxidos de hierro diseminados de
la variedad hematita y magnetita, rodeados por una pasta microlítica y vítrea, con más
presencia de hierro en las bandas oscuras. La toba presenta alto grado de soldadura
(ignimbrita), muestra elevada dureza y compactación, también es llamada toba soldada.
MINERALES OBSERVADOS EN SECCIÓN PULIDA
En la muestra se observan los siguientes minerales y sus porcentajes aproximados (Fig. 2).
Minerales Observados Porcentaje
Hematita (Fe2O3) 2-3 %
Magnetita (Fe3O4) <1 %
Limonita (FeOOH) (pasta de la toba) 2-3 %
Feldespatos de la toba soldada 92-94 %
Total 100 %
DESCRIPCIÓN DE MINERALES
Hematita
Está presente en reducido porcentaje como cristales anhedrales de grano muy fino (<0,1 a 0,5
mm), diseminados en la toba soldada y asociados con magnetita y limonita. Este óxido de hierro
cristaliza en el sistema hexagonal, de color gris en la muestra de mano y gris-blanquecino en
sección pulida, con brillo metálico, reflectancia media a alta, débil pleocroísmo, moderada
anisotropía y alta dureza al pulido, muestra texturas de reemplazamiento de magnetita (Fig. 2).
Magnetita
La magnetita está presente en escaso porcentaje, muestra texturas de reemplazamiento por
cristales de hematita, rellenando sus planos de clivaje. Este óxido de hierro es magnético,
muestra color gris opaco en la muestra de mano, y gris con tinte marrón pálido en sección
pulida, tiene brillo metálico, reflectancia media, es isótropo, con dureza alta al pulido (Fig. 2).
Limonita
La limonita es un óxido de hierro presente sobre todo en la pasta de la toba, muestra hábito
masivo, color marrón-rojizo en la muestra de mano y gris-oscuro en sección pulida, brillo opaco,
reflectancia baja, moderada anisotropía, reflejos internos rojos y dureza media al pulido (Fig. 2).
===---_.----------------- SERGE~MIN
~IE~'¥'11~0(0) IGllE(O)ILOOD~(O) ~ Dfii!IIE~(O)
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix A
333
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
4
ASOCIACIONES MINERALES
Se observan asociaciones minerales entre: Hematita-Magnetita-Limonita.
SECUENCIA PARAGENETICA
Primera Fase: Magnetita- Hematita.
Segunda Fase: Limonita.
Fig. 2. Muestra 7808. Aumento 10X, Polarizadores ll. Toba Ignimbrítica, con plagioclasas (Pl) y
micro-cristales de magnetita (Mg) reemplazados en gran parte por hematita (Hm) y limonita (Lm).
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
===---_.----------------- SERGE~MIN
~IE~'¥'11~0(0) !Gll!(O)ILOOD~(O) ~ Dfii!IIE~(O)
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
334
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
5
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 27 de Julio de 2016
Nº LAB: SGM-131/17 Muestra 7807.
ANÁLISIS MINERAGRÁFICO
DESCRIPCIÓN MACROSCÓPICA
Fragmento de una roca piroclástica (toba ignimbrítica) de composición intermedia, muestra
estructura bandeada y textura porfídica de grano medio (>1 mm), donde se observa una
intercalación entre bandas lenticulares de color marrón-rojizo y bandas de tono gris oscuro,
ambas muestran cristales de feldespatos, biotita, piroxenos y óxidos de hierro del tipo hematita
y magnetita diseminados, rodeados por una pasta ferruginosa y vítrea, con más presencia de
hierro en las bandas grises. La toba presenta alto grado de soldadura (ignimbrita), muestra
elevada dureza y compactación, y también es llamada toba soldada.
MINERALES OBSERVADOS EN SECCIÓN PULIDA
En la muestra se observan los siguientes minerales y sus porcentajes aproximados (Fig. 3).
Minerales Observados Porcentaje
Hematita (Fe2O3) 2-3 %
Magnetita (Fe3O4) <1 %
Limonita (FeOOH) (pasta de la toba) 1-2 %
Feldespatos de la toba soldada 93-95 %
Total 100 %
DESCRIPCIÓN DE MINERALES
Hematita
Está presente en reducido porcentaje como cristales anhedrales de grano muy fino (<0,1 a 0,5
mm), diseminados en la toba soldada y asociados con magnetita y limonita. Este óxido de hierro
cristaliza en el sistema hexagonal, de color gris en la muestra de mano y gris-blanquecino en
sección pulida, con brillo metálico, reflectancia media a alta, débil pleocroísmo, moderada
anisotropía y dureza alta al pulido, muestra texturas de reemplazamiento de magnetita (Fig. 3).
Magnetita
La magnetita está presente en escaso porcentaje, muestra texturas de reemplazamiento por
cristales de hematita, rellenando sus planos de clivaje. Este óxido de hierro es magnético,
muestra color gris opaco en la muestra de mano, y gris con tinte marrón pálido en sección
pulida, tiene brillo metálico, reflectancia media, es isótropo, con dureza alta al pulido (Fig. 3).
Limonita
La limonita es un óxido de hierro presente en la pasta de la toba soldada, muestra hábito
masivo, color marrón-rojizo en la muestra de mano y gris-oscuro en sección pulida, brillo opaco,
reflectancia baja, moderada anisotropía, reflejos internos rojos y dureza media al pulido.
==------------------- SERGE~MIN
~IE[R{'WIJ~D(O) !Gll!(O)ILOOD~(O) lil!il011'!11E[R((O)
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix A
335
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
6
ASOCIACIONES MINERALES
Se observan asociaciones minerales entre: Hematita-Magnetita-Limonita.
SECUENCIA PARAGENETICA
Primera Fase: Magnetita- Hematita.
Segunda Fase: Limonita.
Fig. 3. Muestra 7807. Aumento 20X, Polarizadores ll. Toba Ignimbrítica, con plagioclasas (Pl) y
diseminación de micro-cristales de magnetita (Mg) reemplazados parcialmente por hematita (Hm).
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
==------------------- SERGE~MIN
~IE[R{'WIJ~D(O) !Gll!(O)ILOOD~(O) lil!il011'!11E[R((O)
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
336
Annex XVI Appendix A
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
7
INTERESADO: Ing. Adolfo Orsolini Campana
UBICACIÓN: Proyecto Mapeo Geológico del Área del Manantial del Silala
FECHA: 27 de Julio de 2016
Nº LAB: SGM-132/17 Muestra 7808.
ANÁLISIS MINERAGRÁFICO
DESCRIPCIÓN MACROSCÓPICA
Fragmento de una roca piroclástica (toba ignimbrítica) de composición intermedia, muestra
estructura bandeada y textura porfídica de grano medio (>1 mm), donde se observa una
intercalación entre bandas lenticulares de tono gris oscuro y bandas de color marrón-rojizo,
ambas muestran cristales de feldespatos, biotita, piroxenos y óxidos de hierro diseminados de
la variedad hematita y magnetita, rodeados por una pasta microlítica y vítrea, con más
presencia de hierro en las bandas oscuras. La toba presenta alto grado de soldadura
(ignimbrita), muestra elevada dureza y compactación, también es llamada toba soldada.
MINERALES OBSERVADOS EN SECCIÓN PULIDA
En la muestra se observan los siguientes minerales y sus porcentajes aproximados (Fig. 4).
Minerales Observados Porcentaje
Hematita (Fe2O3) 2-3 %
Magnetita (Fe3O4) <1 %
Limonita (FeOOH) (pasta de la toba) 2-3 %
Feldespatos de la toba soldada 92-94 %
Total 100 %
DESCRIPCIÓN DE MINERALES
Hematita
Está presente en reducido porcentaje como cristales anhedrales de grano muy fino (<0,1 a 0,5
mm), diseminados en la toba soldada y asociados con magnetita y limonita. Este óxido de hierro
cristaliza en el sistema hexagonal, de color gris en la muestra de mano y gris-blanquecino en
sección pulida, con brillo metálico, reflectancia media a alta, débil pleocroísmo, moderada
anisotropía y alta dureza al pulido, muestra texturas de reemplazamiento de magnetita (Fig.4).
Magnetita
La magnetita está presente en escaso porcentaje, muestra texturas de reemplazamiento por
cristales de hematita, rellenando sus planos de clivaje. Este óxido de hierro es magnético,
muestra color gris opaco en la muestra de mano, y gris con tinte marrón pálido en sección
pulida, tiene brillo metálico, reflectancia media, es isótropo, con dureza alta al pulido (Fig. 4).
Limonita
La limonita es un óxido de hierro presente sobre todo en la pasta de la toba, muestra hábito
masivo, color marrón-rojizo en la muestra de mano y gris-oscuro en sección pulida, brillo opaco,
reflectancia baja, moderada anisotropía, reflejos internos rojos y dureza media al pulido (Fig. 4).
==------------------- SERGE~MIN
~IE[R{'WIJ~D(O) !Gll!(O)ILOOD~(O) lil!il011'!11E[R((O)
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix A
337
DIRECCIÓN TÉCNICA DE SERVICIOS Y FORTALECIMIENTO INSTITUCIONAL
LABORATORIO DE PETROGRAFÍA-MINERAGRAFÍA
8
ASOCIACIONES MINERALES
Se observan asociaciones minerales entre: Hematita-Magnetita-Limonita.
SECUENCIA PARAGENETICA
Primera Fase: Magnetita- Hematita.
Segunda Fase: Limonita.
Fig. 4. Muestra 7808. Aumento 10X, Polarizadores ll. Toba Ignimbrítica, con plagioclasas (Pl) y
micro-cristales de magnetita (Mg) reemplazados en gran parte por hematita (Hm) y limonita (Lm).
Analizado por: Ing. José Luis Argandoña C.
ENCARGADO DEL LABORATORIO
===-------------------------- SERGE~MIN
~IEIJ:t?.~«:;0(0) «i\lE(O)ILOO□«:;(O) ~□ ll:!IIEIJ:t?.(O)
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz- La Paz- Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
338
Annex XVI
Annex XVI Appendix B
339
CONVENIO DE COOPERACIÓN INTERINSTITUCIONAL Y
CONTRATO DE CONSULTORIA DIREMAR - SERGEOMIN
ANEXO D
BASE DE DATOS
APPENDIX B
SERGE®MIN
$IE!Rl.'¥'111CDtOJ «311EtOJIL.OODIC(O) ~Dll>lllE!Rl.(O)
I
I
------Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Boliv-ia=
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725- 2318295
www.sergeomin.gob.bo
340
Annex XVI Appendix B
CONVENIO DE COOPERACIÓN INTERINSTITUCIONAL Y
CONTRATO DE CONSULTORIA DIREMAR - SERGEOMIN
BASE DE DATOS GEOLÓGICOS
------
SERGE~ MIN
~lc~~~D© @IE©ILOOO~© ~Oll\!Jlc~©
·-·
i----
,I ----
I In
c=-
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
341
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
S1 600773 7566342 4382 250/11NW Ignimbrita Se puede ver ignimbritas de grano fino, de una matrix ferruginosa.Nis-2 22/05/2017
S2 600813 7566226 4383 50/6SE 7702 Toba
Toba ignimbritica de composicion intermedia de grano medio donde se observa una intercalacion entre bandas
lenticulares de color marron y bandas de tono negruzco, ambas meustras cristales de feldespatos blanquecinos,
escazos cuarzo, piroxenos, pomez alargadas y oxidos de hierro diseminados, rodeados por una pasta ferruginosa
y vitrea, con mayor presencia de hierro en las bandas negruzcas, la toba presenta alto nivel de soldadura, por lo
que muestra elevada dureza y compactacion y tambien es llamada toba soldada.
22/05/2017
S3 600956 7566439 4411 250/15SE Flujo de
detritos
Clastos angulosos a subredondeados monoliticos, diametro de los clastos (1mm-30cm),matriz ferruginosa
terrosa. Nfd2 22/05/2017
S4 600972 7566398 4399 250/20SE Ignimbrita Se puede ver ignimbritas de grano fino, de una matrix ferruginosa.Nis-2 22/05/2017
S5 600973 7566397 4395 250/10SE 7706 Ignimbrita
Toba ignimbritica de composicion intermedia, de una estructura bandeada de grano medio(>1 mm), donde se
observa una intercalacion entre bandas lenticulares de color marron, muestran cristales de feldespatos
blanquecinos y muy escazos cuarzos, piroxenos, pomez alargadas y abundantes oxidos de hierro diseminados
rodeados por una pasta ferruginosa y vitrea, con mayor presencia de hierro en las bandas negruzcas, la toba
presenta alto nivel de soldadura, por lo que muestra elevada dureza y compactacion y tambien es llamada toba
soldada. Nis-2
22/05/2017
S6 600982 7566368 4378 245/8SE Ignimbrita Clastos angulosos a subredondeados monoliticos en matriz ferruginosa silicificada. Nis-1 22/05/2017
S7 600998 7566324 4376 245/20SE Ignimbrita Clastos angulosos a subredondeados monoliticos en matriz ferruginosa silicificada. Nis-1 22/05/2017
S8 601012 7566321 4386 240/8SE Ignimbrita Clastos angulosos a subredondeados monoliticos en matriz ferruginosa silicificada. Nis-1 22/05/2017
S9 601011 7566289 4399 240/6SE Flujo
de detritos
Clastos angulosos a subredondeados monoliticos, diametro de los clastos (1mm -10 cm),matriz ferruginosa
terrosa. Nfd2 22/05/2017
S10 601030 7566237 4401 245/8SE Flujo
de detritos
Clastos angulosos a subredondeados monoliticos, diametro de los clastos (1mm -10 cm),matriz ferruginosa
terrosa. Nfd2 22/05/2017
S11 601031 7566226 4398 243/10SE Toba Tamaño de grano medio,textura bandeada compuesta de hematita y magnetita en matriz ferruginosa, y un
espesor de 5 cm aproximadamente. 22/05/2017
S12 600875 7566672 4356 220/42SE Lava Flujos de lavas de grano medio a grueso en sectores se observa horizontes con bandeamiento, los cristales se
encuentran fagmentados muy raras biotitas idiomorfas. Nlsc 23/05/2017
S13 600508 7565835 4363 210/10SE Flujo
de detritos
Clastos angulosos a subredondeados monoliticos, diametro de los clastos (1mm-10cm),matriz ferruginosa
terrosa. Nfd2 23/05/2017
S14 600533 7565836 4352 207/8SE Ignimbrita Tamaño de grano medio,textura bandeada compuesta de hematita en matriz ferruginosa. Nis-2 23/05/2017
S15 600540 7565820 4347 204/5SE Toba Tamaño de grano medio,textura bandeada compuesta de hematita y magnetita en matriz ferruginosa, espesor = 8
cm. 23/05/2017
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
1
SERGE~ MIN
21E-U<C> OIEO>IL<Olo~ lloJDuSIJIE~«l>
7· ~.. •* ** * ~ :;;
DIREMAR
342
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S16 600540 7565819 4345 205/8SE Toba Tamaño de grano medio,textura bandeada compuesta de hematita y magnetita en matriz ferruginosa, espesor =
10 cm. 23/05/2017
S17 600547 7565806 4332 203/10SE Ignimbrita Clastos monoliticos,matriz en proceso de alteracion argilica supergenica, diametro (1mm-2 cm).Nis-1 23/05/2017
S18 600568 7565773 4333 202/8SE Ignimbrita Clastos monoliticos,matriz en proceso de alteracion argilica supergenica, diametro (1mm-2 cm).Nis-1 23/05/2017
S19 600587 7565776 4339 200/5SE Ignimbrita Clastos monoliticos,matriz en proceso de alteracion argilica supergenica, diametro (1mm-2 cm).Nis-1 23/05/2017
S20 600592 7565774 4339 199/15SE Ignimbrita Clastos monoliticos,matriz en proceso de alteracion argilica supergenica, diametro (1mm-2 cm).Nis-1 23/05/2017
S21 600616 7565776 4357 215/10SE Flujo
de detritos Se puede ver ignimbritas de grano fino, de una matrix ferruginosa.Nis-2 23/05/2017
S22 600942 7566168 4395 230/8SE Toba Tamaño de grano medio,textura bandeada compuesta de hematita en matriz ferruginosa, y un espesor de10 cm
aproximadamente. 23/05/2017
S23 600831 7566233 4376 215/5SE Toba Tamaño de grano medio,textura bandeada compuesta de hematita y magnetita en matriz ferruginosa, y un
espesor de15 cm aproximadamente. 23/05/2017
S24 600822 7566241 4365 220/10SE Ignimbrita Clastos monoliticos,matriz en proceso de alteracion argilica supergenica, diametro (1mm -4cm). Nis-1 23/05/2017
S25 600704 7566320 4398 235/8SE Ignimbrita Clastos monoliticos,matriz en proceso de alteracion argilica supergenica, diametro (1mm -4cm). Nis-1 23/05/2017
S26 600647 7566317 4389 220/5SE Ignimbrita Clastos monoliticos,matriz en proceso de alteracion argilica supergenica, diametro (1mm -6cm). Nis-1 23/05/2017
S27 601181 7565996 4457 220/10SE 7801 Lava
Fragmento de una roca de origen volcánico (lava), de color gris, presenta superficies de meteorización, de
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde
se observan cristales de feldespatos blanquecinos, biotita y anfíboles muy oxidados, piroxenos y óxidos de
hierro diseminados, rodeados por una pasta de grano muy fino. La lava muestra moderada dureza y
compactación. Nlsc
23/05/2017
S28 604895 7567297 4541 240/15SE Ignimbrita Afloramiento de ignimbrita, de tamaño de grano medio,cuarzo lechoso y cristalino subredondeados,biotitas
frescas y alteradas.Nls-3 23/05/2017
S29 600564 7566022 4369 195/10SE Ignimbrita
Ignimbrita color gris claro leve tono rosaceo con fragmentos de cuarzo con bordes sub redondeados y
engolfamientos, biotita en fragmentos rodeados de una pasta ferruginosa polilitica clastos con aureolas de
recalentamiento soldamiento moderado. Ns2
26/05/2017
S30 600216 7565447 4326 210/6NW Ignimbrita
Ignimbrita color gris claro leve tono rosaceo con fragmentos de cuarzo con bordes sub redondeados y
engolfamientos, biotita en fragmentos rodeados de una pasta ferruginosa polilitica clastos con aureolas de
recalentamiento soldamiento moderado textura vesicular en sectores gradacion normal en la base se tiene un
horizonte de ceniza volcanica de 8 cm de espesor.Ns1
26/05/2017
2
SERGE(§}MIN
l!!IIE~D<Cl GIIEIOJ!L<Ox!!~ IMJD!MIEIR>.<C>
y- ~• ** * *~• ;
DIREMAR
Annex XVI Appendix B
343
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S31 600247 7565411 4303 215/9NW Flujo
de detritos
Contacto aglomerado volcanico y aluvial matrix soportado color marron rojizo con clastos en su matrix que
varian de 10 cm a 40 cm, sub redondeados de grano medio a grueso debil soldamiento matrix con alto contenido
defragmentos de, cuarzo, biotita bloques poliliticos mal clasificados, aluvial material suelto y con cubierta de
vegetacion
26/05/2017
S32 604898 7567298 4543 60/5Nw 7802 Ignimbrita
Fragmento de una roca de origen volcánico (toba), de color marrón con tono rosáceo, tiene superficies de
meteorización, de composición ácida, muestra estructura vitro-cristalina y textura porfídica de grano medio (>2
mm), donde se observan cristales de feldespatos blanquecinos, biotita muy oxidada, anfíboles, pómez alargadas
de tono blanquecino y óxidos de hierro, rodeados por una pasta vítrea y ferruginosa, muestra moderada dureza y
grado de soldadura. Nls-3
15/06/2017
S33 605450 7566080 4602 60/39NW 7803 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro con superficies de meteorización, de
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>1 mm), donde
se observan abundantes cristales de feldespatos blanquecinos orientados, biotita oxidada, piroxenos y óxidos de
hierro diseminados, rodeados por una pasta de grano fino. La lava muestra elevada dureza y compactación. Nlsg
15/06/2017
S34 605074 7567088 4547 45/64NW Ignimbrita Plagioclasas alteradas y frescas,predominancia de biotita, cuarzo lechoso y cristalino subredondeados, presencia
de pomez en la matriz en forma alineada. Nls-3 15/06/2017
S35 601828 7565534 4426 344/9SW Lava Flujos de lavas textura porfidica biotitica grano medio a grueso en sectores se observa horizontes con
bandeamiento, los cristales se encuentran fagmentados muy raras biotitas idiomorfas. Nlsc 15/06/2017
S36 601728 7565604 4437 314/12SW Lava Flujos de lavas textura porfidica biotitica grano medio a grueso en sectores se observa horizontes con
bandeamiento, los cristales se encuentran fagmentados muy raras biotitas idiomorfas.Nlsc 15/06/2017
S37 601630 7565591 4474 239/62SE Lava
Flujos de lavas textura porfidica biotitica grano medio a grueso en sectores se observa horizontes con
bandeamiento, los cristales se encuentran fagmentados muy raras biotitas idiomorfas direccion de flujo sub
vertical. Nlsc
15/06/2017
S38 601362 7565777 4518 316/22SW Lava Flujos de lavas textura porfidica biotitica grano medio a grueso en sectores con bandeamiento, los cristales se
encuentran fagmentados muy raras biotitas idiomorfas superficialmente con una patina de oxidacion. Nlsc 15/06/2017
S39 604803 7567280 4542 258/23NW Ignimbrita
Se observa toba en su mayor parte distorsionadas,de color violaceo claro, de un adiametro de 3 cm, de forma
angulosa y grano medio, presentan cuarzos subangulosos en su matrix, poca presencia de biotita, el espesor
aproximado de la colada de lava es de 1 m, de textura afanitica. Nls-3
15/06/2017
S40 604132 7566944 4496 255/7SE Ignimbrita Se observa toba de color violaceo claro, tamaño de grano medio,en su mayor parte distorsionadas, presentan
cuarzos angulosos en su matrix, poca presencia de biotita, de textura afanitica.Nls-3 15/06/2017
S41 604018 7566910 4489 251/18SE Ignimbrita
Se observa toba de color violaceo y marron, de diametro de los clastos de 0.3 cm, angulosos y de grano medio,
en su mayor parte distorsionadas, presentan cuarzosangulosos en su matrix, poca presencia de biotita,, el
espesor aproximado de la colada de lava es de 1.5 m, de textura afanitica. Nls-3
15/06/2017
3
SERGE~ MIN
~IElll'\IIICD<O> GIEOll.<Ox!l!~ liliDINIIEIR?.<O>
-·y~** **~* :::
DIREMAR
344
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S42 603641 7566505 4446 153/24SW Flujo
de detritos
Se observa flujo de detritos con de color marron claro con clastos en su matriz que varian de 0.5cm a 25 cm,
angulosos y de grano medio en su matrix con alto contenido de vidrio, cuarzo y biotita. Su espesor aproximado
es de 0.6cm, de textura terrosa. Ndf2
15/06/2017
S43 608497 7567689 4583 7804 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro con superficies de meteorización, de
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>1 mm), donde
se observan abundantes cristales de feldespatos blanquecinos, biotita oxidada, piroxenos y óxidos de hierro
diseminados, rodeados por una pasta de grano muy fino. La lava muestra elevada dureza y compactación. Nlsg
16/06/2017
S44 609739 7568018 4596 7805 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con superficies de meteorización, de
composición ácida, muestra estructura holocristalina y textura porfídica de grano medio (>3 mm), donde se
observan grandes cristales de feldespatos blanquecinos, cuarzo, biotita, anfíboles, piroxenos y óxidos de hierro
diseminados, rodeados por una pasta de grano muy fino. La lava muestra elevada dureza y compactación. Nlct
16/06/2017
S45 605988 75653322 4653 28/62SE Lava Pseudo estratificacion (pseudo plegamiento) de lavas daciticas silicificadas, tamaño de grano medio,
esporadicas biotitas. Nlsg 16/06/2017
S46 604393 7566010 4523 215/27NW Lavas
Flujos de lavas andesiticas de color gris con tonos marrones con clastos que varian de 0.2 mm a 25 cm,
subangulosos y de grano medio en su matrix ,con contenido de cuarzo, biotita y feldespatos. El espesor total de
la colada de lava es de 1.9 m aproximadamente, de textura bandeada. Nlsg
16/06/2017
S47 604897 7564887 4606 284/11SW Lava
Se observa flujos de lavas de contenido andesitico de color marron violaceo, con clastos en su matrix que vaian
de 1cm a 1 m, angulosos y de grano medio en su matrix, que presentan bandeamiento, cuarzo biotita muy
silificado. El espesor aproximado de la colada de lava es de 3 m, de textura bandeada. Nlsg
16/06/2017
S48 600959 7566047 4395 221/6SE Ignimbrita
Ignimbrita color gris claro leve tono rosaceo polilitico clastos de 1 a 3 cm con fragmentos de cuarzo con bordes
sub redondeados y engolfamientos, biotita en fragmentos rodeados de una pasta ferruginosa polilitica clastos
con aureolas de recalentamiento soldamiento moderado, aglomerado polilitico matrix soportado. Nis-2
16/06/2017
S49 601377 7565285 4538 245/4SE Lava Color gris claro grano fino a medio textura porfidica biotitica muestra pseudo estratificacion muy raras
biotitas idiomorfas. Nlsc 16/06/2017
S50 604787 7576158 4522 7708 Toba
Fragmento de una roca de origen piroclástico (toba ignimbrítica) de composición intermedia, muestra estructura
bandeada y textura porfídica de grano medio (>1 mm), donde se observa una intercalación entre delgadas
bandas lenticulares de color marrón-negruzco y bandas de tono gris claro, ambas muestran cristales de
feldespatos blanquecinos, biotita, piroxenos y óxidos de hierro diseminados, rodeados por una pasta vítrea, con
más presencia de hierro en las bandas oscuras. La toba presenta un grado de soldadura moderado a alto
(ignimbrita), por lo que muestra elevada dureza y compactación, también es llamada toba soldada. Ntpg
17/06/2017
S51 601942 7564641 4606 7712 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con superficies de meteorización, composición
ácida, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde se observan cristales
de feldespatos blanquecinos, escaso cuarzo, biotita, anfíboles, piroxenos y óxidos de hierro diseminados,
rodeados por una pasta de grano muy fino, contiene agregados de calcita rellenando pequeñas cavidades de la
roca, la cual muestra elevada dureza y compactación. Nlsc
17/06/2017
4
SERGE~ MIN
l!IIE~D<!l> «!IEIOJ!L.<O><Il!M:«ll IMJD[J;]IEIR?.<C>
7· ~* * * . * ~* A-,.: ::
DIREMAR
Annex XVI Appendix B
345
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S52 606624 7563670 4939 240/50NW Lava Pseudo estratificacion de lavas daciticas silicificadas, con clastos monoliticos subredondeados a redondeados en
la matriz, tamaño de grano medio, esporadicas biotitas.Nlsg 17/06/2017
S53 606660 7563630 4951 235/75NW Lava Pseudo estratificacion de lavas daciticas silicificadas, con clastos monoliticos subredondeados a redondeados en
la matriz, tamaño de grano medio, esporadicas biotitas. Nlsg 17/06/2017
S54 606688 7563466 4973 250/60NW Lava
Dacita silicificada, con clastos monoliticos subredondeados a redondeados en la matriz, diametro de los clastos
(1 mm - 8 cm), tamaño de grano medio, esporadicas biotitas, textura bandeada constituida por mineral de Fe.
Nlsg
17/06/2017
S55 606752 7563334 4999 235/65NW Lava
Dacitica silicificada, con clastos monoliticos subredondeados a redondeados en la matriz, diametro de los
clastos (1 mm-8 cm), tamaño de grano medio, esporadicas biotitas, textura bandeada constituida por mineral de
Fe. Nlsg
17/06/2017
S56 606911 7563173 5037 230/65NW Lava Flujo de lava dacitica de coloracion grisaceo de grano medio. Nlsg 17/06/2017
S59 606789 7561214 5649 35/50NW 7806 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, tiene superficies de meteorización, de
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>1 mm), donde
se observan abundantes cristales de feldespatos blanquecinos orientados, biotita oxidada, piroxenos y óxidos de
hierro diseminados, rodeados por una pasta de grano muy fino. La lava muestra elevada dureza y compactación.
Nlsg
17/06/2017
S60 606758 7562878 5041 240/70SE 7807 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, tiene superficies de meteorización, de
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>1 mm), donde
se observan abundantes cristales de feldespatos blanquecinos orientados, biotita oxidada, piroxenos y óxidos de
hierro diseminados, rodeados por una pasta de grano muy fino. La lava muestra elevada dureza y compactación.
Nlsg
17/06/2017
S61 601966 7564742 4560 262/80NW Lava Color gris blanquecino porfido feldespatico biotitico grano medio a grueso las biotitas son idiomorfas muestra
pseudo estratificación. Nlsc 17/06/207
S62 601972 7564714 4574 288/8SW Lava Lava color gris claro grano fino a medio textura porfido feldespatico biotitico cuarzo fragmentado sub
redondeado con engolfamientos, en sectores muestra direccion de flujo. Nlsc 17/06/2017
S63 602053 7564203 4721 316/61SW Lava Afloramiento lavas color gris oscuro grano medio a fino disposicion de cristales fragmentados textura porfidica
silicificado.Nlsc 17/06/2017
S64 602044 7564108 4760 173/41SW Lava Afloramiento lava color gris claro con xenolitos con aureolas de recalentamiento textura porfido feldespatico
biotitico grano medio a fino. Nlsc 17/06/2017
S65 601966 7564718 4573 85/23NW Lava Presenta flujos de lavas andesiticos de coloracion marron blanquesino, granos de medio a grueso en su matrix,
cristales de biotita sub redondeados. Clastos < 10 cm. Nlsc 17/06/2017
5
SERGE~ MIN
IE\IE-D<C> GIEIOJ!L.'°"1J~ IMJD!MIE!Rt<C>
·~* * * * * ~ ~ ::
DIREMAR
346
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S66 601941 7564642 4609 135/37SW Lava Presenta flujos de lavas andesiticos de coloracion marron blanquesino, de granos de medio a grueso en su
matrix, cristales de biotita sub redondeados. Nlsc 17/06/2017
S67 602053 7564206 4719 85/30NW Lava Presenta flujos de lavas andesiticos de coloracion gris, de grano grueso en su matrix, cristales de biotita sub
redondeados. Nlsc 17/06/2017
S68 602052 7564099 4766 178/66SW 7713 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono rosáceo, presenta superficies de
meteorización, de composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio
(>2 mm), donde se observan grandes cristales de feldespatos blanquecinos, escaso cuarzo, biotita, anfíboles,
piroxenos y óxidos de hierro diseminados, rodeados por una pasta de grano muy fino. La lava muestra elevada
dureza y compactación. Nlsc
17/06/2017
S69 607807 7567446 4604 31/61NW Lava Coladas de lava andesitica ,plagioclasas frescas y alteradas, biotitas frescas y alteradas.Nlsg 18/06/2017
S70 608466 7567135 4664 120/25NE Lava Coladas de lava andesitica, tamaño de grano medio, plagioclasas frescas, esporadicas biotitas. Nlsg 18/06/2017
S71 608487 7566245 4650 30/60SE Lava Roca dacitica de color gris con matriz silicificada,textura bandeada, tamaño de grano fino , posible vidrio
volcanico como patina.Nlsg 18/06/2017
S72 605556 7566660 4558 331/8SW Ignimbrita Toba de color griz claro porfido feldespatico de grano, sub redondeados y aureolas de recalentamiento cristales
fragmentados. Nls-3 18/06/207
S74 606154 7566472 4596 74/17SE Lava Lava color gris ocuro textura afanitica con fragmentos de cuarzo, biotita muestra direccion de flujo y
bandeamiento. Nlsg 18/06/207
S75 606397 7566315 4625 160/9SW Lava Lava color gris ocuro textura afanitica con fragmentos de cuarzo, biotita muestra direccion de flujo y
bandeamiento muy silicificado. Nlsg 18/06/207
S76 605180 7566103 4593 3/26NW Lavas Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medioa fino en su matrix, con
menor contenido de cristales de biotita angulosos. Nlsg 18/06/2017
S77 606156 7566475 4595 280/32NE Lavas
Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Con clastos < 12 cm.
Nlsg
18/06/2017
S78 607188 7567230 4596 7808 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, tiene superficies de meteorización, de
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>1 mm), donde
se observan abundantes cristales de feldespatos blanquecinos orientados, biotita oxidada, piroxenos y óxidos de
hierro diseminados, rodeados por una pasta de grano muy fino. La lava muestra elevada dureza y compactación.
Nlsg
19/069/2017
S79 607192 7567230 4601 N-S/30E Lava Lava de color gris oscuro, con algunos fragmetos de cuarzo. Nlsg 19/06/2017
6
SERGE~ MIN
~IE-D<C> OiEO!L<O>tllOO:C llilDUSIIEIRl.<C>
5·~ ~ :::
DIREMAR
Annex XVI Appendix B
347
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S80 607216 7567216 4599 130/67SW Lava Lava de color gris oscuro, con algunos fragmetos de cuarzo. Nlsg 19/06/2017
S81 604876 7567156 4555 326/3SW Ignimbrita Toba con pseudo estratificacion color gris claro porfido feldespatico con fragmentos de biotita en algunos casos
idiomorfos. Nls-3 19/06/2017
S82 604877 7566773 4568 311/4SW Ignimbrita Afloramiento de toba de color gris claro textura porfidica cion biotita idiomorfa en algunos sectores mas cuarzo
fragmentado. Nls-3 19/06/2017
S83 605150 7566818 4561 305/3SW Ignimbrita Toba color gris blanquecino matrix ferruginosa muestra pseudo estratificación. Nls-3 19/06/2017
S84 606290 7568048 4594 285/5SW Ignimbrita Toba color gris blanquecino matrix ferruginosa muestra pseudo estratificación. Nls-3 19/06/2017
S85 606425 7567952 4588 321/77NE Ignimbrita Toba color gris blanquecino matrix ferruginosa muestra pseudo estratificación. Nls-3 19/06/2017
S86 606242 7568071 4596 348/12NE 7716 Toba
Fragmento de una roca de origen volcánico (toba), de color marrón con tono grisáceo, tiene superficies de
meteorización, de composición ácida, muestra estructura vitro-cristalina y textura porfídica de grano medio (>2
mm), donde se observan cristales de feldespatos blanquecinos, cuarzo, biotita oxidad, litoclastos y óxidos de
hierro diseminados, rodeados por una pasta vítrea, muestra moderada dureza y grado de soldadura. Nls-3
19/06/2018
S87 608847 7566066 4661 340/35SW Lava Flujo de lava , de color grisaceo rosado, de grano medio a grueso. Nlsg 21/06/2017
S88 609452 7565671 4647 150/70NE Lava Flujo de lava , de color grisaceo rosado, de grano medio a grueso. Nlsg 21/06/2017
S89 600871 7566783 4437 317/19SW 7717 Lava
Fragmento de una roca de origen volcánico (lava), de color gris, presenta superficies de intensa meteorización,
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde
se observan cristales de feldespatos blanquecinos, muy escaso cuarzo, biotita y anfíboles oxidados, piroxenos y
óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la lava muestra elevada dureza y
compactación. Nlsc
21/06/2017
S90 603511 7567642 4500 175/12NE 7720 Lava
Fragmento de una roca de origen volcánico (lava), de color gris, presenta superficies de meteorización, de
composición intermedia, muestra estructura cavernosa o vesicular y textura porfídica de grano medio (>2 mm),
donde se observan cristales de feldespatos blanquecinos, escaso cuarzo, piroxenos y óxidos de hierro
diseminados, rodeados por una pasta de grano muy fino. La lava muestra moderada dureza y compactación, y
cavidades rellenas por cuarzo. Nlin1
21/06/2017
7
SERGE~ MIN
l!IIE-D<C> GIEO!l..<O>G~ IMID~IE!Fl<C>
·~* * * •• * ~ :::;;s :::
DIREMAR
348
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S92 605051 7569399 4580 7721 Ignimbrita
Fragmento de una roca de origen volcánico (toba), de color marrón con tono grisáceo, tiene superficies de
meteorización, de composición ácida, muestra estructura vitro-cristalina y textura porfídica de grano medio (>2
mm), donde se observan cristales de feldespatos blanquecinos, cuarzo, biotita oxidad, litoclastos y óxidos de
hierro diseminados, rodeados por una pasta vítrea, muestra moderada dureza y grado de soldadura. Nls-3
21/06/2017
S93 609644 7564821 4652 E - W/68S Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medioa fino en su matrix, con
menor contenido de cristales de biotita angulosos. Nlsg 22/06/2017
S94 610068 7564182 4677 195/70SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medioa fino en su matrix, con
menor contenido de cristales de biotita angulosos. Nlsg 22/06/2017
S95 610088 7564531 4627 240/53SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medioa fino en su matrix, con
menor contenido de cristales de biotita angulosos. Nlsg 22/06/2017
S96 600816 7566953 4485 335/70SW 7809 Lava
Fragmento de una roca de origen volcánico (lava), de color gris, presenta superficies de intensa meteorización,
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde
se observan cristales de feldespatos blanquecinos, muy escaso cuarzo, biotita y anfíboles oxidados, piroxenos y
óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la lava muestra elevada dureza y
compactación. Nlsc
12/07/2017
S97 600661 7567938 4547 7810 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono negruzco, presenta superficies de
meteorización y composición básica, muestra estructura holocristalina y textura porfídica de grano medio a fino
(>1 mm), donde se observan cristales de feldespatos blanquecinos con orientación, minerales máficos muy
oxidados, piroxenos y óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la lava muestra
elevada dureza y compactación, así como numerosas cavidades o amígdalas vacías.Nlin1
12/07/2020
S98 600166 7569312 4671 280/Sub.Hz. 7811 Brecha basal Muy localizado, monolitico clastos angulosos matrix ferruginosa de composicion similar a la lava posiblemene
sea una auto brecha. 12/07/2017
S99 600666 7567935 4544 210/80NW Lava Coladas de lava dacítica porfiriicas de color gris oscura, con fenocristales de sanidina, hornblenda, Qz, Bio, con
pseudoestratificación laminadas. Nlin1 12/07/2017
S100 600240 7565400 4292 229/4NW Flujo
de detritos
Flujo detritos matrix soportado color marron rojizo con clastos en su matrix que varian de 5 cm a 25 cm, sub
redondeados de grano medio a grueso debil soldamiento matrix con alto contenido de fragmentos de, cuarzo,
biotita. textura terrosa.
12/07/2017
S101 600563 7565784 4320 209/9SE Ignimbrita
Ignimbrita color gris claro leve tono rosaceo con fragmentos de cuarzo con bordes sub redondeados y
engolfamientos, biotita en fragmentos rodeados de una pasta ferruginosa polilitica clastos con aureolas de
recalentamiento soldamiento moderado.
12/07/2017
8
SERGE~ MIN
ZIIE~O,O, ~IEOO..<Ol<!i~ llllDIMIEIRlCC>
7· ~* * * * ~* :::
DIREMAR
Annex XVI Appendix B
349
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S103 603136 7569882 4610 193/4SE Lavas
Color gris con estructura holocristalina y textura porfídica de grano medio, donde se observan cristales de
feldespatos blanquecinos, escaso cuarzo, biotita, anfíboles, piroxenos y óxidos de hierro diseminados, rodeados
por una pasta de grano muy fino. la roca, muestra elevada dureza y compactación. Nlin 1
13/07/2017
S104 599317 7568831 4759 30/30SE 7813 Brecha basal Muy localizado, monolitico clastos angulosos matrix ferruginosa de composicion similar a la lava posiblemene
sea una auto brecha. 13/07/2017
S105 599174 7571415 5019 270/74SW Lava
Color gris con textura porfídica de grano medio, donde se observan cristales de feldespatos blanquecinos,
escaso cuarzo, biotita,rodeados por una pasta de grano muy fino. la roca, muestra elevada dureza y
compactación.Nlin1
14/07/2017
S106 602960 7568618 4561 188/7SE Lava Color gris con textura porfídica de grano medio, donde se observan cristales de feldespatos blanquecinos,
escaso biotita,rodeados por una pasta de grano muy fino.Nlin1 14/07/2017
S107 603440 7565926 4422 7814 Toba
Fragmento de una roca de origen piroclástico (toba), de color gris con tono rosáceo, muestra superficies de
meteorización, composición intermedia, con estructura masiva y textura porfídica de grano medio (>1 mm),
donde se observan cristales de feldespatos blanquecinos, anfíboles, piroxenos y óxidos de hierro diseminados,
rodeados por una pasta de grano muy fino, la roca muestra moderada dureza y compactación, y presenta costras
delgadas de malaquita.
14/07/2017
S108 602468 7565749 4415 273/20SW Flujo
de detritos
Clastos angulosos a subredondeados monoliticos, diametro de los clastos (1mm-30cm),matriz ferruginosa
terrosa. Nfd2 14/07/2017
S109 602431 7565759 4420 60/16SE Flujo
de detritos
Clastos angulosos a subredondeados monoliticos, diametro de los clastos (1mm-30cm),matriz ferruginosa
terrosa. Nfd2 14/07/2017
S110 603483 7564079 4558 160/55SW 7816 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro con superficies de meteorización,
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>1 mm), donde
se observan cristales de feldespatos blanquecinos, biotita, piroxenos y óxidos de hierro diseminados, rodeados
por una pasta de grano fino, contiene agregados de calcita rellenando pequeñas cavidades, la roca muestra
elevada dureza y compactación, y contiene algunos litoclastos de rocas volcánicas. Nlsg
15/07/2017
S111 606447 7562228 5165 290/25SW 7817 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro con superficies de intensa
meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio
(>1 mm), donde se observan cristales de feldespatos blanquecinos, biotita y anfíboles muy oxidados, piroxenos
y óxidos de hierro diseminados, rodeados por una pasta de grano fino, la roca muestra moderada dureza y
compactación.Nlsg
15/07/2017
S112 606447 7562228 5165 290/25NW 7818 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con superficies de intensa meteorización,
composición intermedia, muestra estructura holocristalina y cavernosa, con textura porfídica de grano medio
(>1 mm), donde se observan abundantes cristales de feldespatos blanquecinos, biotita oxidada, piroxenos y
óxidos de hierro diseminados, rodeados por una pasta de grano fino, la roca muestra elevada dureza y
compactación.Nlsg
15/07/2017
9
SERGE~ MIN
e!EIJWOCO,O, GIEO!L<O<Gl~ ~DIMIEIRl.<C>
·~•• * * * ~ ~ :::
DIREMAR
350
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S113 607734 7564099 4868 290/13SW Lava Lava dacitica porfiritica laminadas y en bloques del Cerro Silala Grande de color gris negruzco. Nlsg 16/07/2017
S114 611232 7567663 4626 7722 Toba
Fragmento de una roca de origen piroclástico (toba vitro-cristalina), de color gris-blanquecino con superficies
de meteorización, de composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio
(>1 mm), donde se observan cristales de feldespatos, cuarzo, biotita con orientación, litoclastos de rocas
volcánicas y óxidos de hierro diseminados, rodeados por una pasta vítrea, muestra reducido grado de dureza y
soldadura, por lo que es deleznable. Ntpg
16/07/2017
S115 607925 7564449 4820 278/5SW Lava L a v a dacitica porfiriticas laminares y en bloques del Cerro Silala Grande de color gris negruzco.Nlsg 16/07/2017
S116 607734 7564099 4868 290/13SW Lava Colada de lava volcanica posible dacita de textura bandeada, fenocristales de cuarzo, plagioclasa, biotita y
ortoclasa. Nlsg 16/07/2017
S117 607792 7564663 4802 145/55SW 7820 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono rosáceo, tiene superficies de
meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio
(>2 mm), donde se observan abundantes cristales de feldespatos blanquecinos, biotita y anfíboles oxidados,
piroxenos, óxidos de hierro diseminados y pequeños litoclastos de rocas volcánicas, rodeados por una pasta de
grano fino, la roca muestra elevada dureza y compactación.Nlsg
16/07/2017
S118 607069 7564443 4770 100/20NE Lava
De color gris claro en superficie fresca y gris con patinas marron rojizas en superficie alterada. el afloraiento
presenta textura afanitica con clastos liticos de ignimbritas de formas subredondeadas, de 0.5 a 2.5 cm. de
diametro en una matrix de vidrio volcanico con presencia aislada de cristales de plagioclasas biotitas y
feldespatos. Nlsg
16/07/2017
S119 611225 7567577 4640 7723 Toba
Fragmento de una roca de origen piroclástico (toba vitro-cristalina), de color gris-blanquecino con superficies
de meteorización, de composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio
(>1 mm), donde se observan cristales de feldespatos, cuarzo, biotita con orientación y óxidos de hierro
diseminados, rodeados por una pasta vítrea, muestra moderado grado de dureza y soldadura.Ntpg
16/07/2017
S120 609442 7569033 4653 37/64SE 7726 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con superficies de meteorización, composición
relativamente ácida, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde se
observan grandes cristales de feldespatos blanquecinos, escaso cuarzo, biotita, anfíboles, piroxenos y óxidos de
hierro diseminados, rodeados por una pasta de grano muy fino, contiene agregados de calcita rellenando
pequeñas cavidades, la roca muestra elevada dureza y compactación. Nlct
16/07/2017
S121 610029 7568343 4652 90/75NE Lava Color gris claro textura profidica feldespatica el porcentage de biotita es de 1-2% en algunos casos idiomorfo,
el cuarzo es fragmentado con engolfamientos. Nlct 16/07/2017
S122 601256 7572117 5181 266/67S 7821 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, composición intermedia, muestra
estructura holocristalina y textura porfídica de grano medio (>2 mm), donde se observan abundantes cristales de
feldespatos blanquecinos, biotita y anfíboles oxidados, escaso cuarzo y piroxenos, y óxidos de hierro
diseminados, rodeados por una pasta de grano fino, la roca muestra elevada dureza y compactación, en general
se halla fresca. Nlcn
18/07/2017
10
SERGE~ MIN
18\IE~D<O> GIIEIO>IL.<00~ IMJDIMIEIRIJO>
-~•** *•• ~ ~ :::
DIREMAR
Annex XVI Appendix B
351
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S123 601256 7572117 5181 266/67S 7822 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono rosáceo, composición intermedia,
muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde se observan abundantes
cristales de feldespatos blanquecinos, biotita y anfíboles oxidados, escaso cuarzo y óxidos de hierro
diseminados, rodeados por una pasta de grano fino, la roca muestra moderada dureza y compactación, en
general se halla meteorizada. Nlcn
18/07/2017
S125 606484 7567980 4581 240/22NW Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 18/07/2017
S126 602762 7574297 4604 251/31NW Lava
Color gris oscuro, muestra estructura holocristalina y textura porfídica de grano medio a grueso, se observan
abundantes cristales de feldespatos blanquecinos, biotita oxidada, rodeados por una pasta de grano muy fino.
Nlcn
18/07/2017
S127 602419 7574426 4632 234/8NW Lava
Color gris oscuro de composición intermedia, muestra estructura holocristalina y textura porfídica de grano
grueso, donde se observan abundantes cristales de feldespatos blanquecinos, biotita oxidada, piroxenos y óxidos
de hierro diseminados, rodeados por una pasta de grano muy fino. Nlcn
18/07/2017
S128 601860 7574652 4636 95/17NE Lava Color gris oscuro de textura porfídica feldespatica de grano grueso - medio, donde se observan abundantes
cristales de feldespatos, superficialmente se observa una patina color café rojizo. 18/07/2017
S129 601481 7574425 4674 48/10SE Brecha basal Muy localizado, monolitico clastos angulosos matrix ferruginosa de composicion similar a la lava posiblemene
sea una auto brecha. 18/07/2017
S130 601174 7573895 4738 48/9SE Lava Color gris oscuro de textura porfídica feldespatica de grano grueso - medio, donde se observan abundantes
cristales de feldespatos, superficialmente se observa una patina color café rojizo 18/07/2017
S131 601912 7573842 4731 84/6SE Lava
Color gris oscuro, muestra estructura holocristalina y textura porfídica de grano medio a grueso, se observan
abundantes cristales de feldespatos blanquecinos, escasa biotita oxidada, rodeados por una pasta de grano muy
fino. Nlcn
18/07/2017
S132 601757 7573261 4833 32/6SW 7727 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono oscuro y superficies de meteorización,
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde
se observan cristales de feldespatos blanquecinos, muy escaso cuarzo, biotita y anfíboles oxidados, piroxenos y
óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la lava muestra elevada dureza y
compactación. Nlcn
18/07/2017
S133 602531 7573450 4708 222/80SE Lava
Color gris oscuro, muestra estructura holocristalina y textura porfídica de grano grueso, donde se observan
grandes cristales de feldespatos blanquecinos, cuarzo, biotita, y óxidos de hierro diseminados, rodeados por una
pasta de grano muy fino. La lava muestra elevada dureza y compactación. Nlcn
18/07/2017
S134 602604 7575147 4607 7732 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, presenta superficies de meteorización,
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde
se observan cristales de feldespatos blanquecinos, muy escaso cuarzo, biotita y anfíboles oxidados y óxidos de
hierro diseminados, rodeados por una pasta de grano muy fino, la lava muestra elevada dureza y compactación.
Nlcn
18/07/2017
11
SERGE~ MIN
ZIIE~D<O> «!IEIOll.<Ox!i~ llllDINIIEIRl.<C>
7· * *"' ~• ~* ;:
DIREMAR
352
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S135 605330 7574972 4741 118/48NE 7729 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono rosáceo, presenta superficies de
intensa meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de grano
medio (>2 mm), donde se observan cristales de feldespatos blanquecinos, muy escaso cuarzo, biotita oxidada y
óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la lava muestra moderada dureza y
compactación, por lo que es ligeramente deleznable.Nlct
19/07/2017
S136 606578 7568225 4555 7824 Arcillita
Fragmento de una roca sedimentaria pelítica (probablemente una arcillita) y color marrón-grisáceo, presenta una
estructura masiva y terrosa con indicios de estratificación y textura clástica de grano muy fino (<0,5 mm), donde
se observan bandas formadas por abundantes limos y arcillas, junto a óxidos de hierro y probablemente polvo de
vidrio volcánico, por lo que la roca es muy suave, con reducida compactación y es deleznable.
19/07/2017
S137 606903 7568405 4558 275/15SW Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S138 606472 7568766 4614 290/14SW Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S139 606215 7568969 4637 310/20SW Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S140 605826 7569255 4618 305/16SW Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S141 605460 7570190 4573 220/16NW Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S142 606379 7569804 4581 105/30NE Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S143 606469 7569775 4581 120/26NE Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S144 606610 7569749 4585 125/30NE Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S145 607112 7569352 4591 140/28NE Ignimbrita Roca de origen piroclástico (toba vitro-cristalina), de color gris-rosáceo con superficies de meteorización, de
composición ácida, muestra estructura hipocristalina y textura porfídica de grano medio (>1 mm). Nls-3 19/07/2017
S146 604894 7574836 4685 60/45NW Lava Color gris oscuro, grano grueso, textura porfidica donde se observan grandes cristales de feldespatos
blanquecinos, no se observan afloramiento bien definidos. Nlct 19/07/2017
S147 605332 7574970 4729 118/48NW Lava Flujo de lava, feldespatico color griz rozaceo debido a la presencia de oxidos de hierro diseminados, en
algunos casos las biotitas presentan cristales idiomorfos y el cuarzo con engolfamentos. Nlct 19/07/2017
12
SERGE~ MIN
IBIE-0<0> GIEO!L<O><!i!~ IMID!l,IIE!Fl<C>
--y~*. * * * ~* :::
DIREMAR
Annex XVI Appendix B
353
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S148 605391 7574041 4673 153/20NW Lava Flujo de lava, feldespatico color griz rozaceo debido a la presencia de oxidos de hierro diseminados, en algunos
casos las biotitas presentan cristales idiomorfos y el cuarzo con engolfamentos.Nlct 19/07/2017
S149 609620 7561040 4881 261/12SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S150 609749 7561333 4885 253/10SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S151 608832 7561019 5033 13/30NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S152 608686 7560971 5090 275/43SW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S153 608560 7560971 5113 314/18NE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S154 612126 7562928 4582 140/45NE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S155 611768 7562919 4620 260/38NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S156 611481 7562814 4613 30/30NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S157 610800 7562642 4647 205/83NW 7825 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono oscuro, tiene superficies de
meteorización, composición intermedia, muestra estructura cavernosa con cavidades vacías y textura porfídica
de grano medio (>2 mm), donde se observan abundantes cristales de feldespatos blanquecinos, biotita muy
oxidada, piroxenos y óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la roca muestra
moderada dureza y compactación y un aspecto escoriáceo por sus numerosas cavidades. Nlsg
06/08/2017
S158 612434 7561644 4648 240/39NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S159 611835 7562022 4642 245/70NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S160 612206 7562500 4618 290/60NE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
13
SERGE~ MIN
~IElll'\IIICD<O> GIEOll.<Ox!l!~ liliDINIIEIR?.<O>
-·y~** **~* :::
DIREMAR
354
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S161 609147 7560225 4989 260/12SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S162 608925 7560251 5026 282/12SW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 06/08/2017
S163 620510 7566218 4910 352/64NE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y mayor contenido biotita angulosos. Nlrj 07/08/2017
S164 620023 7566597 4864 8/86NW 7737 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, tiene superficies de meteorización,
composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm), donde
se observan abundantes y grandes cristales de feldespatos, anfíboles, biotita, piroxenos y óxidos de hierro
diseminados, rodeados por una pasta de grano muy fino, la roca muestra elevada dureza y compactación.Nlrj
07/08/2017
S165 619280 7564248 4776 220/17NW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita, presencia de turmalina con
seudoestratificacion casi sub horizontal . Nlcc
07/08/2017
S166 619257 7568501 4918 210/60NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y mayor contenido biotita angulosos. Nlrj 07/08/2017
S167 620924 7566120 4921 218/56NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y mayor contenido biotita angulosos. Nlrj 07/08/2017
S168 620759 7566225 4934 330/80NE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y mayor contenido biotita angulosos. Nlrj 07/08/2017
S169 620545 7566244 4928 230/60NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y mayor contenido biotita angulosos. Nlrj 07/08/2017
S170 621867 7564722 4951 20/30NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y mayor contenido biotita angulosos. Nlrj 07/08/2017
S171 622291 7564992 5142 25/83NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y mayor contenido biotita angulosos. Nlrj 07/08/2017
S172 620821 7566719 4973 263/10SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y mayor contenido biotita angulosos. Nlrj 07/08/2017
S173 618904 7564384 4763 278/18SW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
07/08/2017
14
SERGE~ MIN
l!IIEll'\lll<CD«l> ~IEClll.<Ox!l!M:<ll> IMIDINIIEllll.<D>
y· ~•* **~• ::
DIREMAR
Annex XVI Appendix B
355
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S174 618817 7564254 4768 132/5SE Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
07/08/2017
S175 617482 7561112 4655 300/8NE Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S176 617615 7560949 4657 177/20NE Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S177 618822 7561429 4775 187/18SE Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S178 618730 7560378 4635 175/15SW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S179 618713 7559993 4743 210/11NW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S180 618587 7559454 4793 105/40SW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S181 618584 7559481 4783 350/22SW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S182 618526 7559441 4799 200/11NW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S183 618333 7559089 4723 168/26NE Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S184 618217 7558961 4723 295/63SW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S185 618034 7561259 4713 305/15SW Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S186 617174 7560894 4622 130/2SW Toba Toba color gris blanquecino con presencia de vidrio volcanico y fragmentos de biotita, cuarzo fracturado, se
observan cristales de feldespatos y biotita con orientacion, pomez y liticos menor a 2 cm. Ntpg 08/08/2017
15
SERGE~ MIN
ll!IIE~D<C> «!IEOlll.cOx!il~ llolDli'IIIE!RlCO>
y-* * *.~ ~* :::
DIREMAR
356
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S187 619703 756092 5107 102/60NE 7827 Lava
Fragmento de una roca de origen volcánico (lava), de color gris, muestra superficies de meteorización,
composición relativamente ácida, muestra estructura holocristalina y textura porfídica de grano medio (>2 mm),
donde se observan abundantes cristales de feldespatos blanquecinos, cuarzo, biotita muy oxidada, piroxenos y
óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la roca muestra elevada dureza y
compactación. Nlcc
08/08/2017
S188 619421 7562642 100/56NE Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S189 618360 7561365 4717 310/75NE Lava
Coladas de lavas andesiticos de coloracion rojiso blanquecino, de grano medio en su matrix, con menor
contenido de cristales de cuarzo angulosos y mayor contenido biotita,con pseudoestratificacion casi sub
horizontal . Nlcc
08/08/2017
S190 612064 7558181 4728 240/10NE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S191 612332 7558220 4694 140/35SW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S192 612754 7557905 4682 215/75SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S193 612979 7558120 4671 210/70SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S194 613267 7557851 4662 190/60SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S195 613602 7557947 4637 140/85SW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S196 611802 7556921 4803 307/27SE Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S197 611298 7556999 4899 315/40SW Lava Presenta flujos de lavas de coloracion gris blanquecino, de grano medio a grueso en su matrix, con menor
contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S198 611597 7556827 4823 244/19NW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S199 612357 7557311 4752 278/50SW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a grueso en su matrix, con
menor contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
16
SERGE~ MIN
81Ell'\l'IICDC GIEOl..<O><G!~ liilDINIIEIRl.<C>
·* *"' *~ * ~ ~ :::
DIREMAR
Annex XVI Appendix B
357
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S200 608527 7575347 4839 105/23SW Lava Coladas de lavas de coloracion rojizo blanquecino, de grano grueso en su matrix, con mayor contenido de
cristales de cuarzo angulosos y mayor contenido biotita, presenta una pseudoestratificacion. Nlct 09/08/2017
S201 608386 7574825 4793 170/10SW Lava Coladas de lavas de coloracion rojizo blanquecino, de grano grueso en su matrix, con mayor contenido de
cristales de cuarzo angulosos y mayor contenido biotita, presenta una pseudoestratificacion. Nlct 09/08/2017
S202 596557 7583978 4504 278/12SW Lava Coladas de lavas andesiticos de coloracion rojizo blanquecino, de grano grueso en su matrix, con mayor
contenido de cristales de cuarzo angulosos y mayor contenido biotita, presenta una seudoestratificacion. 09/08/2017
S203 608386 7574825 4793 170/10SW Lava Coladas de lavas de coloracion rojizo blanquecino, de grano grueso en su matrix, con mayor contenido de
cristales de cuarzo angulosos y mayor contenido biotita, presenta una pseudoestratificacion. Nlct 09/08/2017
S204 612000 7563000 5189 175/40NE Lava Presenta flujos de lavas de coloracion gris blanquecino, de grano medio a grueso en su matrix, con menor
contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S205 609524 7556683 5145 325/60SW Lava Presenta flujos de lavas de coloracion gris blanquecino, de grano medio a grueso en su matrix, con menor
contenido de cristales de cuarzo angulosos y menor contenido biotita angulosos. Nlsg 09/08/2017
S206 607927 7571754 4656 214/35NW Lava Coladas de lavas de coloracion rojizo blanquecino, de grano grueso en su matrix, con mayor contenido de
cristales de cuarzo angulosos y mayor contenido biotita, presenta una pseudoestratificacion. Nlct 09/08/2017
S207 607923 7571638 4670 348/33NW Lava Coladas de lavas de coloracion rojizo blanquecino, de grano grueso en su matrix, con mayor contenido de
cristales de cuarzo angulosos y mayor contenido biotita, presenta una pseudoestratificacion. Nlct 09/08/2017
S208 608212 7572823 4656 272/5SE Toba Color gris-claro poliltica rosáceo con superficies de meteorización, con vidrio volcanico en sectores pomez con
direccion de flujo. Ntpg 09/08/2017
S209 608546 7556911 5420 220/62NW 7830 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono oscuro, tiene superficies de
meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio
(>2 mm), donde se observan abundantes cristales de feldespatos blanquecinos, anfíboles, biotita, piroxenos y
óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la roca muestra elevada dureza y
compactación. Nlsg
09/08/2017
S210 596988 7583971 4504 35/9NW Lava
Color gris-oscuro textura porfídica de grano medio-fino, donde se observan grandes cristales de feldespatos
blanquecinos, cuarzo, biotita, en fragmentosdiseminados, rodeados por una pasta de grano muy fino. La lava
muestra elevada dureza y compactación.
11/08/2017
S211 596557 7583978 4504 278/12SW Lava Presenta flujos de lavas andesiticos de coloracion gris blanquecino, de grano medio a fino en su matrix, con
menor contenido de cristales de biotita angulosos. 11/08/2017
S212 612647 7576961 4693 314/3SW Toba Coladas de lava con pseudo estratificacion (estrato volcan). 13/08/2017
S213 614063 7578118 4885 75/60NW Lava Coladas de lava con pseudo estratificacion (estrato volcan). 13/08/2017
17
SERGE~ MIN
elEIM,9IICDC GIEOO..<O<GIOCC 11/jJOINIIEIRl.<C>
y· ~* * * * * =$= ::
DIREMAR
358
Annex XVI Appendix B
Nº ESTE
(UTM)
NORTE
(UTM)
ALTURA
(m.s.n.m.)
DIRECCIÓN DE
FLUJO
CODIGO
MUESTRA LITOLOGIA DESCRIPCION MACROSCOPICA FECHA
BASE DE DATOS
SERVICIO GEOLOGICO MINERO
DIRECCION ESTRATEGICA DE REINVINDICACION MARITIMA, SILALA Y RECURSOS HIDRICOS INTERNACIONALES
MAPEO GEOLOGICO DEL AREA CIRCUNDANTE AL MANANTIAL DEL SILALA
S214 614027 7578154 4917 310/50SW Lava Coladas de lava con pseudo estratificacion (estrato volcan). 13/08/2017
S215 613978 7578222 4960 50/25NW Lava Coladas de lava con pseudo estratificacion (estrato volcan). 13/08/2017
S216 614081 7578187 4922 350/45SW Lava Coladas de lava con pseudo estratificacion (estrato volcan). 13/08/2017
S217 614113 7578135 4865 60/58SE Lava Coladas de lava con pseudo estratificacion (estrato volcan). 13/08/2017
S218 612702 7577120 4608 60/54NW Toba Toba volcánica de consistencia porosa, formada por la acumulación de cenizas volcánicos muy pequeños,menor
concentración en cristales.su consistencia es media, de color va desde blanco - amarillento. 13/08/2017
S219 613149 7577836 4987 153/42NE Lava Coladas de lavas andesiticos de coloracion gris, de grano grueso en su matrix, cristales de biotita sub
redondeados, presenta una pseudoestratificacion casi sub horizontal.. 13/08/2017
S220 613774 7578211 5005 230/60SE Lava Lavas de textura porfiritica de color gris blanquesino con presencia de cristales de plagioclasas, feldespatos y
turmalina. Se observan una pseudoesratificacion sub vertical de espesores entre 0.20 a 0.90 m. 13/08/2017
S221 613706 7578166 5053 290/50SW Lava Lavas de textura porfiritica de color gris blanquesino con presencia de cristales de plagioclasas, feldespatos y
turmalina. Se observan una pseudoesratificacion sub vertical de espesores entre 0.20 a 0.90 m. 13/08/2017
S222 598256 7570240 5176 188/4NW Lava Color gris-oscuro estructura holocristalina y textura porfídica de grano medio-fino, donde se observan cristales
de feldespatos elevada dureza y compactación. Nlin1 14/08/2017
S223 596049 7568972 5622 260/45SE Lava Color gris oscuro estructura holocristalina elevada dureza y compactacion textura bandeada con direccion de
flujo. Nlin1 , Zona de Alteración. 14/08/2017
S224 598689 7570632 5039 145/25NE Lava Color gris oscuro estructura holocristalina elevada dureza y compactacion textura bandeada con direccion de
flujo. Nlin1 , Zona de Alteración. 14/08/2017
S225 599394 7568611 4696 303/17SW Lava Color gris-oscuro estructura holocristalina y textura porfídica de grano medio-fino, donde se observan cristales
de feldespatos elevada dureza y compactación. Nlin1 14/08/2017
S226 595872 7569264 5631 145/25NE 7743 Lava
Fragmento de una roca de origen volcánico (lava), de color gris oscuro, tiene superficies de meteorización,
composición intermedia, muestra estructura bandeada o fluidal y textura porfídica de grano medio a fino (>1
mm), donde se observan abundantes cristales de feldespatos, anfíboles, biotita, piroxenos y óxidos de hierro
diseminados, rodeados por una pasta de grano muy fino, la roca muestra elevada dureza y compactación. Nlin1
14/08/2017
S227 598532 7567548 4609 160/67SW 7833 Lava
Fragmento de una roca de origen volcánico (lava), de color gris con tono oscuro, tiene superficies de intensa
meteorización, composición intermedia, muestra estructura holocristalina y textura porfídica de grano medio
(>2 mm), donde se observan abundantes cristales de feldespatos, anfíboles, biotita, piroxenos, poco cuarzo y
óxidos de hierro diseminados, rodeados por una pasta de grano muy fino, la roca muestra moderada dureza y
compactación. Nlin2
14/08/2017
18
SERGE~ MIN
~IE-U<C> OiEO>!L<OloOO:C lloJOUSIJIElli<C>
·~* * * * * ~ ~ ~
DIREMAR
Annex XVI Appendix B
359
CONVENIO DE COOPERACIÓN INTERINSTITUCIONAL Y
CONTRATO DE CONSULTORIA DIREMAR - SERGEOMIN
BASE DE DATOS
ESTRUCTURALES
-----
SERGE~ MIN
~~!Rl.~~D@ @[email protected]~@ liY.ilDl/:!l~!Rl.@
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz- La Paz- Bolivia
Telf. (591 - 2) 2330981 - 2331236- Fax 2391725 - 2318295
www.sergeomin.gob.bo
360
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
E1 600516 7565580 4339 Diaclasa 97 89 10 D 1 0 SR Plana 8 Seco Ignimbritas R2 21-may.
J1 601277 7566098 4447 Diaclasa 85 285 C 1 2 SR Plana 8 Seco Andesitas R4 21-may.
J2 601277 7566098 4447 Diaclasa 74 205 D 1 2 SR Plana 8 Seco Andesitas R4 21-may.
J3 601277 7566098 4447 Diaclasa 87 324 D 1 3 SR Plana 8 Seco Andesitas R4 21-may.
L1 600453 7565473 4344 Diaclasa 62 185 C 1 0 SR Escalonada 6 Seco Ignimbritas Oxidación R2 21-may.
L2 600453 7565473 4344 Diaclasa 48 104 C 1 11 Arcilla Escalonada 6 Seco Ignimbritas Oxidación R2 21-may.
L3 600453 7565473 4344 Diaclasa 73 74 D 1 1 Arcilla Escalonada 6 Seco Ignimbritas Oxidación R2 21-may.
L4 601154 7566061 4434 Diaclasa 87 186 D 3 0 SR Plana 8 Seco Andesitas R4 21-may.
L6 601154 7566061 4434 Diaclasa 152 80 70 D 1 0 SR Plana 8 Seco Andesitas R4 21-may.
L7 601154 7566061 4434 Diaclasa 67 281 D 1 0 SR Plana 8 Seco Andesitas R4 21-may.
M1 601159 7566005 4448 Diaclasa 71 6 D 1 10 Arcilla Plana 2 Seco Andesitas Oxidación R4 21-may.
M4 601252 7566072 4440 Diaclasa 67 195 D 1 10 Arcilla Curva-Escalonada 8 Seco Andesitas Oxidación R4 21-may.
M5 601280 7565984 4452 Diaclasa 78 235 C 4 5 Arcilla Plana 4 Seco Andesitas Oxidación R4 21-may.
N2 600516 7565580 4339 Diaclasa 130 56 30 D 1 0 SR Plana 6 Seco Ignimbritas R2 21-may.
N3 600516 7565580 4339 Diaclasa 116 80 26 C 2 5 SR Plana 8 Seco Ignimbritas R2 21-may.
N1 600516 7565580 4339 Falla 120 60 20 D 1 3 SR Plana 6 Seco Ignimbritas R2 21-may.
M3 601242 7565990 4464 Falla Dextral 83 263 C 2 0 Arcilla Plana 4 Seco Andesitas Oxidación R4 21-may.
L5 601154 7566061 4434 Pseudoestratificación 8 285 D Seco Andesitas R4 21-may.
L8 601444 7566094 4415 Pseudoestratificación 2 10 C Seco Ignimbritas R2 21-may.
M4 601252 7566072 4440 Pseudoestratificación 22 248 C Seco Andesitas R4 21-may.
L11 600390 7565536 4313 Diaclasa 84 65 C 4 2 SR Plana 6 Seco Ignimbritas R3 22-may.
L12 600390 7565536 4313 Diaclasa 67 65 C 4 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L13 600390 7565536 4313 Diaclasa 83 54 C 4 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L14 600390 7565536 4313 Diaclasa 78 56 C 4 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L15 600390 7565536 4313 Diaclasa 80 75 C 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L16 600390 7565536 4313 Diaclasa 87 40 C 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L17 600390 7565536 4313 Diaclasa 9 318 C 2 4 SR Plana 6 Seco Ignimbritas R3 22-may.
L18 600390 7565536 4313 Diaclasa 85 36 C 11 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L19 600405 7565561 4305 Diaclasa 80 59 D 1 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L20 600405 7565561 4305 Diaclasa 84 51 C 2 0 SR Plana 11 Seco Ignimbritas R3 22-may.
L21 600405 7565561 4305 Diaclasa 87 49 C 2 0 SR Plana 3 Seco Ignimbritas R3 22-may.
L22 600405 7565561 4305 Diaclasa 88 240 C 3 0 SR Plana 7 Seco Ignimbritas R3 22-may.
L23 600447 7565616 4311 Diaclasa 86 220 C 3 0 SR Plana 7 Seco Ignimbritas R3 22-may.
L24 600527 7565719 4316 Diaclasa 89 35 C 5 0 SR Plana 7 Seco Ignimbritas R3 22-may.
L25 600527 7565719 4316 Diaclasa 76 34 C 6 0 SR Plana 7 Seco Ignimbritas R3 22-may.
L26 600527 7565719 4316 Diaclasa 87 215 C 6 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L27 600527 7565719 4316 Diaclasa 12 225 C 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L28 600536 7565761 4327 Diaclasa 82 20 C 1 50 SR Plana 9 Seco Ignimbritas R3 22-may.
L29 600536 7565761 4327 Diaclasa 89 357 D 1 2 SR Plana 9 Seco Ignimbritas R3 22-may.
L30 600536 7565761 4327 Diaclasa 85 20 D 10 1 SR Plana 9 Seco Ignimbritas R3 22-may.
L31 600536 7565761 4327 Diaclasa 82 16 D 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L32 600536 7565761 4327 Diaclasa 89 25 C 3 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L33 600536 7565761 4327 Diaclasa 15 255 C 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L34 600536 7565761 4327 Diaclasa 88 10 C 3 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L35 600552 7565810 4324 Diaclasa 88 35 D 10 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L36 600552 7565810 4324 Diaclasa 80 50 D 3 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L38 600625 7565892 4334 Diaclasa 74 30 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L39 600625 7565892 4334 Diaclasa 89 20 C 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L40 600625 7565892 4334 Diaclasa 83 16 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L41 600625 7565892 4334 Diaclasa 80 20 C 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L42 600625 7565892 4334 Diaclasa 85 30 C 3 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L43 600625 7565892 4334 Diaclasa 86 31 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L44 600625 7565892 4334 Diaclasa 80 18 C 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L45 600625 7565892 4334 Diaclasa 84 12 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L46 600636 7565943 7342 Diaclasa 84 25 C 6 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L47 600636 7565943 7342 Diaclasa 86 28 C 3 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L48 600636 7565943 7342 Diaclasa 85 350 C 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L49 600636 7565943 7342 Diaclasa 82 29 C 4 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L50 600636 7565943 7342 Diaclasa 80 25 C 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L51 600636 7565943 7342 Diaclasa 88 25 C 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
Página 1 Base de datos
Annex XVI Appendix B
361
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L52 600636 7565943 7342 Diaclasa 88 110 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L53 600636 7565943 7342 Diaclasa 83 18 C 2 20 SR Plana 9 Seco Ignimbritas R3 22-may.
L54 600636 7565943 7342 Diaclasa 68 29 C 2 10 SR Plana 9 Seco Ignimbritas R3 22-may.
L55 600621 7566042 4338 Diaclasa 82 15 D 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L56 600621 7566042 4338 Diaclasa 81 26 D 2 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L57 600621 7566042 4338 Diaclasa 89 120 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L58 600621 7566042 4338 Diaclasa 86 50 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L59 600621 7566042 4338 Diaclasa 85 30 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L60 600604 7566082 4349 Diaclasa 82 33 C 3 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L61 600604 7566082 4349 Diaclasa 84 12 C 1 0 SR Plana 9 Seco Ignimbritas R3 22-may.
L62 600604 7566082 4349 Diaclasa 80 27 C 7 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L63 600604 7566082 4349 Diaclasa 70 20 C 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L64 600604 7566082 4349 Diaclasa 78 22 C 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L65 600604 7566082 4349 Diaclasa 80 28 C 1 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L66 600604 7566082 4349 Diaclasa 60 25 C 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L67 600604 7566082 4349 Diaclasa 79 30 C 1 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L68 600604 7566082 4349 Diaclasa 81 25 C 1 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L69 600765 7566220 4355 Diaclasa 89 212 C 5 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L70 600765 7566220 4355 Diaclasa 52 190 D 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L71 600765 7566220 4355 Diaclasa 71 182 D 1 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L72 600765 7566220 4355 Diaclasa 79 195 C 1 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L73 600765 7566220 4355 Diaclasa 80 190 C 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L74 600765 7566220 4355 Diaclasa 45 95 D 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L75 600870 7566278 4366 Diaclasa 88 65 C 5 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L76 600870 7566278 4366 Diaclasa 87 71 C 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L77 600870 7566278 4366 Diaclasa 89 70 C 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L78 600870 7566278 4366 Diaclasa 89 68 C 1 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L79 600870 7566278 4366 Diaclasa 90 70 C 1 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L80 600870 7566278 4366 Diaclasa 78 10 D 5 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L81 600870 7566278 4366 Diaclasa 88 8 D 5 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L82 600870 7566278 4366 Diaclasa 87 2 D 5 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L83 600870 7566278 4366 Diaclasa 85 5 D 4 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L84 600870 7566278 4366 Diaclasa 83 6 D 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L85 600870 7566278 4366 Diaclasa 80 85 C 4 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L86 600870 7566278 4366 Diaclasa 88 96 C 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L87 600870 7566278 4366 Diaclasa 89 92 C 5 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L88 600987 7566343 4369 Diaclasa 82 84 D 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L89 600987 7566343 4369 Diaclasa 80 85 D 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L9 600214 7565398 4309 Diaclasa 3 320 C 3 5 Costra de oxidacion Plana 4 Seco Ignimbritas R3 22-may.
L90 600987 7566343 4369 Diaclasa 85 87 D 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L91 600987 7566343 4369 Diaclasa 85 15 C 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L92 600987 7566343 4369 Diaclasa 82 11 C 2 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L93 601024 7566411 4386 Diaclasa 87 60 D 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L94 601024 7566411 4386 Diaclasa 80 54 C 4 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L95 601024 7566411 4386 Diaclasa 78 46 C 4 0 SR Plana 6 Seco Ignimbritas R3 22-may.
L96 601024 7566411 4386 Diaclasa 82 50 C 3 0 SR Plana 6 Seco Ignimbritas R3 22-may.
M11 600549 7565711 4324 Diaclasa 285 76 15 C 2 3 SR Escalonada-Rugosa 6 Seco Ignimbritas Oxidación R2 22-may.
M12 600591 7565818 4323 Diaclasa 80 25 C 2 1 SR Plana-Rugosa 7 Seco Ignimbritas Oxidación R2 22-may.
M12 600591 7565818 4323 Diaclasa 88 28 C 2 1 SR Plana-Rugosa 7 Seco Ignimbritas Oxidación R2 22-may.
M12 600591 7565818 4323 Diaclasa 85 30 C 2 1 SR Plana-Rugosa 7 Seco Ignimbritas Oxidación R2 22-may.
M12 600591 7565818 4323 Diaclasa 23 55 C 5 10 SR Rugosa 10 Seco Ignimbritas Oxidación R2 22-may.
M12 600591 7565818 4323 Diaclasa 82 38 C 5 10 SR Rugosa 10 Seco Ignimbritas Oxidación R2 22-may.
M12 600591 7565818 4323 Diaclasa 89 301 C 4 6 SR Rugosa 12 Seco Ignimbritas Oxidación R2 22-may.
M12 600591 7565818 4323 Diaclasa 78 268 C 4 6 SR Rugosa 12 Seco Ignimbritas Oxidación R2 22-may.
M12 600591 7565818 4323 Diaclasa 72 280 C 4 6 SR Rugosa 12 Seco Ignimbritas Oxidación R2 22-may.
M13 600652 7565897 4330 Diaclasa 75 120 C 2 10 SR Rugosa 8 Seco Ignimbritas Oxidación R2 22-may.
M13 600652 7565897 4330 Diaclasa 80 95 C 2 10 SR Rugosa 8 Seco Ignimbritas Oxidación R2 22-may.
M13 600652 7565897 4330 Diaclasa 87 188 D 3 3 SR Plana 6 Seco Ignimbritas Oxidación R2 22-may.
M13 600652 7565897 4330 Diaclasa 67 216 D 1 0,5 SR Rugosa 8 Seco Ignimbritas Oxidación R2 22-may.
M13 600652 7565897 4330 Diaclasa 90 20 D 3 1 SR Plana 2 Seco Ignimbritas Oxidación R2 22-may.
Página 2 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
362
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M7 600293 7565437 4315 Diaclasa 72 150 C 3 1 SR Escalonada 3 Seco Ignimbritas Oxidación R2 22-may.
M7 600293 7565437 4315 Diaclasa 10 148 C 2 3 SR Curva-Escalonada 8 Seco Ignimbritas Oxidación R2 22-may.
M7 600293 7565437 4315 Diaclasa 10 146 D 3 1 SR Plana 6 Seco Ignimbritas Oxidación R2 22-may.
M7 600293 7565437 4315 Diaclasa 75 226 D 2 2 SR Plana 8 Seco Ignimbritas Oxidación R2 22-may.
M8 600366 7565516 4298 Diaclasa 70 240 D 3 2 SR Rugosa 8 Seco Ignimbritas Oxidación R2 22-may.
M8 600366 7565516 4298 Diaclasa 82 260 C 3 1 SR Plana 4 Seco Ignimbritas Oxidación R2 22-may.
M8 600366 7565516 4298 Diaclasa 86 264 C 3 1 SR Plana 4 Seco Ignimbritas Oxidación R2 22-may.
M8 600366 7565516 4298 Diaclasa 82 92 C 1 1 SR Plana 3 Seco Ignimbritas Oxidación R2 22-may.
L37 600625 7565892 4334 Falla 82 34 C 1 5 Milonita Plana 9 Seco Ignimbritas R3 22-may.
M13 600652 7565897 4330 Falla Inversa 21 95 C 1 2 SR Rugosa 8 Seco Ignimbritas Oxidación R2 22-may.
M13 600652 7565897 4330 Falla Inversa 12 120 D 1 0,2 Arcilla Plana 3 Seco Ignimbritas Oxidación R2 22-may. Desplazamiento de 10 cm
M6 600255 7565356 4298 Falla Inversa 322 82 52 C 3 10 SR Escalonada 6 Seco Ignimbritas Oxidación R2 22-may.
M8 600366 7565516 4298 Falla Inversa 81 60 C 5 3 SR Rugosa 5 Seco Ignimbritas Oxidación R2 22-may.
M10 600531 7565686 4315 Falla Normal 80 41 C 5 2 SR Rugosa 8 Seco Ignimbritas Oxidación R2 22-may.
M13 600652 7565897 4330 Falla Normal 78 192 C 2 2 SR Curva 12 Seco Ignimbritas Oxidación R2 22-may.
M7 600293 7565437 4315 Falla Normal 79 248 C 1 1 SR Escalonada 10 Seco Ignimbritas Oxidación R2 22-may. Desplazamiento de 25 cm
M8 600366 7565516 4298 Falla Normal 78 268 C 1 5 SR Rugosa 10 Humedo Ignimbritas Oxidación R2 22-may.
M8 600366 7565516 4298 Falla Normal 84 86 C 1 1 SR Escalonada-Rugosa 10 Seco Ignimbritas Oxidación R2 22-may.
M9 600417 7565548 4296 Falla Normal 156 77 66 C 5 12 SR Rugosa 5 Seco Ignimbritas Oxidación R2 22-may.
J1 600671,31 7566304,5 4374 Diaclasa 79 379 C 3 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J10 600633,68 7566318,5 4374 Diaclasa 47 100 C 1 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J11 600653,94 7566311,5 4374 Diaclasa 68 270 C 1 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J12 600653,94 7566311,5 4374 Diaclasa 78 345 C 1 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J13 600653,94 7566311,5 4374 Diaclasa 70 356 C 1 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J14 600633,68 7566318,5 4374 Diaclasa 70 36 C 1 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J15 600690,3 7566297,4 4376 Diaclasa 81 50 C 1 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J16 600690,3 7566297,4 4376 Diaclasa 83 138 C 1 3 SR Plana 6 Seco Ignimbritas R3 23-may.
J17 600713 7566299 4387 Diaclasa 88 40 C 4 1 SR Plana 6 Seco Ignimbritas R3 23-may.
J18 600713 7566299 4387 Diaclasa 72 332 C 3 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J19 600713 7566299 4387 Diaclasa 80 342 C 2 3 SR Plana 6 Seco Ignimbritas R3 23-may.
J2 600671,31 7566304,5 4374 Diaclasa 70 34 C 3 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J20 600615 7566334 4383 Diaclasa 25 53 C 1 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J21 600615 7566334 4383 Diaclasa 56 315 D 2 3 SR Plana 6 Seco Ignimbritas R3 23-may.
J22 600611 7566335 4385 Diaclasa 80 335 C 3 5 SR Plana 6 Seco Ignimbritas R3 23-may.
J23 600682 7566301 4386 Diaclasa 72 33 C 3 10 SR Plana 6 Seco Ignimbritas R3 23-may.
J24 600747 7566977 4487 Diaclasa 34 55 D 1 0 SR Plana 2 Seco Andesitas Oxidación R4 23-may.
J25 600742 7566975 4487 Diaclasa 57 310 C 1 5 SR Plana 2 Seco Andesitas Oxidación R4 23-may.
J26 600742 7566975 4487 Diaclasa 60 210 C 1 0 SR Plana 2 Seco Andesitas Oxidación R4 23-may.
J27 600739 7566987 4487 Diaclasa 78 115 C 1 0 SR Plana-Ondulada 2 Seco Andesitas Oxidación R4 23-may.
J28 600681 7566969 4480 Diaclasa 63 237 D 1 0 SR Plana-Rugosa 2 Seco Andesitas Oxidación R4 23-may.
J29 600656 7566957 4475 Diaclasa 82 315 D 1 0 SR Plana 2 Seco Andesitas Oxidación R4 23-may.
J3 600671,31 7566304,5 4374 Diaclasa 12 125 C 2 1 SR Plana 6 Seco Ignimbritas R3 23-may.
J4 600673,52 7566303,1 4374 Diaclasa 14 62 C 3 3 SR Plana 6 Seco Ignimbritas R3 23-may.
J5 600673,52 7566303,1 4374 Diaclasa 86 126 D 1 0 SR Plana 6 Seco Ignimbritas R3 23-may.
J6 600673,52 7566303,1 4374 Diaclasa 74 123 C 3 10 SR Plana 6 Seco Ignimbritas R3 23-may.
J7 600660,67 7566307,2 4374 Diaclasa 84 305 C 1 10 SR Plana 6 Seco Ignimbritas R3 23-may.
J8 600657,37 7566308,1 4374 Diaclasa 65 192 C 3 3 SR Plana 6 Seco Ignimbritas R3 23-may.
J9 600657,37 7566308,1 4374 Diaclasa 70 36 C 4 0 SR Plana 6 Seco Ignimbritas R3 23-may.
M-15 600775 7565936 4356 Diaclasa 89 340 C 5 1 SR Escalonada-Rugosa 15 Seco Ignimbritas Oxidación R2 23-may.
M-15 600775 7565936 4356 Diaclasa 130 18 40 C 25 2 SR Escalonada-Rugosa 8 Seco Ignimbritas Oxidación R2 23-may.
M-16 600831 7565960 4353 Diaclasa 64 216 C 3 0,5 SR Escalonada 16 Seco Flujo de detritos Oxidación R3 23-may.
M-17 600817 7566049 4361 Diaclasa 75 215 C 3 5 SR Plana-Rugosa 10 Seco Flujo de detritos Oxidación R3 23-may.
M-18 600931 7566095 4357 Diaclasa 82 240 C 4 2 SR Escalonada-Rugosa 8 Seco Flujo de detritos Oxidación R3 23-may.
M-18 600931 7566095 4357 Diaclasa 25 195 D 5 0,5 SR Escalonada 16 Seco Flujo de detritos Oxidación R3 23-may.
M-20 601079 7566209 4367 Diaclasa 72 60 C 1 1 SR Escalonada 2 Humedo Ignimbritas Oxidación R2 23-may.
M-20 601079 7566209 4367 Diaclasa 74 150 C 2 0,5 SR Escalonada 2 Humedo Ignimbritas Oxidación R2 23-may.
M-20 601079 7566209 4367 Diaclasa 82 230 C 1 0,5 SR Rugosa 6 Humedo Ignimbritas Oxidación R2 23-may.
M-20 601079 7566209 4367 Diaclasa 70 222 D 5 0,8 SR Escalonada 6 Humedo Ignimbritas Oxidación R2 23-may.
M-20 601079 7566209 4367 Diaclasa 84 221 C 3 1 SR Escalonada 6 Humedo Ignimbritas Oxidación R2 23-may.
M-21 601177 7566251 4379 Diaclasa 80 256 C 5 5 SR Plana-Rugosa 8 Humedo Ignimbritas Oxidación R2 23-may.
Página 3 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
363
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M-21 601177 7566251 4379 Diaclasa 59 95 C 2 3 SR Plana-Rugosa 8 Seco Ignimbritas Oxidación R2 23-may.
M-21 601177 7566251 4379 Diaclasa 24 25 C 1 4 SR Plana-Rugosa 8 Seco Ignimbritas Oxidación R2 23-may.
M-22 601263 7566256 4372 Diaclasa 85 15 C 2 20 SR Escalonada 12 Seco Ignimbritas Oxidación R2 23-may.
M-23 601325 7566266 4390 Diaclasa 81 280 C 1 3 SR Escalonada 12 Seco Ignimbritas Oxidación R2 23-may.
M-23 601325 7566266 4390 Diaclasa 85 115 C 1 2 SR Escalonada 12 Seco Ignimbritas Oxidación R2 23-may.
M-25 601280 7566271 4398 Diaclasa 76 216 D 1 1 SR Escalonada 12 Humedo Ignimbritas Oxidación R2 23-may.
M-25 601280 7566271 4398 Diaclasa 80 45 C 3 0 SR Plana 6 Humedo Ignimbritas Oxidación R2 23-may.
M-25 601280 7566271 4398 Diaclasa 61 52 C 4 0 SR Plana 7 Humedo Ignimbritas Oxidación R2 23-may.
M-25 601280 7566271 4398 Diaclasa 72 49 C 2 0 SR Plana 8 Humedo Ignimbritas Oxidación R2 23-may.
M-25 601280 7566271 4398 Diaclasa 40 190 D 5 0 Arcilla Plana 6 Humedo Ignimbritas Oxidación R2 23-may.
M-15 600775 7565936 4356 Falla 88 84 C 2 5 SR Plana-Rugosa 12 Seco Ignimbritas Sales R2 23-may.
M-15 600775 7565936 4356 Falla de Rumbo 8 150 C 3 1 SR Escalonada-Rugosa 15 Seco Ignimbritas Oxidación R2 23-may.
M-15 600775 7565936 4356 Falla Inversa 77 148 D 1 2 SR Escalonada-Rugosa 10 Seco Ignimbritas Oxidación R2 23-may.
M-14 600732 7565903 4349 Falla Normal 7 32 C 5 1 SR Curva-Escalonada 8 Seco Ignimbritas Oxidación R2 23-may.
M-14 600732 7565903 4349 Falla Normal 68 75 C 2 5 SR Escalonada-Rugosa 18 Humedo Ignimbritas Oxidación R2 23-may.
M-15 600775 7565936 4356 Falla Normal 84 122 C 4 2 SR Plana 4 Seco Ignimbritas Oxidación R2 23-may.
M-15 600775 7565936 4356 Falla Normal 86 132 C 2 2,5 SR Plana 4 Seco Ignimbritas Oxidación R2 23-may.
M-15 600775 7565936 4356 Falla Normal 80 120 C 2 2,5 SR Plana 4 Seco Ignimbritas Oxidación R2 23-may.
M-15 600775 7565936 4356 Falla Normal 82 124 C 1 2,5 SR Plana 4 Seco Ignimbritas Oxidación R2 23-may.
M-15 600775 7565936 4356 Falla Normal 37 230 C 2 2 SR Escalonada-Rugosa 10 Seco Ignimbritas Oxidación R2 23-may.
M-19 600969 7566140 4365 Falla Normal 302 85 212 C 5 5 SR Escalonada 8 Humedo Ignimbritas Oxidación R2 23-may.
M-20 601079 7566209 4367 Falla Normal 80 210 C 2 5 SR Escalonada 6 Humedo Ignimbritas Oxidación R2 23-may.
M-20 601079 7566209 4367 Falla Normal 88 218 C 1 3 SR Escalonada 3 Humedo Ignimbritas Oxidación R2 23-may.
M-20 601079 7566209 4367 Falla Normal 88 218 C 2 1 SR Escalonada 6 Humedo Ignimbritas Oxidación R2 23-may.
M-20 601079 7566209 4367 Falla Normal 86 220 C 2 1 SR Escalonada 6 Humedo Ignimbritas Oxidación R2 23-may.
M-17 600817 7566049 4361 Pseudoestratificación 34 190 C Seco Flujo de detritos R2 23-may.
E2 604954 7566169 4563 Diaclasa 70 85 D 2 3 SR Plana 8 Seco Dacitas R4 15-jun.
E3 605447 7566138 4583 Diaclasa 81 100 C 6 1 SR Escalonada 6 Seco Dacitas R4 15-jun.
E4 605105 7566048 4618 Diaclasa 196 85 286 D 1 2 SR Ondulada 12 Seco Dacitas R4 15-jun.
L100 604904 7567284 4544 Diaclasa 74 334 D 2 2 SR Plana 8 Seco Ignimbritas R3 15-jun.
L101 604904 7567284 4544 Diaclasa 70 335 D 2 2 SR Plana 8 Seco Ignimbritas R3 15-jun.
L102 604904 7567284 4544 Diaclasa 80 220 C 2 3 SR Plana 8 Seco Ignimbritas R3 15-jun.
L103 604904 7567284 4544 Diaclasa 78 205 C 2 3 SR Plana 8 Seco Ignimbritas R3 15-jun.
L104 604904 7567284 4544 Diaclasa 80 323 D 2 1 SR Plana 8 Seco Ignimbritas R3 15-jun.
L105 605075 7567074 4545 Diaclasa 78 134 D 2 0 SR Plana 8 Seco Ignimbritas R3 15-jun.
L106 605075 7567074 4545 Diaclasa 70 160 D 2 2 SR Plana 6 Seco Ignimbritas R3 15-jun.
L107 605075 7567074 4545 Diaclasa 70 160 D 3 0 SR Plana 6 Seco Ignimbritas R3 15-jun.
L108 605474 7566741 4551 Diaclasa 88 95 C 7 8 SR Plana 6 Seco Dacita-Andesita R4 15-jun.
L109 605474 7566741 4551 Diaclasa 84 81 C 7 2 SR Plana 6 Seco Dacita-Andesita R4 15-jun.
L110 605474 7566741 4551 Diaclasa 80 86 C 7 3 SR Plana 6 Seco Dacita-Andesita R4 15-jun.
L111 605474 7566741 4551 Diaclasa 84 75 C 7 0 SR Plana 6 Seco Dacita-Andesita R4 15-jun.
L112 605474 7566741 4551 Diaclasa 88 82 C 7 0 SR Plana 6 Seco Dacita-Andesita R4 15-jun.
L113 605474 7566741 4551 Diaclasa 87 94 C 8 0 SR Plana 6 Seco Dacita-Andesita R4 15-jun.
L114 605474 7566741 4551 Diaclasa 81 86 C 4 0 SR Plana 6 Seco Dacita-Andesita R4 15-jun.
L115 605474 7566741 4551 Diaclasa 89 175 D 3 5 SR Plana 6 Seco Dacita-Andesita R4 15-jun.
L116 605474 7566741 4551 Diaclasa 85 160 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L117 605474 7566741 4551 Diaclasa 87 80 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L118 606617 7565833 4670 Diaclasa 74 105 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L119 606359 7565778 4670 Diaclasa 80 200 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L120 606973 7565924 4660 Diaclasa 84 25 C 15 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L121 606973 7565924 4660 Diaclasa 75 348 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L122 606973 7565924 4660 Diaclasa 79 35 C 2 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L123 606973 7565924 4660 Diaclasa 89 85 C 10 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L124 606498 7566411 4591 Diaclasa 74 230 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L125 606498 7566411 4591 Diaclasa 82 300 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L126 606226 7566454 4593 Diaclasa 75 235 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 15-jun.
L97 604904 7567284 4544 Diaclasa 84 358 C 5 3 SR Plana 8 Seco Ignimbritas R3 15-jun.
L98 604904 7567284 4544 Diaclasa 78 355 D 3 8 SR Plana 8 Seco Ignimbritas R3 15-jun.
L99 604904 7567284 4544 Diaclasa 72 320 C 2 2 SR Plana 8 Seco Ignimbritas R3 15-jun.
M1 604921 7566167 4571 Diaclasa 75 70 C 2 5 SR Escalonada 14 Seco Dacitas R4 15-jun.
Página 4 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
364
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M10 606009 7564550 4756 Diaclasa 46 52 D 1 15 SR Escalonada 12 Seco Dacitas R4 15-jun.
M11 606003 7564525 4756 Diaclasa 59 201 D 7 10 SR Escalonada 12 Seco Dacitas R4 15-jun.
M11 606003 7564525 4756 Diaclasa 340 75 20 C 1 8 SR Escalonada 14 Seco Dacitas R4 15-jun.
M2 604925 7566162 4568 Diaclasa 84 95 D 1 1 SR Plana 8 Seco Dacitas R4 15-jun.
M3 604920 7566163 4570 Diaclasa 77 68 D 2 10 SR Curva-Escalonada 12 Seco Dacitas R4 15-jun.
M4 604938 7566164 4575 Diaclasa 43 212 D 1 < 1 SR Escalonada 12 Seco Dacitas R4 15-jun.
M4 604938 7566164 4575 Diaclasa 15 205 D 1 2 SR Escalonada 14 Seco Dacitas R4 15-jun.
M4 604938 7566164 4575 Diaclasa 80 245 D 4 10 SR Escalonada 12 Seco Dacitas R4 15-jun.
M4 604938 7566164 4575 Diaclasa 42 6 D 3 3 SR Escalonada 12 Seco Dacitas R4 15-jun.
M4 604938 7566164 4575 Diaclasa 82 106 D 1 < 1 SR Plana 10 Seco Dacitas R4 15-jun.
M5 604947 7566150 4584 Diaclasa 51 241 D 3 3 SR Plana 8 Seco Dacitas R4 15-jun.
M5 604947 7566150 4584 Diaclasa 60 92 C 1 5 SR Ondulada 8 Seco Dacitas R4 15-jun.
M6 605032 7566136 4537 Diaclasa 85 337 D 3 20 SR Plana 4 Seco Dacitas R4 15-jun.
M6 605032 7566136 4537 Diaclasa 72 260 D 3 20 SR Plana 4 Seco Dacitas R4 15-jun.
M6 605032 7566136 4537 Diaclasa 42 177 D 3 15 SR Plana 8 Seco Dacitas R4 15-jun.
M6 605032 7566136 4537 Diaclasa 81 130 D 2 2 SR Plana 4 Seco Dacitas R4 15-jun.
M6 605032 7566136 4537 Diaclasa 65 172 D 2 2 SR Plana 8 Seco Dacitas R4 15-jun.
M6 605032 7566136 4537 Diaclasa 62 40 D 3 < 1 SR Plana 8 Seco Dacitas R4 15-jun.
M6 605032 7566136 4537 Diaclasa 78 275 D 2 < 1 SR Plana 8 Seco Dacitas R4 15-jun.
M7 605113 7566077 4613 Diaclasa 72 345 C 1 5 SR Escalonada 14 Seco Ignimbritas R2 15-jun.
M8 605574 7564904 4643 Diaclasa 49 286 D 2 10 SR Escalonada 10 Seco Dacitas R4 15-jun.
M8 605574 7564904 4643 Diaclasa 34 204 C 2 10 SR Escalonada 10 Seco Dacitas R4 15-jun.
M8 605574 7564904 4643 Diaclasa 50 71 D 3 5 SR Escalonada 16 Seco Dacitas R4 15-jun.
M8 605574 7564904 4643 Diaclasa 49 335 D 2 < 1 SR Plana 6 Seco Dacitas R4 15-jun.
M8 605574 7564904 4643 Diaclasa 160 90 70 D 1 SR Plana 10 Seco Dacitas R4 15-jun.
M8 605574 7564904 4643 Diaclasa 54 135 D 1 < 1 SR Ondulada 6 Seco Dacitas R4 15-jun.
M9 605914 7564756 4713 Diaclasa 65 81 D 1 8 SR Plana 8 Seco Dacitas R4 15-jun.
M9 605914 7564756 4713 Diaclasa 83 15 D 1 8 SR Plana 8 Seco Dacitas R4 15-jun.
M9 605914 7564756 4713 Diaclasa 42 162 C 1 1 SR Escalonada 12 Seco Dacitas R4 15-jun.
E1 604957 7566168 4568 Falla Normal 58 165 C 1 10 SR Plana 8 Seco Dacitas R4 15-jun.
E3 605447 7566138 4583 Pseudoestratificación 57 257 C Seco Dacitas R4 15-jun.
E4 605105 7566048 4618 Pseudoestratificación 210 90 120 C Seco Dacitas R4 15-jun.
E5 605991 7564543 4752 Pseudoestratificación 36 145 C Seco Dacitas R4 15-jun.
M1 604921 7566167 4571 Pseudoestratificación 34 160 C Seco Dacitas R4 15-jun.
E11 606784 7563481 4955 Diaclasa 76 250 C 4 4 SR Plana 14 Seco Dacitas R4 16-jun.
E11 606784 7563481 4955 Diaclasa 69 39 D 3 2 SR Plana 10 Seco Dacitas R4 16-jun.
E11 606784 7563481 4955 Diaclasa 77 35 C 2 25 SR Ondulada 12 Seco Dacitas R4 16-jun.
E12 606909 7563170 5029 Diaclasa 81 70 C 4 2 SR Plana 14 Seco Andesitas R4 16-jun.
E12 606909 7563170 5029 Diaclasa 78 294 C 4 4 SR Escalonada 12 Seco Andesitas R4 16-jun.
E12 606909 7563170 5029 Diaclasa 66 310 D 2 2 SR Escalonada 2 Seco Andesitas R4 16-jun.
E12 606909 7563170 5029 Diaclasa 76 279 D 3 0 SR Plana 2 Seco Andesitas R4 16-jun.
E13 606624 7562239 5253 Diaclasa 84 144 C 6 20 SR Escalonada 12 Seco Andesitas R4 16-jun.
E13 606624 7562239 5253 Diaclasa 82 122 D 5 15 SR Escalonada 2 Seco Andesitas R4 16-jun.
E9 606248 7565102 4703 Diaclasa 75 77 13 D 3 2 SR Escalonada 8 Seco Dacitas R4 16-jun.
J1 605837 7565474 4651 Diaclasa 82 25 D 3 2 SR Rugosa 14 Seco Dacitas R4 16-jun.
J1 605837 7565474 4651 Diaclasa 60 82 D 6 0 SR Rugosa 8 Seco Dacitas R4 16-jun.
J1 605837 7565484 4651 Diaclasa 70 233 C 5 < 1 SR Rugosa 14 Seco Dacitas R4 16-jun.
J1 605837 7565472 4651 Diaclasa 65 87 C 2 10 SR Plana 4 Seco Dacitas R4 16-jun.
J1 605837 7565471 4651 Diaclasa 71 72 D 3 3 SR Ondulada 6 Seco Dacitas R4 16-jun.
J2 606255 7565106 4704 Diaclasa 85 10 C 1 4 SR Ondulada 6 Seco Dacitas R4 16-jun.
J2 606255 7565106 4704 Diaclasa 82 50 D 1 0 SR Plana 4 Seco Dacitas R4 16-jun.
J4 606628 7562234 5258 Diaclasa 81 55 C 3 5 SR Ondulada 8 Seco Dacitas R4 16-jun.
J4 606628 7562232 5258 Diaclasa 83 215 C 3 15 SR Escalonada 14 Seco Dacitas R4 16-jun.
J5 606627 7562224 5264 Diaclasa 54 84 144 C 6 5 SR Escalonada 14 Seco Dacitas R4 16-jun.
J5 606627 7562224 5264 Diaclasa 65 255 D 6 3 SR Escalonada 14 Seco Dacitas R4 16-jun.
J5 606627 7562224 5264 Diaclasa 65 105 C 3 7 SR Ondulada 8 Seco Dacitas R4 16-jun.
M14 606044 7565302 4652 Diaclasa 85 303 D 6 5 SR Ondulada 4 Seco Dacitas R4 16-jun.
M14 606044 7565302 4652 Diaclasa 70 145 D 5 5 SR Ondulada 8 Seco Dacitas R4 16-jun.
M14 606044 7565302 4652 Diaclasa 78 96 C 2 < 1 SR Plana 10 Humedo Dacitas R4 16-jun.
M14 606044 7565302 4652 Diaclasa 77 96 C 2 6 SR Plana 14 Seco Dacitas R4 16-jun.
Página 5 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
365
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M14* 606152 7565203 4677 Diaclasa 77 106 C 2 4 SR Plana 12 Seco Dacitas R4 16-jun.
M15 606264 7565180 4686 Diaclasa 75 82 C 4 2 SR Plana 14 Seco Dacitas R4 16-jun.
M15 606264 7565180 4686 Diaclasa 77 130 D 2 4 SR Escalonada 8 Seco Dacitas R4 16-jun.
M15 606264 7565180 4686 Diaclasa 56 136 D 3 < 1 SR Plana 12 Seco Dacitas R4 16-jun.
M16 606219 7565173 4687 Diaclasa 72 169 C 4 2 SR Plana 12 Seco Dacitas R4 16-jun.
M16 606219 7565173 4687 Diaclasa 88 10 D 1 2 SR Ondulada 12 Seco Dacitas R4 16-jun.
M16 606219 7565173 4687 Diaclasa 76 94 C 3 < 1 SR Ondulada 12 Seco Dacitas R4 16-jun.
M16 606219 7565173 4687 Diaclasa 55 155 D 2 < 1 SR Ondulada 10 Seco Dacitas R4 16-jun.
M16 606219 7565173 4687 Diaclasa 70 94 D 2 < 1 SR Ondulada 10 Seco Dacitas R4 16-jun.
M17 606331 7564278 4831 Diaclasa 77 332 C 3 2 SR Plana 2 Seco Andesitas R4 16-jun.
M17 606331 7564278 4831 Diaclasa 84 326 D 5 1 SR Plana 2 Seco Andesitas R4 16-jun.
M18 606658 7563652 4945 Diaclasa 66 156 C 2 SR Escalonada 18 Seco Andesitas R4 16-jun.
M18 606658 7563652 4945 Diaclasa 145 78 235 C 2 10 SR Escalonada 18 Seco Dacitas R4 16-jun.
M18 606658 7563652 4945 Diaclasa 158 88 248 D 1 2 SR Ondulada 6 Seco Dacitas R4 16-jun.
M19 606718 7563593 4941 Diaclasa 74 258 C 2 10 SR Rugosa 18 Seco Dacitas R4 16-jun.
M19 606718 7563593 4941 Diaclasa 66 87 C 2 3 SR Rugosa 12 Seco Dacitas R4 16-jun.
M19 606718 7563593 4941 Diaclasa 71 235 C 3 5 SR Rugosa 12 Seco Dacitas R4 16-jun.
M19 606718 7563593 4941 Diaclasa 81 230 D 3 0 SR Rugosa 8 Seco Dacitas R4 16-jun.
M19 606718 7563593 4941 Diaclasa 65 332 C 1 6 SR Escalonada 18 Seco Dacitas R4 16-jun.
M20 606732 7563443 4970 Diaclasa 74 149 C 3 2 SR Plana 4 Seco Dacitas R4 16-jun.
M20 606732 7563443 4970 Diaclasa 74 55 D 2 0 SR Rugosa 14 Seco Dacitas R4 16-jun.
M20 606732 7563443 4970 Diaclasa 64 272 D 2 < 1 SR Rugosa 14 Seco Dacitas R4 16-jun.
M21 606519 7562224 5263 Diaclasa 85 102 C 5 3 SR Plana 8 Seco Dacitas R4 16-jun.
M21 606519 7562224 5263 Diaclasa 156 83 246 C 6 2 SR Escalonada 14 Seco Dacitas R4 16-jun.
M21 606519 7562224 5263 Diaclasa 155 87 245 C 3 10 SR Escalonada 14 Seco Dacitas R4 16-jun.
M21 606519 7562224 5263 Diaclasa 86 48 D 4 < 1 SR Escalonada 14 Seco Dacitas R4 16-jun.
M21 606519 7562224 5263 Diaclasa 10 75 C 1 20 SR Escalonada 14 Seco Dacitas R4 16-jun.
M21 606519 7562224 5263 Diaclasa 67 222 D 4 4 SR Escalonada 14 Seco Dacitas R4 16-jun.
M21 606519 7562224 5263 Diaclasa 132 84 222 C 3 10 SR Plana 2 Seco Dacitas R4 16-jun.
E11 606784 7563481 4955 Pseudoestratificación 56 140 C Seco Dacitas R3 16-jun.
E12 606909 7563170 5029 Pseudoestratificación 48 160 C Seco Andesitas R4 16-jun.
E8 607383 7565158 4707 Pseudoestratificación 38 200 D Seco Dacitas R3 16-jun.
M14 606044 7565302 4652 Pseudoestratificación 45 204 C Seco Dacitas R4 16-jun.
M17 606331 7564278 4831 Pseudoestratificación 42 200 C Seco Andesitas R4 16-jun.
M18 606658 7563652 4945 Pseudoestratificación 42 30 C Seco Andesitas R4 16-jun.
M18 606658 7563652 4945 Pseudoestratificación 72 158 C Seco Andesitas R4 16-jun.
M18 606658 7563652 4945 Pseudoestratificación 222 62 132 C Seco Andesitas R4 16-jun.
M19 606718 7563593 4941 Pseudoestratificación 49 175 C Seco Dacitas R4 16-jun.
M19 606718 7563593 4941 Pseudoestratificación 53 30 C Seco Dacitas R4 16-jun.
M20 606732 7563443 4970 Pseudoestratificación 52 162 C Seco Dacitas R4 16-jun.
M21 606519 7562224 5263 Pseudoestratificación 330 16 240 C Seco Dacitas R4 16-jun.
J6 607704 7563369 4975 Diaclasa 68 5 C 6 7 SR Plana 12 Seco Dacita-Andesita R4 17-jun.
J6 607704 7563368 4975 Diaclasa 70 355 D 3 2 SR Plana 14 Seco Dacita-Andesita R4 17-jun.
J6 607704 7563365 4975 Diaclasa 78 230 C 2 5 SR Plana 8 Seco Dacita-Andesita R4 17-jun.
J7 607659 7563363 4987 Diaclasa 65 235 C 3 5 SR Plana 8 Seco Dacita-Andesita R4 17-jun.
L162 609569 7565775 4590 Diaclasa 88 110 D 5 0 SR Plana 10 Seco Dacita-Andesita R3 17-jun.
L163 609569 7565775 4590 Diaclasa 87 265 D 2 0 SR Plana 10 Seco Dacita-Andesita R3 17-jun.
L164 609569 7565775 4590 Diaclasa 82 271 D 2 0 SR Plana 10 Seco Dacita-Andesita R3 17-jun.
L165 609569 7565775 4590 Diaclasa 85 272 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L169 609569 7565775 4590 Diaclasa 65 280 D 1 0 SR Plana 10 Seco Brecha de base R3 17-jun.
L170 609569 7565775 4590 Diaclasa 80 310 D 1 0 SR Plana 10 Seco Brecha de base R3 17-jun.
L171 609569 7565775 4590 Diaclasa 60 295 C 4 3 SR Plana 10 Seco Brecha de base R3 17-jun.
L172 609569 7565775 4590 Diaclasa 62 290 C 2 0 SR Plana 10 Seco Brecha de base R3 17-jun.
L173 609569 7565775 4590 Diaclasa 59 275 C 1 0 SR Plana 10 Seco Brecha de base R3 17-jun.
L174 609569 7565775 4590 Diaclasa 52 260 C 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L175 609569 7565775 4590 Diaclasa 60 263 C 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L178 609569 7565775 4590 Diaclasa 59 158 D 3 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L179 609569 7565775 4590 Diaclasa 48 245 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L180 609569 7565775 4590 Diaclasa 60 330 D 3 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L181 609569 7565775 4590 Diaclasa 82 263 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
Página 6 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
366
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L182 609569 7565775 4590 Diaclasa 70 82 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L183 609569 7565775 4590 Diaclasa 68 70 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L184 609472 7565800 4610 Diaclasa 70 76 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L185 608778 7567209 4598 Diaclasa 80 145 D 3 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L186 608778 7567209 4598 Diaclasa 70 140 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L187 608778 7567209 4598 Diaclasa 45 255 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L188 608778 7567209 4598 Diaclasa 60 5 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L189 608778 7567209 4598 Diaclasa 87 147 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L190 608778 7567209 4598 Diaclasa 68 10 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L191 608778 7567209 4598 Diaclasa 49 85 D 3 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L192 608778 7567209 4598 Diaclasa 55 345 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L193 608778 7567209 4598 Diaclasa 68 93 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L194 608778 7567209 4598 Diaclasa 50 118 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L195 608778 7567209 4598 Diaclasa 50 85 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L196 608778 7567209 4598 Diaclasa 89 267 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L197 608778 7567209 4598 Diaclasa 51 304 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L198 608778 7567209 4598 Diaclasa 79 68 D 4 5 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L199 608778 7567209 4598 Diaclasa 80 277 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L200 608778 7567209 4598 Diaclasa 83 292 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L201 608745 7567431 4588 Diaclasa 88 130 D 5 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L202 608745 7567431 4588 Diaclasa 60 140 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L203 608745 7567431 4588 Diaclasa 80 320 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L204 608745 7567431 4588 Diaclasa 85 342 D 2 6 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L205 608745 7567431 4588 Diaclasa 84 312 C 3 4 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L206 608745 7567431 4588 Diaclasa 83 114 C 2 2 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L207 608745 7567431 4588 Diaclasa 85 123 D 1 3 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L208 607840 7567411 4618 Diaclasa 70 165 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L209 607840 7567411 4618 Diaclasa 79 320 D 2 20 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L210 607840 7567411 4618 Diaclasa 88 308 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L211 607840 7567411 4618 Diaclasa 45 36 D 3 5 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L212 607840 7567411 4618 Diaclasa 38 285 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L213 607840 7567411 4618 Diaclasa 56 250 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L214 607840 7567411 4618 Diaclasa 60 290 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L215 607840 7567411 4618 Diaclasa 65 278 D 2 5 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L216 605738 7566568 4566 Diaclasa 83 335 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L217 605738 7566568 4566 Diaclasa 80 151 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L219 605738 7566568 4566 Diaclasa 54 260 D 1 10 SR Plana 10 Seco Ignimbritas R3 17-jun.
L226 605738 7566568 4566 Diaclasa 61 260 D 2 1 SR Plana 8 Seco Ignimbritas R3 17-jun.
L232 605738 7566568 4566 Diaclasa 10 140 D 2 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L234 605545 7566680 4554 Diaclasa 85 280 D 3 30 SR Plana 8 Seco Ignimbritas R3 17-jun.
L235 605545 7566680 4554 Diaclasa 87 76 D 2 10 SR Plana 8 Seco Ignimbritas R3 17-jun.
L236 605545 7566680 4554 Diaclasa 83 294 D 2 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L237 605545 7566680 4554 Diaclasa 89 315 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L245 605545 7566680 4554 Diaclasa 7 190 D 1 2 SR Plana 8 Seco Ignimbritas R3 17-jun.
L246 605545 7566680 4554 Diaclasa 4 183 D 1 2 SR Plana 8 Seco Ignimbritas R3 17-jun.
L247 605545 7566680 4554 Diaclasa 89 5 D 2 3 SR Plana 8 Seco Ignimbritas R3 17-jun.
L248 605545 7566680 4554 Diaclasa 85 10 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L249 605545 7566680 4554 Diaclasa 60 75 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L250 605545 7566680 4554 Diaclasa 89 83 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L251 605545 7566680 4554 Diaclasa 65 350 D 2 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L252 605545 7566680 4554 Diaclasa 80 100 D 3 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L253 605545 7566680 4554 Diaclasa 78 290 D 2 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L254 605545 7566680 4554 Diaclasa 60 250 D 1 5 SR Plana 8 Seco Ignimbritas R3 17-jun.
L255 605545 7566680 4554 Diaclasa 85 339 D 4 2 SR Plana 8 Seco Ignimbritas R3 17-jun.
L257 605545 7566680 4554 Diaclasa 84 110 D 2 1 SR Plana 8 Seco Ignimbritas R3 17-jun.
L258 605545 7566680 4554 Diaclasa 87 108 D 4 4 SR Plana 8 Seco Ignimbritas R3 17-jun.
L259 605545 7566680 4554 Diaclasa 89 130 D 2 2 SR Plana 8 Seco Ignimbritas R3 17-jun.
M22 607672 7563334 4991 Diaclasa 135 82 45 D 3 2 SR Escalonada 4 Seco Dacitas R3 17-jun.
M22 607672 7563334 4991 Diaclasa 110 85 20 D 2 < 1 SR Escalonada 6 Seco Dacitas R3 17-jun.
M23 607666 7563323 4992 Diaclasa 180 47 90 D 5 2 SR Escalonada 12 Seco Dacitas R3 17-jun.
Página 7 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
367
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M23 607666 7563323 4992 Diaclasa 148 74 58 D 3 0 SR Escalonada 10 Seco Dacitas R3 17-jun.
M23 607666 7563323 4992 Diaclasa 138 52 228 D 5 < 1 SR Plana 6 Seco Dacitas R3 17-jun.
M23 607666 7563323 4992 Diaclasa 185 89 370 D 3 < 1 SR Escalonada 6 Seco Dacitas R3 17-jun.
M24 607696 7563348 4985 Diaclasa 190 88 100 D 2 0 SR Plana 4 Seco Dacitas R3 17-jun.
M24 607696 7563348 4985 Diaclasa 152 86 242 C 3 10 SR Escalonada 14 Seco Dacitas R3 17-jun.
M24 607696 7563348 4985 Diaclasa 295 52 205 C 2 0 SR Plana 12 Seco Dacitas R3 17-jun.
M24 607696 7563348 4985 Diaclasa 222 72 150 C 3 6 SR Plana 6 Seco Dacitas R3 17-jun.
M24 607696 7563348 4985 Diaclasa 20 87 110 D 2 7 SR Plana 4 Seco Dacitas R3 17-jun.
L159 609569 7565775 4590 Falla 82 115 D 1 5 SR Plana 10 Seco Dacita-Andesita R3 17-jun.
L160 609569 7565775 4590 Falla 72 93 D 1 0 SR Plana 10 Seco Dacita-Andesita R3 17-jun.
L161 609569 7565775 4590 Falla 82 120 D 1 0 SR Plana 10 Seco Dacita-Andesita R3 17-jun.
L166 609569 7565775 4590 Falla 68 135 200 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L167 609569 7565775 4590 Falla 40 320 185 D 1 0 SR Plana 10 Seco Brecha de base R3 17-jun.
L168 609569 7565775 4590 Falla 38 324 185 D 1 0 SR Plana 10 Seco Brecha de base R3 17-jun.
L177 609569 7565775 4590 Falla 56 340 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
L220 605738 7566568 4566 Falla 76 155 230 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L221 605738 7566568 4566 Falla 89 210 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L222 605738 7566568 4566 Falla 88 190 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L223 605738 7566568 4566 Falla 81 315 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L224 605738 7566568 4566 Falla 87 245 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L225 605738 7566568 4566 Falla 80 260 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L227 605738 7566568 4566 Falla 89 266 D 1 10 SR Plana 8 Seco Ignimbritas R3 17-jun.
L228 605738 7566568 4566 Falla 88 97 D 1 10 SR Plana 8 Seco Ignimbritas R3 17-jun.
L229 605738 7566568 4566 Falla 82 335 D 1 10 SR Plana 8 Seco Ignimbritas R3 17-jun.
L230 605738 7566568 4566 Falla 87 290 D 1 5 SR Plana 8 Seco Ignimbritas R3 17-jun.
L231 605738 7566568 4566 Falla 65 300 D 1 2 SR Plana 8 Seco Ignimbritas R3 17-jun.
L233 605545 7566680 4554 Falla 80 20 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L238 605545 7566680 4554 Falla 80 290 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L239 605545 7566680 4554 Falla 77 308 D 1 3 SR Plana 8 Seco Ignimbritas R3 17-jun.
L240 605545 7566680 4554 Falla 78 280 D 1 8 SR Plana 8 Seco Ignimbritas R3 17-jun.
L241 605545 7566680 4554 Falla 86 260 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L242 605545 7566680 4554 Falla 88 320 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L243 605545 7566680 4554 Falla 88 316 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L244 605545 7566680 4554 Falla 89 310 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L218 605738 7566568 4566 Falla Inversa 87 140 D 1 0 SR Plana 10 Seco Ignimbritas R3 17-jun.
L256 605545 7566680 4554 Falla Inversa 86 325 D 1 0 SR Plana 8 Seco Ignimbritas R3 17-jun.
L176 609569 7565775 4590 Falla Normal 48 160 D 1 2 SR Plana 10 Seco Dacita-Andesita R4 17-jun.
M22 607672 7563334 4991 Pseudoestratificación 38 33 128 C Seco Dacitas R3 17-jun.
M24 607696 7563348 4985 Pseudoestratificación 240 30 150 C Seco Dacitas R3 17-jun.
E17 610262 7564392 4623 Diaclasa 75 295 D 3 2 SR Plana 12 Seco Dacitas R4 18-jun.
E17 610262 7564392 4623 Diaclasa 70 335 D 1 10 SR Plana 12 Seco Dacitas R4 18-jun.
E18 610033 7564255 4666 Diaclasa 134 78 224 C 1 10 SR Plana 12 Seco Dacitas R4 18-jun.
E19 607120 7561061 5690 Diaclasa 26 155 C 4 20 SR Plana 12 Seco Dacitas R4 18-jun.
E19 607120 7561061 5690 Diaclasa 71 21 C 5 < 1 SR Plana 10 Seco Andesitas R4 18-jun.
E19 607120 7561061 5690 Diaclasa 79 85 D 1 1 SR Plana 4 Seco Andesitas R4 18-jun.
E19 607120 7561061 5690 Diaclasa 84 238 C 2 3 SR Escalonada 12 Seco Andesitas R4 18-jun.
E20 607098 7561059 5691 Diaclasa 54 309 C 2 5 SR Plana 4 Seco Andesitas R4 18-jun.
E20 607098 7561059 5691 Diaclasa 76 22 D 1 1 SR Plana 4 Seco Andesitas R4 18-jun.
E20 607098 7561059 5691 Diaclasa 86 14 C 5 7 SR Plana 14 Seco Andesitas R4 18-jun.
E20 607098 7561059 5691 Diaclasa 71 18 C 3 8 SR Plana 12 Seco Andesitas R4 18-jun.
E21 606972 7561117 5671 Diaclasa 54 15 C 3 2 SR Plana 10 Seco Andesitas R4 18-jun.
E21 606972 7561117 5671 Diaclasa 42 200 D 2 1 SR Plana 16 Seco Andesitas R4 18-jun.
E21 606972 7561117 5671 Diaclasa 68 30 C 3 2 SR Plana 14 Seco Andesitas R4 18-jun.
E21 606972 7561117 5671 Diaclasa 85 305 D 5 3 SR Plana 14 Seco Andesitas R4 18-jun.
E22 607180 7561389 5499 Diaclasa 62 96 C 3 10 SR Plana 8 Seco Andesitas R4 18-jun.
E22 607180 7561389 5499 Diaclasa 57 159 C 1 2 SR Plana 14 Seco Andesitas R4 18-jun.
E22 607180 7561389 5499 Diaclasa 69 246 D 3 2 SR Plana 4 Seco Andesitas R4 18-jun.
E22 607180 7561389 5499 Diaclasa 74 161 D 1 20 SR Plana 4 Seco Andesitas R4 18-jun.
E23 607161 7561490 5434 Diaclasa 66 139 D 7 0 SR Plana 2 Seco Andesitas R4 18-jun.
E23 607161 7561490 5434 Diaclasa 59 98 D 6 0 SR Plana 2 Seco Andesitas R4 18-jun.
Página 8 Base de datos
SERGE~ MIN
8l!RYICl0 Ol!CJL6Giico llillN!SlO
Pll) --•c:-rr QPT TI PD !.o:c - p -Jr I I COHTUIJID_,._[: :•r:R:CilSTl:LCll<. ;'J:1,[:ffJR:,\
Fill I
368
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
E23 607161 7561490 5434 Diaclasa 69 332 C 2 2 SR Plana 8 Seco Andesitas R4 18-jun.
E23 607161 7561490 5434 Diaclasa 84 31 D 2 1 SR Plana 6 Seco Andesitas R4 18-jun.
E23 607161 7561490 5434 Diaclasa 72 326 C 2 5 SR Plana 10 Seco Andesitas R4 18-jun.
E23 607161 7561490 5434 Diaclasa 83 42 D 2 4 SR Plana 4 Seco Andesitas R4 18-jun.
E23 607161 7561490 5434 Diaclasa 198 68 108 D 3 0,1 SR Escalonada 14 Seco Andesitas R4 18-jun.
E24 607375 7561600 5359 Diaclasa 41 102 C 5 10 SR Plana 12 Seco Andesitas R4 18-jun.
E24 607375 7561600 5359 Diaclasa 72 174 D 3 0,5 SR Ondulada 6 Seco Andesitas R4 18-jun.
J10 607338 7561529 5410 Diaclasa 85 190 C 1 4 SR Escalonada 14 Seco Andesitas R4 18-jun.
J11 607336 7561538 5410 Diaclasa 76 25 D 1 1 SR Ondulada 8 Seco Andesitas R4 18-jun.
J12 607336 7561538 5410 Diaclasa 79 48 C 1 < 1 SR Plana 4 Seco Andesitas R4 18-jun.
J14 607330 7561553 5408 Diaclasa 75 201 C 1 < 1 SR Plana 4 Seco Andesitas Oxidación R4 18-jun.
J15 607330 7561553 5408 Diaclasa 77 327 D 1 0 SR Ondulada 8 Seco Andesitas Oxidación R4 18-jun.
J16 607384 7561589 5356 Diaclasa 80 200 C 2 0 SR Escalonada 14 Seco Andesitas Oxidación R4 18-jun.
J17 607384 7561589 5356 Diaclasa 35 255 D 1 0 SR Ondulada 8 Seco Andesitas Oxidación R4 18-jun.
L-260 602558 7565950 4454 Diaclasa 80 60 D 2 10 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L261 602558 7565950 4454 Diaclasa 80 295 D 3 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-262 602558 7565950 4454 Diaclasa 80 130 D 2 5 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-263 602558 7565950 4454 Diaclasa 62 225 C 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-264 602558 7565950 4454 Diaclasa 55 290 D 10 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-265 602558 7565950 4454 Diaclasa 60 288 D 8 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-266 602558 7565950 4454 Diaclasa 62 253 D 10 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-267 602558 7565950 4454 Diaclasa 80 293 D 4 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-268 602239 7566172 4451 Diaclasa 75 255 D 2 4 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-269 602239 7566172 4451 Diaclasa 80 260 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-270 602239 7566172 4451 Diaclasa 87 235 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-271 602239 7566172 4451 Diaclasa 89 257 D 3 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-272 602239 7566172 4451 Diaclasa 85 259 D 3 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-273 602239 7566172 4451 Diaclasa 83 267 D 3 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-274 601454 7565833 4459 Diaclasa 70 185 D 2 2 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-275 601454 7565833 4459 Diaclasa 84 182 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-276 601454 7565833 4459 Diaclasa 88 164 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-277 601454 7565833 4459 Diaclasa 64 187 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-278 601454 7565833 4459 Diaclasa 73 191 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-279 601454 7565833 4459 Diaclasa 70 185 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-280 601454 7565833 4459 Diaclasa 50 135 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-281 601594 7565581 4486 Diaclasa 88 45 D 4 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-282 601594 7565581 4486 Diaclasa 85 43 D 2 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-283 601594 7565581 4486 Diaclasa 88 47 D 1 5 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-284 601594 7565581 4486 Diaclasa 80 40 D 1 1 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-285 601594 7565581 4486 Diaclasa 88 43 D 2 10 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-286 601594 7565581 4486 Diaclasa 81 39 D 4 5 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-287 601594 7565581 4486 Diaclasa 83 41 D 3 3 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-290 601498 7565393 4560 Diaclasa 71 300 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-291 601498 7565393 4560 Diaclasa 78 270 D 1 5 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-292 601498 7565393 4560 Diaclasa 80 281 D 2 20 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-293 601498 7565393 4560 Diaclasa 85 330 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-294 601498 7565393 4560 Diaclasa 84 335 D 1 20 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-295 601578 7565105 4573 Diaclasa 60 252 D 8 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-296 601578 7565105 4573 Diaclasa 71 248 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-297 601578 7565105 4573 Diaclasa 65 265 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-298 601578 7565105 4573 Diaclasa 68 254 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-299 601578 7565105 4573 Diaclasa 60 249 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
L-300 601578 7565105 4573 Diaclasa 71 259 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
M26 609824 7563953 4701 Diaclasa 281 81 191 D 2 0 SR Plana 8 Seco Dacitas R4 18-jun.
M26 609824 7563953 4701 Diaclasa 78 71 168 D 6 5 SR Plana 6 Seco Dacitas R4 18-jun.
M26 609824 7563953 4701 Diaclasa 232 48 142 D 6 < 1 SR Plana 8 Seco Dacitas R4 18-jun.
M26 609824 7563953 4701 Diaclasa 275 90 185 D 5 45 SR Plana 6 Seco Dacitas R4 18-jun.
M27 609827 7563944 4694 Diaclasa 155 70 245 D 4 30 SR Plana 8 Seco Dacitas R4 18-jun.
M28 607758 7561686 5266 Diaclasa 268 55 178 C 1 25 SR Plana 4 Seco Dacitas Argilica R3 18-jun.
M29 607422 7561341 5460 Diaclasa 228 89 318 D 1 0 SR Plana 4 Seco Dacitas Argilica R3 18-jun.
Página 9 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
369
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M30 607377 7561236 5513 Diaclasa 0 71 90 D 3 < 1 SR Plana 2 Seco Andesitas Argilica R3 18-jun.
M30 607377 7561236 5513 Diaclasa 200 90 110 D 1 1,5 SR Plana 2 Seco Andesitas Argilica R3 18-jun.
M30 607377 7561236 5513 Diaclasa 70 202 D 4 < 1 SR Escalonada 4 Seco Andesitas Argilica R3 18-jun.
M30 607377 7561236 5513 Diaclasa 216 78 126 D 1 2 SR Ondulada 8 Seco Andesitas Argilica R3 18-jun.
M31 607375 7561234 5521 Diaclasa 260 70 170 C 1 5 SR Plana 4 Seco Andesitas Argilica R3 18-jun.
M32 607296 7561128 5589 Diaclasa 98 275 C 1 3 SR Plana 4 Seco Andesitas Argilica R3 18-jun.
M33 606987 7561126 5667 Diaclasa 295 85 205 C 3 30 SR Rugosa 14 Seco Andesitas R4 18-jun.
M33 606987 7561126 5667 Diaclasa 290 71 70 D 1 2 SR Rugosa 14 Seco Andesitas R4 18-jun.
M34 607029 7561216 5597 Diaclasa 82 31 C 5 10 SR Escalonada 10 Seco Andesitas R4 18-jun.
M34 607029 7561216 5597 Diaclasa 78 34 C 4 5 SR Escalonada 8 Seco Andesitas R4 18-jun.
M34 607029 7561216 5597 Diaclasa 86 35 C 5 8 SR Escalonada 10 Seco Andesitas R4 18-jun.
M34 607029 7561216 5597 Diaclasa 79 41 C 6 5 SR Plana 11 Seco Andesitas R4 18-jun.
M35 607153 7561381 5496 Diaclasa 82 66 C 2 7 SR Rugosa 8 Seco Dacitas Argilica R3 18-jun.
M35 607153 7561381 5496 Diaclasa 72 195 D 1 < 1 SR Plana 2 Seco Dacitas Argilica R3 18-jun.
M36 607164 7561402 5484 Diaclasa 0 90 2 D 1 0 SR Plana 4 Seco Dacitas Argilica R3 18-jun.
M37 607299 7561450 5446 Diaclasa 80 210 D 2 2 SR Escalonada 4 Seco Dacitas Argilica R3 18-jun.
M37 607299 7561450 5446 Diaclasa 90 146 D 3 8 SR Escalonada 8 Seco Dacitas Argilica R3 18-jun.
M37 607299 7561450 5446 Diaclasa 75 200 D 2 2 SR Escalonada 4 Seco Dacitas Argilica R3 18-jun.
M37 607299 7561450 5446 Diaclasa 42 180 C 3 4 SR Plana 4 Seco Dacitas Argilica R3 18-jun.
M38 607289 7561466 5463 Diaclasa 23 95 C 1 0 SR Plana 4 Seco Dacitas R4 18-jun.
M39 607318 7561480 5427 Diaclasa 70 245 D 2 1 SR Escalonada 10 Seco Dacitas R4 18-jun.
M39 607318 7561480 5427 Diaclasa 90 307 C 5 0 SR Escalonada 8 Seco Dacitas R4 18-jun.
M39 607318 7561480 5427 Diaclasa 84 180 D 4 10 SR Plana 8 Seco Dacitas R4 18-jun.
E16 610307 7564437 4614 Falla 86 345 C 1 5 SR Plana 8 Seco Dacitas R4 18-jun. Desplazamiento de 20 cm
E17 610262 7564392 4623 Falla 72 160 D 1 0 SR Plana 12 Seco Dacitas R4 18-jun.
E19 607120 7561061 5690 Falla 81 240 C 2 5 SR Escalonada 12 Seco Andesitas R4 18-jun. Desplazamiento de 15 cm
M26 609824 7563953 4701 Falla 96 67 186 C 1 1 SR Plana 14 Seco Dacitas R4 18-jun.
M26 609824 7563953 4701 Falla 80 62 170 D 6 5 SR Plana 12 Seco Dacitas R4 18-jun.
E23 607161 7561490 5434 Falla Inversa 76 167 C 1 2 SR Ondulada 14 Seco Andesitas R4 18-jun. Desplazamiento de 5 a 20 cm
E20 607098 7561059 5691 Falla Normal 68 177 C 3 20 SR Plana 8 Seco Andesitas R4 18-jun.
E20 607098 7561059 5691 Falla Normal 78 266 C 4 10 SR Escalonada 12 Seco Andesitas R4 18-jun. Desplazamiento de 15 cm.
E24 607375 7561600 5359 Falla Normal 63 82 C 1 5 SR Plana-Ondulada 10 Seco Andesitas R4 18-jun. Desplazamiento de 5 cm
L-288 601498 7565393 4560 Falla Normal 78 130 D 1 2 SR Plana 10 Seco Dacita-Andesita R4 18-jun. Desplazamiento 20 cm
L-289 601498 7565393 4560 Falla Normal 75 121 D 1 0 SR Plana 10 Seco Dacita-Andesita R4 18-jun.
M25 610424 7564477 4590 Falla Normal 165 89 255 C 1 0 SR Plana 8 Seco Dacitas R4 18-jun.
E21 606972 7561117 5671 Pseudoestratificación 20 315 C Seco Andesitas R4 18-jun.
E23 607161 7561490 5434 Pseudoestratificación 31 297 C Seco Andesitas R4 18-jun.
J13 607336 7561538 5410 Pseudoestratificación 36 50 C Seco Andesitas R4 18-jun.
J9 607010 7561116 5580 Pseudoestratificación 194 90 C Seco Dacitas R3 18-jun.
M26 609824 7563953 4701 Pseudoestratificación 138 45 48 C Seco Dacitas R4 18-jun.
M27 609827 7563944 4694 Pseudoestratificación 160 34 70 C Seco Dacitas R4 18-jun.
M39 607318 7561480 5427 Pseudoestratificación 17 96 C Seco Dacitas R4 18-jun.
M39 607318 7561480 5427 Pseudoestratificación 88 358 C Seco Dacitas R4 18-jun.
M40 607340 7561557 5393 Pseudoestratificación 110 72 20 C Seco Dacitas R4 18-jun.
E-28 609855 7567898 4601 Diaclasa 126 87 36 C 6 0,3 SR Plana 6 Seco Ignimbritas R3 20-jun.
J18 609859 7567911 4604 Diaclasa 315 79 45 C 4 2 SR Rugosa 8 Seco Dacitas R4 20-jun.
J19 609858 7567911 4604 Diaclasa 100 78 10 D 3 7 SR Escalonada 14 Seco Dacitas R4 20-jun.
J20 609859 7567914 4604 Diaclasa 5 62 95 D 2 1 SR Ondulada 8 Seco Dacitas R4 20-jun.
J21 609859 7567914 4604 Diaclasa 45 340 D 2 0 SR Rugosa 8 Seco Dacitas R4 20-jun.
J22 609860 7567911 4604 Diaclasa 11 44 C 4 1 SR Escalonada 14 Seco Dacitas R4 20-jun.
J23 609804 7567973 4613 Diaclasa 40 85 130 C 2 3 SR Rugosa 8 Seco Dacitas R4 20-jun.
J24 609804 7567973 4613 Diaclasa 95 80 185 D 2 10 SR Escalonada 14 Seco Dacitas R4 20-jun.
J25 611228 7567657 4640 Diaclasa 85 181 C 3 0,5 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J26 611228 7567657 4640 Diaclasa 85 290 C 2 5 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J27 611228 7567657 4640 Diaclasa 90 313 C 2 0 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J28 611228 7567659 4640 Diaclasa 16 80 C 2 0 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J29 611228 7567661 4640 Diaclasa 36 156 C 3 0,5 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J30 611228 7567662 4640 Diaclasa 16 283 C 2 1 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J31 611228 7567664 4640 Diaclasa 90 10 C 6 0,5 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J32 611368 7567712 4646 Diaclasa 90 328 C 3 0,5 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
Página 10 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
370
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
J33 611368 7567721 4646 Diaclasa 82 10 C 2 0 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J34 611368 7567722 4646 Diaclasa 90 2 C 2 1 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
J35 611368 7567722 4646 Diaclasa 87 225 C 2 0,5 SR Ondulada 8 Seco Ignimbritas R2 20-jun.
L-301 601958 7564741 4564 Diaclasa 55 248 C 3 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-302 601958 7564741 4564 Diaclasa 68 256 C 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-303 601958 7564741 4564 Diaclasa 65 249 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-304 601958 7564741 4564 Diaclasa 74 238 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-305 601958 7564741 4564 Diaclasa 71 241 C 1 10 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-306 601958 7564741 4564 Diaclasa 50 245 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-307 601958 7564741 4564 Diaclasa 62 255 C 10 2 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-308 602012 7564461 4648 Diaclasa 80 135 D 8 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-309 602012 7564461 4648 Diaclasa 88 132 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-310 602012 7564461 4648 Diaclasa 85 142 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-311 602012 7564461 4648 Diaclasa 71 100 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-312 602012 7564461 4648 Diaclasa 72 280 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-313 602012 7564461 4648 Diaclasa 85 134 C 8 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-314 602012 7564461 4648 Diaclasa 87 140 C 5 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-315 602012 7564461 4648 Diaclasa 78 325 C 3 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-316 602012 7564461 4648 Diaclasa 86 315 C 4 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-317 602012 7564461 4648 Diaclasa 83 306 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-319 602054 7564305 4686 Diaclasa 64 260 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-320 602054 7564305 4686 Diaclasa 79 280 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-321 602054 7564305 4686 Diaclasa 68 246 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-322 602054 7564305 4686 Diaclasa 70 275 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-323 602054 7564305 4686 Diaclasa 72 250 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-324 602054 7564305 4686 Diaclasa 75 270 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-326 602054 7564305 4686 Diaclasa 84 125 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-327 602054 7564305 4686 Diaclasa 79 128 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-328 602054 7564305 4686 Diaclasa 75 141 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-329 602054 7564305 4686 Diaclasa 86 130 D 3 1 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-330 602331 7564072 4651 Diaclasa 88 100 D 2 2 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-331 602331 7564072 4651 Diaclasa 15 265 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-332 602331 7564072 4651 Diaclasa 79 97 D 2 3 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-333 602331 7564072 4651 Diaclasa 49 104 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-334 602331 7564072 4651 Diaclasa 88 103 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-335 602331 7564072 4651 Diaclasa 71 80 C 4 2 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-336 602331 7564072 4651 Diaclasa 70 73 C 3 3 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-337 602331 7564072 4651 Diaclasa 69 276 C 2 4 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-338 602331 7564072 4651 Diaclasa 60 210 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-339 602331 7564072 4651 Diaclasa 62 207 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-340 602331 7564072 4651 Diaclasa 64 209 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-341 602525 7564213 4597 Diaclasa 65 30 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-342 602525 7564213 4597 Diaclasa 70 35 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-343 602525 7564213 4597 Diaclasa 88 54 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-344 602525 7564213 4597 Diaclasa 86 48 D 5 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-345 603358 7565299 4454 Diaclasa 62 150 D 3 20 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-346 603358 7565299 4454 Diaclasa 60 260 D 2 10 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-347 603466 7565294 4468 Diaclasa 80 40 D 2 30 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-348 603466 7565294 4468 Diaclasa 77 50 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-349 603466 7565294 4468 Diaclasa 85 146 D 1 20 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-350 603466 7565294 4468 Diaclasa 79 200 D 2 10 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-351 603466 7565294 4468 Diaclasa 86 348 D 4 2 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-355 604340 7565975 4516 Diaclasa 85 15 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-357 604340 7565975 4516 Diaclasa 82 23 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-358 604340 7565975 4516 Diaclasa 85 20 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
M41 609855 7567898 4601 Diaclasa 57 2 D 1 10 SR Plana 4 Seco Dacitas R5 20-jun.
M42 609839 7567923 4603 Diaclasa 74 140 D 1 2 SR Escalonada 12 Seco Dacitas R5 20-jun.
M42 609839 7567923 4603 Diaclasa 65 78 335 C 3 3 SR Escalonada 14 Seco Dacitas R5 20-jun.
M42 609839 7567923 4603 Diaclasa 77 80 347 C 3 5 SR Plana 14 Seco Dacitas R5 20-jun.
M43 609825 7567934 4602 Diaclasa 84 85 276 C 2 2 SR Ondulada 12 Seco Dacitas R5 20-jun.
Página 11 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
371
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M43 609825 7567934 4602 Diaclasa 73 178 D 3 3 SR Plana 12 Seco Dacitas R5 20-jun.
M43 609825 7567934 4602 Diaclasa 80 81 350 D 2 7 SR Escalonada 18 Seco Dacitas R5 20-jun.
M43 609825 7567934 4602 Diaclasa 65 82 335 C 1 5 SR Escalonada 14 Seco Dacitas R5 20-jun.
M44 611200 7567601 4643 Diaclasa 85 186 C 2 < 1 SR Plana 10 Seco Ignimbritas R3 20-jun.
M45 611200 7567601 4643 Diaclasa 75 32 D 1 0 SR Escalonada 16 Seco Ignimbritas R3 20-jun.
M46 611202 7567627 4641 Diaclasa 10 15 100 C 2 SR Plana 10 Seco Ignimbritas R3 20-jun.
M47 611213 7567631 4630 Diaclasa 88 183 C 2 SR Plana 6 Seco Ignimbritas R3 20-jun.
M47 611213 7567631 4630 Diaclasa 87 300 C 3 0,5 SR Plana 4 Seco Ignimbritas R3 20-jun.
M48 611216 7569644 4645 Diaclasa 135 87 225 C 3 SR Escalonada 4 Seco Ignimbritas R3 20-jun.
M48 611216 7569644 4645 Diaclasa 88 235 D 2 < 1 SR Escalonada 5 Seco Ignimbritas R3 20-jun.
M48 611216 7569644 4645 Diaclasa 84 4 C 2 0 SR Escalonada 4 Seco Ignimbritas R3 20-jun.
M49 611227 7567644 4637 Diaclasa 89 304 C 2 4 SR Escalonada 4 Seco Ignimbritas R3 20-jun.
M49 611227 7567644 4637 Diaclasa 86 190 D 1 0,2 SR Plana 4 Seco Ignimbritas R3 20-jun.
M49 611227 7567644 4637 Diaclasa 87 195 C 1 0,2 SR Plana 4 Seco Ignimbritas R3 20-jun.
M49 611227 7567644 4637 Diaclasa 86 284 C 1 < 1 SR Escalonada 6 Seco Ignimbritas R3 20-jun.
M50 611351 7567700 4640 Diaclasa 88 2 C 3 2 SR Plana 8 Seco Ignimbritas R3 20-jun.
M50 611351 7567700 4640 Diaclasa 90 283 C 1 SR Plana 8 Seco Ignimbritas R3 20-jun.
M51 611363 7567703 4650 Diaclasa 83 35 C 1 0,5 SR Plana 10 Seco Ignimbritas R3 20-jun.
M51 611363 7567703 4650 Diaclasa 84 135 C 1 0,5 SR Plana 10 Seco Ignimbritas R3 20-jun.
M51 611363 7567703 4650 Diaclasa 83 96 C 3 2 SR Plana 8 Seco Ignimbritas R3 20-jun.
M51 611363 7567703 4650 Diaclasa 88 295 C 1 0,5 SR Plana 1 Seco Ignimbritas R3 20-jun.
M51 611363 7567703 4650 Diaclasa 275 81 5 D 1 0,5 SR Plana 1 Seco Ignimbritas R3 20-jun.
M51 611363 7567703 4650 Diaclasa 70 145 C 1 2 SR Escalonada 1 Seco Ignimbritas R3 20-jun.
E-25 609855 7567898 4601 Falla 6 50 C 1 0,5 SR Plana 10 Seco Ignimbritas R3 20-jun. Desplazamiento 10 cm
E-26 609855 7567898 4601 Falla 4 53 C 2 0,5 SR Plana 10 Seco Ignimbritas R3 20-jun. Desplazamiento 5 cm
E-27 609855 7567898 4601 Falla 5 57 C 1 0,5 SR Plana 10 Seco Ignimbritas R3 20-jun. Desplazamiento 10 cm
L-318 602012 7564461 4648 Falla 88 321 230 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-325 602054 7564305 4686 Falla 74 160 80 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-352 603466 7565294 4468 Falla 89 80 82 D 1 5 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-353 603466 7565294 4468 Falla 80 50 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-354 604340 7565975 4516 Falla 65 215 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
L-356 604340 7565975 4516 Falla 77 70 10 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 20-jun.
M41 609855 7567898 4601 Falla Inversa 16 67 344 C 1 3 SR Escalonada 14 Seco Dacitas R5 20-jun.
M47 611213 7567631 4630 Falla Inversa 15 20 C 1 0,3 SR Plana 10 Seco Ignimbritas R3 20-jun.
M48 611216 7569644 4645 Falla Inversa 18 28 C 1 < 1 SR Plana 8 Seco Ignimbritas R3 20-jun.
M41 609855 7567898 4601 Falla Normal 2 84 92 C 1 12 SR Escalonada 14 Seco Dacitas R5 20-jun.
M41 609855 7567898 4601 Falla Normal 68 71 139 C 1 4 SR Escalonada 14 Seco Dacitas R5 20-jun.
M43 609825 7567934 4602 Falla Normal 75 80 345 C 1 10 SR Escalonada 18 Seco Dacitas R5 20-jun.
M46 611202 7567627 4641 Falla Normal 90 182 C 1 < 1 SR Escalonada 18 Seco Ignimbritas R3 20-jun.
M41 609855 7567898 4601 Pseudoestratificación 130 65 C Seco Dacitas R5 20-jun.
M51 611363 7567703 4650 Pseudoestratificación 15 80 C Seco Ignimbritas R2 20-jun.
E29 601346 7566262 4395 Diaclasa 80 75 C 1 3 SR Ondulada 6 Seco Ignimbritas Sales R3 21-jun.
E29 601346 7566262 4395 Diaclasa 264 82 354 C 1 3 SR Ondulada 14 Seco Ignimbritas R3 21-jun.
E30 601350 7566258 4384 Diaclasa 76 41 D 1 0 SR Plana 18 Seco Ignimbritas R3 21-jun.
E30 601350 7566258 4384 Diaclasa 118 82 28 C 3 0,5 SR Escalonada 12 Seco Ignimbritas Sales R3 21-jun.
E31 601415 7566263 4390 Diaclasa 69 318 D 3 0 SR Escalonada 18 Humedo Ignimbritas R3 21-jun.
E31 601415 7566263 4390 Diaclasa 232 88 142 D 2 0 SR Escalonada 14 Humedo Ignimbritas R3 21-jun.
E33 601628 7566187 4396 Diaclasa 232 85 142 C 3 4 SR Plana 14 Seco Ignimbritas R3 21-jun.
E33 601628 7566187 4396 Diaclasa 84 21 D 1 0,2 SR Escalonada 14 Seco Ignimbritas R3 21-jun.
E33 601628 7566187 4396 Diaclasa 220 77 130 D 1 1,5 SR Escalonada 12 Seco Ignimbritas R3 21-jun.
E33 601628 7566187 4396 Diaclasa 83 14 D 2 0,2 SR Curva 12 Seco Ignimbritas R3 21-jun.
E33 601628 7566187 4396 Diaclasa 85 129 C 1 0,2 SR Curva 12 Humedo Ignimbritas Sales R3 21-jun.
E33 601628 7566187 4396 Diaclasa 80 55 D 1 0,2 SR Plana 12 Humedo Ignimbritas Sales R3 21-jun.
E33 601628 7566187 4396 Diaclasa 227 88 137 D 1 1 SR Plana 13 Humedo Ignimbritas Sales R3 21-jun.
J36 601335 7566262 4385 Diaclasa 7 70 277 C 2 10 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J37 601335 7566270 4385 Diaclasa 8 76 98 C 2 12 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J38 601335 7566269 4385 Diaclasa 150 82 60 C 6 15 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J39 601363 7566268 4385 Diaclasa 305 53 215 C 4 30 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J40 601363 7566263 4385 Diaclasa 110 80 20 C 4 2 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J41 601360 7566265 4390 Diaclasa 355 20 265 C 3 2 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
Página 12 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
372
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
J42 601396 7566278 4390 Diaclasa 67 77 337 C 2 3 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J43 601404 7566267 4391 Diaclasa 40 81 310 C 6 1 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J44 601404 7566260 4391 Diaclasa 230 87 140 C 5 3 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J45 601411 7566267 4391 Diaclasa 245 42 155 C 1 5 SR Escalonada 14 Humedo Flujo de detritos R3 21-jun.
J46 601432 7566270 4391 Diaclasa 61 85 300 C 3 5 SR Escalonada 14 Humedo Ignimbritas R3 21-jun.
J47 601455 7566259 4388 Diaclasa 5 85 95 C 3 3 SR Escalonada 14 Humedo Ignimbritas R3 21-jun.
J48 601492 7566268 4385 Diaclasa 45 215 C 1 3 SR Escalonada 14 Humedo Ignimbritas R3 21-jun.
J49 601492 7566268 4385 Diaclasa 70 81 340 C 5 10 SR Escalonada 14 Humedo Ignimbritas R3 21-jun.
J50 601723 7566116 4390 Diaclasa 82 137 C 1 0 SR Ondulada 8 Seco Ignimbritas Silicificación R2 21-jun.
J51 601723 7566116 4390 Diaclasa 86 66 C 1 0 SR Ondulada 8 Seco Ignimbritas Silicificación R2 21-jun.
J52 601723 7566111 4390 Diaclasa 83 154 C 3 1 SR Ondulada 8 Seco Ignimbritas Silicificación R2 21-jun.
J53 601723 7566111 4390 Diaclasa 78 41 C 4 0 SR Ondulada 8 Seco Ignimbritas Silicificación R2 21-jun.
J54 601723 7566110 4390 Diaclasa 68 325 C 2 0,5 SR Ondulada 8 Seco Ignimbritas Silicificación R2 21-jun.
J55 601723 7566110 4390 Diaclasa 74 255 C 1 0 SR Escalonada 14 Seco Ignimbritas Silicificación R2 21-jun.
J56 601682 7566148 4390 Diaclasa 90 220 C 3 0,5 SR Escalonada 14 Humedo Ignimbritas Silicificación R2 21-jun.
J57 601686 7566153 4390 Diaclasa 68 115 C 6 0,5 SR Escalonada 14 Seco Ignimbritas Silicificación R2 21-jun.
J58 601686 7566153 4390 Diaclasa 87 216 C 2 0 SR Escalonada 14 Seco Ignimbritas Silicificación R2 21-jun.
J59 601642 7566176 4392 Diaclasa 88 214 C 2 0,5 SR Escalonada 14 Seco Ignimbritas Silicificación R2 21-jun.
J60 601642 7566176 4391 Diaclasa 10 28 C 2 0,5 SR Ondulada 8 Seco Ignimbritas Silicificación R2 21-jun.
L359 604001 7565210 4499 Diaclasa 65 52 D 3 0 SR Plana 8 Seco Dacitas R5 21-jun.
L360 604001 7565210 4499 Diaclasa 89 310 D 1 0 SR Plana 8 Seco Dacitas R5 21-jun.
L361 604001 7565210 4499 Diaclasa 79 304 D 2 4 SR Plana 8 Seco Dacitas R5 21-jun.
L362 604001 7565210 4499 Diaclasa 68 306 D 2 5 SR Plana 8 Seco Dacitas R5 21-jun.
L363 604833 7564857 4631 Diaclasa 70 320 D 2 8 SR Plana 8 Seco Dacitas R5 21-jun.
L364 604833 7564857 4631 Diaclasa 68 310 D 1 5 SR Plana 8 Seco Dacitas R5 21-jun.
L365 604833 7564857 4631 Diaclasa 83 280 D 1 3 SR Plana 8 Seco Dacitas R5 21-jun.
L366 604833 7564857 4631 Diaclasa 75 240 D 1 7 SR Plana 8 Seco Dacitas R5 21-jun.
L368 605320 7564510 4678 Diaclasa 75 150 D 2 5 SR Plana 8 Seco Dacitas R5 21-jun.
L369 605320 7564510 4678 Diaclasa 70 156 D 2 3 SR Plana 8 Seco Dacitas R5 21-jun.
L370 605320 7564510 4678 Diaclasa 62 147 D 1 0 SR Plana 8 Seco Dacitas R5 21-jun.
L371 605320 7564510 4678 Diaclasa 70 154 D 1 0 SR Plana 8 Seco Dacitas R5 21-jun.
L372 605320 7564510 4678 Diaclasa 88 135 D 2 0 SR Plana 8 Seco Dacitas R5 21-jun.
L373 605320 7564510 4678 Diaclasa 87 129 D 2 0 SR Plana 8 Seco Dacitas R5 21-jun.
L374 605809 7564213 4778 Diaclasa 88 265 D 2 4 SR Rugosa 8 Seco Dacitas R5 21-jun.
L375 605809 7564213 4778 Diaclasa 45 150 D 3 5 SR Rugosa 8 Seco Dacitas R5 21-jun.
L376 605809 7564213 4778 Diaclasa 51 156 D 3 0 SR Rugosa 8 Seco Dacitas R5 21-jun.
L377 605809 7564213 4778 Diaclasa 83 262 D 2 2 SR Rugosa 8 Seco Dacitas R5 21-jun.
L378 605809 7564213 4778 Diaclasa 87 205 D 1 0 SR Rugosa 8 Seco Dacitas R5 21-jun.
L379 605809 7564213 4778 Diaclasa 86 192 D 1 3 SR Rugosa 8 Seco Dacitas R5 21-jun.
L380 604350 7564124 4590 Diaclasa 82 95 D 2 3 SR Plana 8 Seco Dacitas R5 21-jun.
L381 604350 7564124 4590 Diaclasa 72 66 D 1 4 SR Plana 8 Seco Dacitas R5 21-jun.
L382 604350 7564124 4590 Diaclasa 60 70 D 3 6 SR Plana 8 Seco Dacitas R5 21-jun.
L384 604350 7564124 4590 Diaclasa 79 105 D 2 3 SR Plana 8 Seco Dacitas R5 21-jun.
M52 601320 7566267 4387 Diaclasa 105 84 15 C 1 1 SR Plana 6 Seco Flujo de detritos R3 21-jun.
M52 601320 7566267 4387 Diaclasa 85 15 C 1 2,5 SR Ondulada 4 Seco Flujo de detritos R3 21-jun.
M52 601320 7566267 4387 Diaclasa 70 281 D 1 0,1 SR Escalonada 18 Seco Flujo de detritos R3 21-jun.
M53 601329 7566263 4384 Diaclasa 69 67 C 1 0 SR Ondulada 17 Seco Flujo de detritos R3 21-jun.
M54 601336 7566267 4373 Diaclasa 251 78 341 C 2 5 SR Escalonada 17 Seco Flujo de detritos R3 21-jun.
M54 601336 7566267 4373 Diaclasa 78 5 C 1 2 SR Escalonada 17 Seco Flujo de detritos R3 21-jun.
M55 601342 7566262 4395 Diaclasa 226 75 316 D 1 2 SR Escalonada 17 Seco Flujo de detritos R3 21-jun.
M56 601339 7566261 4404 Diaclasa 82 320 C 1 0 SR Ondulada 17 Seco Flujo de detritos R3 21-jun.
M56 601339 7566261 4404 Diaclasa 60 335 C 1 0 SR Ondulada 17 Seco Flujo de detritos R3 21-jun.
M57 601337 7566255 4398 Diaclasa 82 175 C 1 2 SR Escalonada 17 Seco Flujo de detritos R3 21-jun.
M57 601337 7566255 4398 Diaclasa 80 45 C 2 SR Escalonada 17 Seco Flujo de detritos R3 21-jun.
M58 601331 7566250 4400 Diaclasa 70 173 C 1 4 SR Escalonada 17 Seco Flujo de detritos R3 21-jun.
M58 601331 7566250 4400 Diaclasa 80 290 C 1 2 SR Escalonada 18 Seco Flujo de detritos R3 21-jun.
M59 601350 7566246 4399 Diaclasa 90 215 C 2 0,1 SR Ondulada 18 Seco Flujo de detritos R3 21-jun.
M59 601350 7566246 4399 Diaclasa 72 290 D 1 0,5 SR Escalonada 18 Seco Flujo de detritos R3 21-jun.
M59 601350 7566246 4399 Diaclasa 84 5 D 1 0 SR Escalonada 18 Seco Flujo de detritos R3 21-jun.
M60 601404 7566257 4398 Diaclasa 74 105 C 2 0,5 SR Ondulada 18 Seco Flujo de detritos R3 21-jun.
Página 13 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
373
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M60 601404 7566257 4398 Diaclasa 80 100 D 1 0,7 SR Escalonada 18 Seco Flujo de detritos R3 21-jun.
M61 601410 7566256 4393 Diaclasa 57 200 C 2 4 SR Escalonada 18 Seco Flujo de detritos R3 21-jun.
M62 601418 7566259 4385 Diaclasa 78 315 C 1 4 SR Escalonada 18 Seco Ignimbritas R2 21-jun.
M62 601418 7566259 4385 Diaclasa 75 275 D 2 0 SR Plana 17 Seco Ignimbritas R2 21-jun.
M62 601418 7566259 4385 Diaclasa 80 318 D 1 0,3 SR Escalonada 17 Seco Ignimbritas R2 21-jun.
M63 601416 7566257 4408 Diaclasa 224 84 134 C 1 2 SR Plana 15 Seco Ignimbritas R2 21-jun.
M63 601416 7566257 4408 Diaclasa 63 166 C 2 2 Arcilla Plana 16 Seco Ignimbritas R2 21-jun.
M63 601416 7566257 4408 Diaclasa 76 134 C 2 2 Arcilla Plana 16 Seco Ignimbritas R2 21-jun.
M64 601424 7566261 4398 Diaclasa 73 314 C 1 0,2 SR Plana 16 Seco Ignimbritas R2 21-jun.
M64 601424 7566261 4398 Diaclasa 76 144 C 1 5 SR Plana 18 Seco Ignimbritas R2 21-jun.
M65 601440 7566251 4395 Diaclasa 66 170 C 1 5 SR Ondulada 18 Seco Ignimbritas R2 21-jun.
M65 601440 7566251 4395 Diaclasa 232 86 322 C 1 0,5 SR Escalonada 17 Seco Ignimbritas R2 21-jun.
M65 601440 7566251 4395 Diaclasa 87 176 C 1 2 SR Plana 18 Seco Ignimbritas R2 21-jun.
M65 601440 7566251 4395 Diaclasa 83 103 C 1 0,3 SR Plana 18 Seco Ignimbritas R2 21-jun.
M65 601440 7566251 4395 Diaclasa 83 172 D 1 0,2 Arenas Plana 18 Seco Ignimbritas R2 21-jun.
M66 601482 7566248 4391 Diaclasa 76 160 C 6 3 SR Plana 14 Seco Ignimbritas R2 21-jun.
M66 601482 7566248 4391 Diaclasa 74 223 D 1 1,5 SR Plana 14 Seco Ignimbritas R2 21-jun.
M66 601482 7566248 4391 Diaclasa 85 108 D 2 5 SR Plana 14 Seco Ignimbritas R2 21-jun.
M66 601482 7566248 4391 Diaclasa 82 105 C 3 0,5 SR Plana 15 Seco Ignimbritas R2 21-jun.
M67 601475 7566261 4415 Diaclasa 74 22 C 2 2 Arcilla Plana 16 Seco Ignimbritas R2 21-jun.
M67 601475 7566261 4415 Diaclasa 82 44 D 1 3 SR Plana 16 Seco Ignimbritas R2 21-jun.
M67 601475 7566261 4415 Diaclasa 75 329 D 1 2 SR Plana 16 Seco Ignimbritas R2 21-jun.
M67 601475 7566261 4415 Diaclasa 84 125 C 3 3 SR Plana 16 Seco Ignimbritas R2 21-jun.
M68 601504 7566248 4389 Diaclasa 88 107 C 1 11 SR Plana 14 Seco Ignimbritas R2 21-jun.
M68 601504 7566248 4389 Diaclasa 123 78 33 C 1 0,3 SR Plana 14 Seco Ignimbritas R2 21-jun.
M69 601517 7566246 4385 Diaclasa 70 231 D 3 0,3 SR Plana 14 Seco Ignimbritas R2 21-jun.
M69 601517 7566246 4385 Diaclasa 83 257 C 1 5 Arcilla Plana 14 Seco Ignimbritas R2 21-jun.
M70 601521 7566245 4388 Diaclasa 81 257 C 2 2 SR Plana 16 Seco Ignimbritas R2 21-jun.
M70 601521 7566245 4388 Diaclasa 80 169 C 2 2 SR Ondulada 16 Seco Ignimbritas R2 21-jun.
M70 601521 7566245 4388 Diaclasa 77 279 D 2 3 SR Plana 16 Seco Ignimbritas R2 21-jun.
M70 601521 7566245 4388 Diaclasa 130 85 40 D 3 7 SR Plana 16 Seco Ignimbritas R2 21-jun.
M70 601521 7566245 4388 Diaclasa 80 208 D 2 0,5 SR Plana 18 Seco Ignimbritas R2 21-jun.
M71 601544 7566231 4391 Diaclasa 185 78 95 C 1 0 SR Plana 14 Seco Ignimbritas R2 21-jun.
M72 601556 7566228 4390 Diaclasa 84 325 C 2 0,5 SR Plana 17 Seco Ignimbritas R2 21-jun.
M72 601556 7566228 4390 Diaclasa 84 212 C 2 0,1 SR Plana 17 Seco Ignimbritas R2 21-jun.
M72 601556 7566228 4390 Diaclasa 83 175 C 1 0 SR Plana 17 Seco Ignimbritas R2 21-jun.
M73 601564 7566220 4398 Diaclasa 82 175 C 1 0 SR Plana 17 Seco Ignimbritas R2 21-jun.
L383 604350 7564124 4590 Falla 59 73 D 1 2 SR Plana 8 Seco Dacitas R5 21-jun.
M52 601320 7566267 4387 Falla Inversa 195 85 285 C 1 25 SR Ondulada 6 Seco Flujo de detritos Sales R3 21-jun.
M52 601320 7566267 4387 Falla Inversa 82 115 31 D 1 0 SR Escalonada 18 Seco Flujo de detritos R3 21-jun.
M54 601336 7566267 4373 Falla Inversa 84 52 310 C 1 0,4 SR Escalonada 17 Seco Flujo de detritos R3 21-jun.
E 32 601566 7566218 4492 Falla Normal 65 80 D 1 0,2 SR Curva 12 Seco Ignimbritas R3 21-jun.
E 32 601566 7566218 4492 Falla Normal 83 215 C 1 0,2 SR Plana 12 Seco Ignimbritas R3 21-jun.
M53 601329 7566263 4384 Falla Normal 105 84 15 73 C 1 3 SR Ondulada 16 Seco Flujo de detritos R3 21-jun.
M55 601342 7566262 4395 Falla Normal 68 330 C 1 1 SR Escalonada 17 Seco Flujo de detritos R3 21-jun.
M69 601517 7566246 4385 Falla Normal 82 263 338 C 1 0,2 SR Plana 16 Seco Ignimbritas R2 21-jun.
M71 601544 7566231 4391 Falla Normal 88 45 C 1 0,5 SR Plana 14 Seco Ignimbritas R2 21-jun. Desplazamiento de 30 cm
M71 601544 7566231 4391 Falla Normal 86 235 C 1 0,5 SR Plana 14 Seco Ignimbritas R2 21-jun. Desplazamiento de 20 cm
M72 601556 7566228 4390 Falla Normal 67 284 C 1 0 SR Plana 14 Seco Ignimbritas R2 21-jun. desplzamiento de 10 cm
M72 601556 7566228 4390 Falla Normal 89 215 C 1 0 SR Plana 17 Seco Ignimbritas R2 21-jun. Desplazamiento de 10 cm
M73 601564 7566220 4398 Falla Normal 165 82 255 C 3 0 SR Plana 17 Seco Ignimbritas R2 21-jun.
L367 604833 7564857 4631 Pseudoestratificación 9 15 C Seco Dacitas R5 21-jun.
M56 601339 7566261 4404 Pseudoestratificación 310 20 220 C Seco Flujo de detritos R3 21-jun.
e-595 610663 7568280 4647 Diaclasa 290 85 20 C 3 3 SR Plana 18 Seco Dacitas R4 22-jun.
e-595 610663 7568280 4647 Diaclasa 284 84 14 C 2 10 Arenas Curva 18 Seco Dacitas R4 22-jun.
e-595 610663 7568280 4647 Diaclasa 10 86 C 1 3 SR Escalonada 18 Seco Dacitas R4 22-jun.
e-595 610663 7568280 4647 Diaclasa 70 21 D 2 1 Arenas Plana 6 Seco Dacitas R4 22-jun.
e-595 610663 7568280 4647 Diaclasa 4 10 C 3 1 SR Plana 6 Seco Dacitas R4 22-jun.
e-595 610663 7568280 4647 Diaclasa 87 66 D 1 2 SR Plana 12 Seco Dacitas R4 22-jun.
e-596 610495 7568419 4653 Diaclasa 63 108 D 3 0,5 SR Plana 12 Seco Dacitas R4 22-jun.
Página 14 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
374
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
e-596 610495 7568419 4653 Diaclasa 109 86 19 C 1 3 Arenas Plana 12 Seco Dacitas R4 22-jun.
e-596 610495 7568419 4653 Diaclasa 40 323 C 2 1,5 Arenas Escalonada 10 Seco Dacitas R4 22-jun.
e-596 610495 7568419 4653 Diaclasa 60 200 D 3 3 Arenas Plana 10 Seco Dacitas R4 22-jun.
e-597 610283 7568529 4649 Diaclasa 61 94 D 1 0,3 SR Plana 10 Seco Dacitas R4 22-jun.
e-597 610283 7568529 4649 Diaclasa 56 131 D 1 0,2 SR Escalonada 14 Seco Dacitas R4 22-jun.
e-597 610283 7568529 4649 Diaclasa 296 63 206 C 2 5 Arenas Plana 16 Seco Dacitas R4 22-jun.
e-597 610283 7568529 4649 Diaclasa 85 65 355 C 1 10 Arenas Plana 10 Seco Dacitas R4 22-jun.
e-597 610283 7568529 4649 Diaclasa 40 3 C 1 5 Arenas Plana 12 Seco Dacitas R4 22-jun.
e-599 609868 7568700 4669 Diaclasa 125 70 35 D 2 0,3 SR Plana 14 Seco Dacitas R4 22-jun.
e-599 609868 7568700 4669 Diaclasa 75 282 D 1 0,5 SR Curva 10 Seco Dacitas R4 22-jun.
e-599 609868 7568700 4669 Diaclasa 35 73 D 2 1 Arenas Plana 10 Seco Dacitas R4 22-jun.
e-599 609868 7568700 4669 Diaclasa 83 98 D 1 0,5 SR Plana 8 Seco Dacitas R4 22-jun.
e-599 609868 7568700 4669 Diaclasa 185 76 95 D 2 2 Arenas Escalonada 12 Seco Dacitas R4 22-jun.
e-599 609868 7568700 4669 Diaclasa 328 72 58 D 2 0,5 SR Escalonada 14 Seco Dacitas R4 22-jun.
J61 610268 7567991 4643 Diaclasa 82 50 C 3 0,8 SR Escalonada 14 Seco Dacitas R4 22-jun.
J61 610268 7567991 4643 Diaclasa 73 212 C 5 3 SR Escalonada 14 Seco Dacitas R4 22-jun.
J61 610268 7567994 4643 Diaclasa 79 18 C 2 7 SR Escalonada 14 Seco Dacitas R4 22-jun.
J61 610268 7567995 4643 Diaclasa 71 320 C 2 30 SR Escalonada 14 Seco Dacitas R4 22-jun.
J61 610268 7567995 4643 Diaclasa 51 78 C 6 0,3 SR Plana 4 Seco Dacitas R4 22-jun.
J62 609965 7567984 4638 Diaclasa 55 308 C 1 1,5 SR Ondulada 8 Seco Dacitas R4 22-jun.
J62 609965 7567984 4638 Diaclasa 78 275 C 1 3 SR Ondulada 8 Seco Dacitas R4 22-jun.
J62 609965 7567984 4638 Diaclasa 82 6 C 3 10 SR Plana 4 Seco Dacitas R4 22-jun.
J62 609965 7567984 4638 Diaclasa 37 4 C 2 0,5 SR Escalonada 14 Seco Dacitas R4 22-jun.
J63 609763 7568186 4625 Diaclasa 53 314 C 4 0,5 SR Ondulada 8 Seco Dacitas R4 22-jun.
J63 609763 7568186 4625 Diaclasa 58 80 C 5 1 SR Plana 4 Seco Dacitas R4 22-jun.
J63 609763 7568187 4625 Diaclasa 46 342 C 5 0,5 SR Ondulada 8 Seco Dacitas R4 22-jun.
J63 609763 7568188 4626 Diaclasa 88 154 C 1 10 SR Ondulada 8 Seco Dacitas R4 22-jun.
J63 609763 7568191 4627 Diaclasa 83 194 C 4 15 SR Escalonada 14 Seco Dacitas R4 22-jun.
L386 609500 7569555 4719 Diaclasa 50 150 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L387 609500 7569555 4719 Diaclasa 80 142 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L388 609500 7569555 4719 Diaclasa 64 165 D 2 4 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L389 609500 7569555 4719 Diaclasa 72 185 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L391 609500 7569555 4719 Diaclasa 80 50 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L392 609500 7569555 4719 Diaclasa 88 175 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L395 609500 7569555 4719 Diaclasa 60 25 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L398 609500 7569555 4719 Diaclasa 55 155 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L399 609500 7569555 4719 Diaclasa 82 25 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L400 609642 7570190 4779 Diaclasa 79 335 D 2 10 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L401 609642 7570190 4779 Diaclasa 88 190 D 3 3 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L403 609642 7570190 4779 Diaclasa 61 30 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L404 609642 7570190 4779 Diaclasa 72 315 D 3 10 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L405 609642 7570190 4779 Diaclasa 88 164 D 2 25 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L406 609642 7570190 4779 Diaclasa 89 182 D 2 25 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L407 609642 7570190 4779 Diaclasa 79 196 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L409 611165 7569978 7913 Diaclasa 84 189 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L410 611165 7569978 7913 Diaclasa 83 181 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L411 611165 7569978 7913 Diaclasa 82 210 D 2 3 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L412 611165 7569978 7913 Diaclasa 84 226 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L413 610746 7569444 4852 Diaclasa 80 115 D 6 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L414 610746 7569444 4852 Diaclasa 79 126 D 5 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L415 610746 7569444 4852 Diaclasa 84 112 D 7 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L416 610746 7569444 4852 Diaclasa 61 122 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L421 610746 7569444 4852 Diaclasa 60 132 D 2 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L422 610746 7569444 4852 Diaclasa 72 230 D 1 2 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L423 610746 7569444 4852 Diaclasa 81 124 D 3 0 SR Escalonada 8 Seco Dacita-Andesita R4 22-jun.
L424 610746 7569444 4852 Diaclasa 84 128 D 2 0 SR Escalonada 8 Seco Dacita-Andesita R4 22-jun.
L425 610746 7569444 4852 Diaclasa 80 126 D 2 2 SR Escalonada 8 Seco Dacita-Andesita R4 22-jun.
L426 610746 7569444 4852 Diaclasa 86 130 D 2 0 SR Escalonada 8 Seco Dacita-Andesita R4 22-jun.
L427 609909 7569155 7433 Diaclasa 78 292 D 4 5 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L428 609909 7569155 7433 Diaclasa 70 302 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
Página 15 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
375
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L429 609909 7569155 7433 Diaclasa 80 300 D 2 4 SR Ondulada 8 Seco Dacita-Andesita R4 22-jun.
L431 609909 7569155 7433 Diaclasa 80 305 D 1 15 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L432 609909 7569155 7433 Diaclasa 85 326 C 2 30 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L433 609511 7568759 4658 Diaclasa 70 156 D 1 10 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L435 609511 7568759 4658 Diaclasa 84 15 D 2 10 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L436 609595 7568583 4641 Diaclasa 61 5 C 5 20 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L437 609595 7568583 4641 Diaclasa 86 224 C 4 10 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
M74 610369 7568081 4642 Diaclasa 84 335 C 3 2 Arenas Plana 16 Seco Dacitas R4 22-jun.
M74 610369 7568081 4642 Diaclasa 52 278 C 1 0,5 SR Plana 16 Seco Dacitas R4 22-jun.
M75 610369 7568081 4642 Diaclasa 80 30 C 2 1 Arenas Plana 16 Seco Dacitas R4 22-jun.
M75 610361 7568086 4644 Diaclasa 65 122 C 3 2 Arcilla Plana 16 Seco Dacitas R4 22-jun.
M75 610361 7568086 4644 Diaclasa 81 45 C 1 0,8 SR Plana 16 Seco Dacitas R4 22-jun.
M76 610320 7568099 4649 Diaclasa 79 149 C 2 0,5 Arenas Ondulada 14 Seco Dacitas R4 22-jun.
M76 610320 7568099 4649 Diaclasa 79 87 D 5 10 Arenas Escalonada 14 Seco Dacitas R4 22-jun.
M77 601235 7568114 4645 Diaclasa 82 48 D 2 2 SR Escalonada 17 Seco Dacitas R4 22-jun.
M77 601235 7568114 4645 Diaclasa 82 337 C 7 0,5 SR Plana 14 Seco Dacitas R4 22-jun.
M77 601235 7568114 4645 Diaclasa 87 235 C 4 0,4 SR Escalonada 14 Seco Dacitas R4 22-jun.
M78 610108 7568134 4639 Diaclasa 43 285 D 4 3 SR Escalonada 14 Seco Dacitas R4 22-jun.
M78 610108 7568134 4639 Diaclasa 72 8 D 3 SR Escalonada 14 Seco Dacitas R4 22-jun.
M78 610108 7568134 4639 Diaclasa 74 145 C 3 8 Arenas Plana 16 Seco Dacitas R4 22-jun.
M78 610108 7568134 4639 Diaclasa 74 15 C 4 5,5 SR Escalonada 16 Seco Dacitas R4 22-jun.
M79 609990 7568155 4335 Diaclasa 95 73 C 2 3 SR Plana 18 Seco Dacitas R4 22-jun.
M79 609990 7568155 4335 Diaclasa 165 63 D 2 0,4 SR Plana 16 Seco Dacitas R4 22-jun.
M80 609793 7568183 4631 Diaclasa 52 12 C 3 2 SR Plana 16 Seco Dacitas R4 22-jun.
M80 609793 7568183 4631 Diaclasa 83 260 C 4 3 SR Plana 16 Seco Dacitas R4 22-jun.
M80 609793 7568183 4631 Diaclasa 55 220 D 3 2 SR Escalonada 16 Seco Dacitas R4 22-jun.
M81 609500 7569555 4719 Diaclasa 76 340 C 5 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L390 609500 7569555 4719 Falla 80 5 D 1 80 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L393 609500 7569555 4719 Falla 80 185 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L394 609500 7569555 4719 Falla 85 187 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L397 609500 7569555 4719 Falla 59 40 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L402 609642 7570190 4779 Falla 80 10 20 D 1 15 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L417 610746 7569444 4852 Falla 89 118 D 2 4 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L418 610746 7569444 4852 Falla 42 128 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L420 610746 7569444 4852 Falla 10 212 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
L430 609909 7569155 7433 Falla 89 145 D 1 10 SR Plana 8 Seco Dacita-Andesita R4 22-jun.
e-595 610663 7568280 4647 Pseudoestratificación 45 320 C Seco Dacitas R4 22-jun.
e-595 610663 7568280 4647 Pseudoestratificación 41 320 C Seco Dacitas R4 22-jun.
e-596 610495 7568419 4653 Pseudoestratificación 82 131 C Seco Dacitas R4 22-jun.
e-597 610283 7568529 4649 Pseudoestratificación 56 68 C Seco Dacitas R4 22-jun.
e-599 609868 7568700 4669 Pseudoestratificación 245 78 335 C Seco Dacitas R4 22-jun.
J62 609965 7567984 4638 Pseudoestratificación 17 76 C Seco Dacitas R4 22-jun.
L396 609500 7569555 4719 Pseudoestratificación 75 100 C Seco Dacita-Andesita R4 22-jun.
L408 611165 7569978 7913 Pseudoestratificación 45 40 C Seco Dacita-Andesita R4 22-jun.
L419 610746 7569444 4852 Pseudoestratificación 38 133 C Seco Dacita-Andesita R4 22-jun.
L434 609511 7568759 4658 Pseudoestratificación 48 35 C Seco Dacita-Andesita R4 22-jun.
D-1 603213 7569830 4603 Diaclasa 88 310 C 3 7 SR Ondulada 8 Seco Andesitas R4 12-jul.
D-1 603213 7569831 4603 Diaclasa 85 195 D 1 25 SR Ondulada 8 Seco Andesitas R4 12-jul.
D-10 603015 7568631 4553 Diaclasa 63 230 C 3 2 SR Ondulada 8 Seco Andesitas R4 12-jul.
D-11 602911 7568636 4566 Diaclasa 74 320 D 2 0,5 SR Plana 6 Seco Andesitas R4 12-jul.
D-11 602910 7568636 4566 Diaclasa 75 305 D 3 0,5 SR Rugosa 12 Seco Andesitas R4 12-jul.
D-11 602910 7568634 4567 Diaclasa 52 300 D 5 1 SR Escalonada 14 Seco Andesitas R4 12-jul.
D-12 603057 7568424 4545 Diaclasa 62 182 C 4 0,5 SR Rugosa 12 Seco Andesitas R4 12-jul.
D-12 603058 7568432 4544 Diaclasa 65 188 D 2 1 SR Plana 4 Seco Andesitas R4 12-jul.
D-12 603057 7568435 4545 Diaclasa 80 172 C 2 1 SR Escalonada 14 Seco Andesitas R4 12-jul.
D-12 603065 7568436 4544 Diaclasa 80 330 C 3 0,2 SR Rugosa 12 Seco Andesitas R4 12-jul.
D-13 603142 7568336 4530 Diaclasa 89 160 D 0 SR Ondulada 8 Seco Andesitas R4 12-jul.
D-13 603142 7568336 4530 Diaclasa 70 194 D 3,5 SR Ondulada 8 Seco Andesitas R4 12-jul.
D-2 603191 7569852 4625 Diaclasa 86 330 D 1 2 SR Plana 4 Seco Andesitas R4 12-jul.
D-3 603178 7569848 4612 Diaclasa 87 336 C 5 2 SR Plana 4 Seco Andesitas R4 12-jul.
Página 16 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
376
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
D-4 603116 7569259 4592 Diaclasa 86 183 C 3 1 Plana-Ondulada 6 Seco Andesitas R4 12-jul.
D-4 603116 7569259 4592 Diaclasa 80 280 D 4 2 Plana 4 Seco Andesitas R4 12-jul.
D-5 603075 7569195 4591 Diaclasa 66 15 D 1 Rugosa 8 Seco Andesitas R4 12-jul.
D-5 603075 7569195 4591 Diaclasa 65 35 D 1 0 SR Plana 5 Seco Andesitas R4 12-jul.
D-6 603047 7569138 4588 Diaclasa 86 235 C 3 0 SR Plana 4 Seco Andesitas R4 12-jul.
D-6 603047 7569138 4588 Diaclasa 86 220 C 1 0 Plana 4 Seco Andesitas R4 12-jul.
D-8 603050 7568898 4560 Diaclasa 89 250 C 4 1,5 SR Ondulada 8 Seco Andesitas R4 12-jul.
D-8 603050 7568898 4560 Diaclasa 85 300 C 2 5 SR Plana 4 Seco Andesitas R4 12-jul.
D-9 603024 7568633 4554 Diaclasa 72 332 C 4 2 SR Ondulada 8 Seco Andesitas R4 12-jul.
D-9 603024 7568633 4554 Diaclasa 82 265 D 1 1 SR Plana 4 Seco Andesitas R4 12-jul.
L438 602990 7566012 4458 Diaclasa 85 345 D 3 5 SR Plana 6 Seco Dacitas R4 12-jul.
L439 602990 7566012 4458 Diaclasa 80 340 D 4 2 SR Ondulada 6 Seco Dacitas R4 12-jul.
L440 602990 7566012 4458 Diaclasa 87 336 D 2 0 SR Ondulada 6 Seco Dacitas R4 12-jul.
L441 602990 7566012 4458 Diaclasa 82 210 D 1 0 SR Ondulada 6 Seco Dacitas R4 12-jul.
L443 602990 7566012 4458 Diaclasa 82 176 D 5 0 SR Ondulada 6 Seco Dacitas R4 12-jul.
L444 602990 7566012 4458 Diaclasa 80 193 D 1 0 SR Ondulada 6 Seco Dacitas R4 12-jul.
L445 602990 7566012 4458 Diaclasa 79 222 D 2 0 SR Ondulada 6 Seco Dacitas R4 12-jul.
L446 602990 7566012 4458 Diaclasa 74 328 D 3 0 SR Plana 6 Seco Dacitas R4 12-jul.
L447 602990 7566012 4458 Diaclasa 83 327 C 2 5 SR Plana 6 Seco Dacitas R4 12-jul.
L448 602990 7566012 4458 Diaclasa 86 348 C 6 3 SR Plana 6 Seco Dacitas R4 12-jul.
L449 602735 7566198 4462 Diaclasa 70 190 D 4 2 SR Plana 6 Seco Dacitas R4 12-jul.
L450 602735 7566198 4462 Diaclasa 61 344 D 2 0 SR Ondulada 6 Seco Dacitas R4 12-jul.
L452 602735 7566198 4462 Diaclasa 81 110 D 3 2 SR Ondulada 6 Seco Dacitas R4 12-jul.
L453 602735 7566198 4462 Diaclasa 88 40 C 2 8 SR Plana 6 Seco Dacitas R4 12-jul.
L454 602735 7566198 4462 Diaclasa 72 300 D 3 4 SR Plana 6 Seco Dacitas R4 12-jul.
L455 602735 7566198 4462 Diaclasa 80 342 D 2 2 SR Plana 6 Seco Dacitas R4 12-jul.
L456 602735 7566198 4462 Diaclasa 72 328 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul.
L459 602683 7566266 4434 Diaclasa 75 323 D 3 0 SR Plana 6 Seco Dacitas R4 12-jul.
L461 602683 7566266 4434 Diaclasa 68 182 D 5 0 SR Plana 6 Seco Dacitas R4 12-jul.
L462 602683 7566266 4434 Diaclasa 62 193 D 4 0 SR Plana 6 Seco Dacitas R4 12-jul.
L463 602683 7566266 4434 Diaclasa 85 174 D 3 0 SR Plana 6 Seco Dacitas R4 12-jul.
L464 602683 7566266 4434 Diaclasa 68 228 D 3 1 SR Plana 6 Seco Dacitas R4 12-jul.
L465 602683 7566266 4434 Diaclasa 54 221 D 2 2 SR Plana 6 Seco Dacitas R4 12-jul.
L466 602683 7566266 4434 Diaclasa 85 254 D 3 0 SR Plana 6 Seco Dacitas R4 12-jul.
L467 602683 7566266 4434 Diaclasa 81 280 D 4 0 SR Plana 6 Seco Dacitas R4 12-jul.
L468 602683 7566266 4434 Diaclasa 69 264 D 2 2 SR Plana 6 Seco Dacitas R4 12-jul.
L469 602683 7566266 4434 Diaclasa 69 295 D 4 0 SR Plana 6 Seco Dacitas R4 12-jul.
L470 602683 7566266 4434 Diaclasa 87 330 D 2 0 SR Plana 6 Seco Dacitas R4 12-jul.
L471 602329 7566489 4472 Diaclasa 85 248 D 5 2 SR Plana 6 Seco Dacitas R4 12-jul.
L472 602329 7566489 4472 Diaclasa 60 273 D 2 2 SR Plana 6 Seco Dacitas R4 12-jul.
L473 602329 7566489 4472 Diaclasa 45 92 D 4 0 SR Plana 6 Seco Dacitas R4 12-jul.
L474 602329 7566489 4472 Diaclasa 73 115 D 5 4 SR Plana 6 Seco Dacitas R4 12-jul.
L475 602329 7566489 4472 Diaclasa 76 101 D 4 1 SR Plana 6 Seco Dacitas R4 12-jul.
L476 602329 7566489 4472 Diaclasa 82 114 D 3 1 SR Plana 6 Seco Dacitas R4 12-jul.
L477 602329 7566489 4472 Diaclasa 84 109 D 2 2 SR Plana 6 Seco Dacitas R4 12-jul.
L479 602329 7566489 4472 Diaclasa 80 70 D 3 0 SR Plana 6 Seco Dacitas R4 12-jul.
L480 602177 7566524 4472 Diaclasa 65 26 D 3 10 SR Ondulada 6 Seco Dacitas R4 12-jul.
L481 602177 7566524 4472 Diaclasa 82 39 D 2 1 SR Plana 6 Seco Dacitas R4 12-jul.
L482 602177 7566524 4472 Diaclasa 64 75 D 4 2 SR Plana 6 Seco Dacitas R4 12-jul.
L483 602177 7566524 4472 Diaclasa 75 136 D 2 0 SR Plana 6 Seco Dacitas R4 12-jul.
L484 602177 7566524 4472 Diaclasa 70 30 D 6 0 SR Plana 6 Seco Dacitas R4 12-jul.
L486 602177 7566524 4472 Diaclasa 68 150 D 2 0 SR Plana 6 Seco Dacitas R4 12-jul.
L487 602177 7566524 4472 Diaclasa 88 146 D 6 0 SR Plana 6 Seco Dacitas R4 12-jul.
L488 602177 7566524 4472 Diaclasa 85 174 D 3 4 SR Plana 6 Seco Dacitas R4 12-jul.
L489 602177 7566524 4472 Diaclasa 79 172 D 4 1 SR Plana 6 Seco Dacitas R4 12-jul.
L490 602177 7566524 4472 Diaclasa 61 3 D 3 0 SR Plana 6 Seco Dacitas R4 12-jul.
L491 602177 7566524 4472 Diaclasa 80 9 D 2 2 SR Plana 6 Seco Dacitas R4 12-jul.
L492 602177 7566524 4472 Diaclasa 79 10 D 5 3 SR Plana 6 Seco Dacitas R4 12-jul.
L493 602177 7566524 4472 Diaclasa 88 352 D 4 3 SR Plana 6 Seco Dacitas R4 12-jul.
L494 601903 7566630 4460 Diaclasa 72 145 D 3 0 SR Plana 7 Seco Dacitas R4 12-jul.
Página 17 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
377
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L495 601903 7566630 4460 Diaclasa 83 151 D 5 0 SR Plana 7 Seco Dacitas R4 12-jul.
L496 601903 7566630 4460 Diaclasa 66 285 D 2 5 SR Plana 7 Seco Dacitas R4 12-jul.
L497 601903 7566630 4460 Diaclasa 87 310 D 3 0 SR Plana 7 Seco Dacitas R4 12-jul.
L498 601903 7566630 4460 Diaclasa 84 255 C 2 0 SR Plana 7 Seco Dacitas R4 12-jul.
L499 601903 7566630 4460 Diaclasa 82 150 C 4 0 SR Plana 7 Seco Dacitas R4 12-jul.
L500 601903 7566630 4460 Diaclasa 87 160 C 4 0 SR Plana 7 Seco Dacitas R4 12-jul.
L501 601903 7566630 4460 Diaclasa 88 154 D 3 0 SR Plana 7 Seco Dacitas R4 12-jul.
L502 601903 7566630 4460 Diaclasa 80 154 D 3 2 SR Plana 7 Seco Dacitas R4 12-jul.
L503 601903 7566630 4460 Diaclasa 87 132 D 2 3 SR Plana 7 Seco Dacitas R4 12-jul.
L504 601903 7566630 4460 Diaclasa 75 158 D 3 2 SR Plana 7 Seco Dacitas R4 12-jul.
L505 601903 7566630 4460 Diaclasa 80 210 D 2 4 SR Plana 7 Seco Dacitas R4 12-jul.
L506 601758 7566837 4470 Diaclasa 87 100 D 5 2 SR Plana 6 Seco Dacitas R4 12-jul.
L507 601758 7566837 4470 Diaclasa 89 96 D 4 1 SR Plana 6 Seco Dacitas R4 12-jul.
L508 601758 7566837 4470 Diaclasa 88 92 D 3 3 SR Plana 6 Seco Dacitas R4 12-jul.
L509 601758 7566837 4470 Diaclasa 88 104 D 2 5 SR Plana 6 Seco Dacitas R4 12-jul.
L510 601758 7566837 4470 Diaclasa 85 102 D 4 4 SR Plana 6 Seco Dacitas R4 12-jul.
L511 601277 7567359 4507 Diaclasa 70 220 D 5 0 SR Plana 6 Seco Dacitas R4 12-jul.
L512 601277 7567359 4507 Diaclasa 85 224 D 6 0 SR Plana 6 Seco Dacitas R4 12-jul.
L513 601277 7567359 4507 Diaclasa 87 258 D 5 15 SR Plana 6 Seco Dacitas R4 12-jul.
L514 601277 7567359 4507 Diaclasa 81 300 D 4 5 SR Plana 6 Seco Dacitas R4 12-jul.
L515 601277 7567359 4507 Diaclasa 88 120 D 6 6 SR Plana 6 Seco Dacitas R4 12-jul.
L516 601277 7567359 4507 Diaclasa 85 132 D 3 0 SR Plana 6 Seco Dacitas R4 12-jul.
L517 601011 7567147 4470 Diaclasa 5 175 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul.
L533 601013 7567022 4471 Diaclasa 81 210 D 7 6 SR Plana 6 Seco Dacitas R4 12-jul.
L534 601013 7567022 4471 Diaclasa 73 182 D 6 8 SR Plana 6 Seco Dacitas R4 12-jul.
L535 601013 7567022 4471 Diaclasa 71 212 D 4 0 SR Plana 6 Seco Dacitas R4 12-jul.
L536 601013 7567022 4471 Diaclasa 89 234 D 3 4 SR Plana 6 Seco Dacitas R4 12-jul.
L537 601013 7567022 4471 Diaclasa 87 214 D 3 3 SR Plana 6 Seco Dacitas R4 12-jul.
L538 601013 7567022 4471 Diaclasa 85 218 D 4 0 SR Plana 6 Seco Dacitas R4 12-jul.
M1 603367 7568020 4519 Diaclasa 230 68 320 D 5 2 SR Escalonada 6 Seco Andesitas R4 12-jul.
M1 603367 7568020 4519 Diaclasa 234 85 144 D 5 2 SR Plana 4 Seco Andesitas R4 12-jul.
M2 603360 7568016 4516 Diaclasa 257 83 347 D 5 2 SR Plana 2 Seco Andesitas R4 12-jul.
M2 603360 7568016 4516 Diaclasa 85 175 C 4 3 SR Rugosa 3 Seco Andesitas R4 12-jul.
M2 603360 7568016 4516 Diaclasa 198 64 108 D 2 2 SR Rugosa 3 Seco Andesitas R4 12-jul.
M3 603367 7568017 4515 Diaclasa 186 49 276 D 3 1 SR Plana 12 Seco Andesitas R4 12-jul.
M3 603367 7568017 4515 Diaclasa 234 81 324 C 2 3 SR Curva 12 Seco Andesitas R4 12-jul.
M3 603367 7568017 4515 Diaclasa 231 75 321 C 4 3 SR Curva 14 Seco Andesitas R4 12-jul.
M4 603372 7568013 4518 Diaclasa 265 71 355 C 3 2 SR Escalonada 14 Seco Andesitas R4 12-jul.
M5 603505 7567754 4513 Diaclasa 239 74 149 C 2 4 Arenas Curva 6 Seco Andesitas R4 12-jul.
M5 603505 7567754 4513 Diaclasa 198 82 288 C 4 2 Arenas Escalonada 12 Seco Andesitas R4 12-jul.
M6 603508 7567748 4509 Diaclasa 260 73 170 C 2 1 SR Curva 10 Humedo Andesitas R4 12-jul.
M6 603508 7567748 4509 Diaclasa 242 83 152 D 3 2 SR Plana 10 Seco Andesitas R4 12-jul.
M7 603361 7567758 4512 Diaclasa 299 77 61 C 4 1 Arenas Plana 8 Seco Andesitas R4 12-jul.
M7 603361 7567758 4512 Diaclasa 307 66 217 C 3 1 Arenas Plana 8 Seco Andesitas R4 12-jul.
M7 603361 7567758 4512 Diaclasa 90 83 180 C 10 2 SR Plana 6 Seco Andesitas R4 12-jul.
M7 603361 7567758 4512 Diaclasa 324 60 234 C 4 1 SR Plana 4 Seco Andesitas R4 12-jul.
M7 603361 7567758 4512 Diaclasa 265 58 355 C 2 0,5 SR Plana 8 Seco Andesitas R4 12-jul.
M8 602548 7568177 4540 Diaclasa 335 82 25 C 4 1 SR Plana 16 Seco Andesitas R4 12-jul.
M8 602548 7568177 4540 Diaclasa 347 59 13 C 2 2 SR Plana 16 Seco Andesitas R4 12-jul.
L460 602683 7566266 4434 Falla 64 116 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul.
L528 601013 7567022 4471 Falla 87 300 D 1 5 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 10 cm
L529 601013 7567022 4471 Falla 86 318 D 1 10 SR Plana 6 Seco Dacitas R4 12-jul.
L531 601013 7567022 4471 Falla 89 337 D 1 5 SR Plana 6 Seco Dacitas R4 12-jul.
L532 601013 7567022 4471 Falla 82 343 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul.
L539 601013 7567022 4471 Falla 78 319 D 1 3 SR Rugosa 6 Seco Dacitas R4 12-jul.
L540 601013 7567022 4471 Falla 66 110 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 5 cm
M6 603508 7567748 4509 Falla 265 67 355 C 1 2 SR Plana 4 Seco Andesitas R4 12-jul.
L457 602683 7566266 4434 Falla Inversa 87 130 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 5 cm
L458 602683 7566266 4434 Falla Inversa 60 115 78 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 5 cm
L530 601013 7567022 4471 Falla Inversa 80 328 D 1 30 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 10 cm
Página 18 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
378
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M4 603372 7568013 4518 Falla Inversa 248 55 338 C 1 4 SR Escalonada 12 Seco Andesitas R4 12-jul.
L518 601011 7567147 4470 Falla Normal 70 330 D 1 10 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 10 cm
L519 601011 7567147 4470 Falla Normal 87 304 D 1 2 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 10 cm
L520 601011 7567147 4470 Falla Normal 70 318 D 1 5 SR Ondulada 6 Seco Dacitas R4 12-jul. Desplazamiento 20 cm
L521 601011 7567147 4470 Falla Normal 89 285 D 1 5 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 15 cm
L522 601011 7567147 4470 Falla Normal 87 286 D 1 2 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 15 cm
L523 601011 7567147 4470 Falla Normal 87 325 D 1 20 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 5 cm
L524 601011 7567147 4470 Falla Normal 90 325 D 1 30 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 10 cm
L525 601011 7567147 4470 Falla Normal 80 310 82 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 5 cm
L526 601011 7567147 4470 Falla Normal 88 333 D 1 0 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 5 cm
L527 601011 7567147 4470 Falla Normal 88 334 D 1 5 SR Plana 6 Seco Dacitas R4 12-jul. Desplazamiento 40 cm
M6 603508 7567748 4509 Falla Normal 234 74 324 C 1 2 SR Escalonada 14 Seco Andesitas R4 12-jul.
D-1 603213 7569831 4603 Pseudoestratificación 48 166 C Seco Andesitas R4 12-jul.
D-10 603013 7568631 4553 Pseudoestratificación 54 165 C Seco Andesitas R4 12-jul.
D-13 603142 7568336 4530 Pseudoestratificación 43 250 C Seco Andesitas R4 12-jul.
D-7 603011 7569004 4566 Pseudoestratificación 36 84 C Seco Andesitas R4 12-jul.
L442 602990 7566012 4458 Pseudoestratificación 75 195 C Seco Dacitas R4 12-jul.
L451 602735 7566198 4462 Pseudoestratificación 68 156 C Seco Dacitas R4 12-jul.
L478 602329 7566489 4472 Pseudoestratificación 76 350 C Seco Dacitas R4 12-jul.
L485 602177 7566524 4472 Pseudoestratificación 58 96 C Seco Dacitas R4 12-jul.
L541 601013 7567022 4471 Pseudoestratificación 72 65 C Seco Dacitas R4 12-jul.
M1 603367 7568020 4519 Pseudoestratificación 24 128 C Seco Andesitas R4 12-jul.
M5 603505 7567754 4513 Pseudoestratificación 136 42 226 C Seco Andesitas R4 12-jul.
M7 603361 7567758 4512 Pseudoestratificación 45 63 135 C Seco Andesitas R4 12-jul.
D-14 601185 7567630 4529 Diaclasa 75 85 C 4 4 SR Plana 14 Seco Dacitas R4 13-jul.
D-14 601185 7567625 4529 Diaclasa 74 30 D 2 2 SR Rugosa 12 Seco Dacitas R4 13-jul.
D-14 601185 7567625 4529 Diaclasa 110 84 20 D 1 1 SR Escalonada 14 Seco Andesitas R4 13-jul.
D-16 599869 7570023 4823 Diaclasa 248 80 338 D 3 15 SR Plana 14 Seco Andesitas R4 13-jul.
D-16 599868 7570021 4822 Diaclasa 55 70 325 C 3 3 SR Escalonada 14 Seco Andesitas R4 13-jul.
D-16 599868 7570021 4822 Diaclasa 45 62 315 C 3 10 SR Ondulada 8 Seco Andesitas R4 13-jul.
D-17 599319 7570444 4949 Diaclasa 83 4 C 5 2 SR Escalonada 14 Seco Andesitas R4 13-jul.
D-17 599318 7570444 4949 Diaclasa 81 302 C 1 3 SR Escalonada 14 Seco Andesitas R4 13-jul.
D-17 599316 7570444 4949 Diaclasa 55 135 C 1 2,5 SR Ondulada 8 Seco Andesitas R4 13-jul.
D-17 599316 7570444 4949 Diaclasa 53 34 C 1 7 SR Plana 4 Seco Andesitas R4 13-jul.
D-17 599316 7570444 4949 Diaclasa 72 140 C 1 1 SR Ondulada 8 Seco Andesitas R4 13-jul.
D-17 599316 7570444 4949 Diaclasa 55 175 D 1 1 SR Ondulada 8 Seco Andesitas R4 13-jul.
D-18 599362 7570401 4944 Diaclasa 73 10 C 1 0,5 SR Plana 4 Seco Andesitas R4 13-jul.
D-18 599363 7570401 4944 Diaclasa 73 95 C 3 0,5 SR Plana 4 Seco Andesitas R4 13-jul.
D-18 599365 7570400 4944 Diaclasa 76 130 C 1 3 SR Ondulada 8 Seco Andesitas R4 13-jul.
D-19 599368 7570396 4940 Diaclasa 90 235 C 3 1 SR Ondulada 8 Seco Andesitas R4 13-jul.
D-19 599368 7570396 4940 Diaclasa 64 255 D 1 0,5 SR Ondulada 9 Seco Andesitas R4 13-jul.
D-20 599400 7570360 4931 Diaclasa 74 231 D 1 1 SR Plana 4 Seco Andesitas R4 13-jul.
D-20 599399 7570360 4931 Diaclasa 90 308 D 1 0,5 SR Escalonada 14 Seco Andesitas R4 13-jul.
D-20 599399 7570360 4931 Diaclasa 83 255 D 3 2 SR Plana 4 Seco Andesitas R4 13-jul.
L542 601021 7566959 4468 Diaclasa 70 156 C 7 2 SR Rugosa 8 Seco Dacitas R4 13-jul.
L543 601021 7566959 4468 Diaclasa 69 348 C 5 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L544 601021 7566959 4468 Diaclasa 62 352 C 3 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L545 601021 7566959 4468 Diaclasa 81 334 D 4 0 SR Plana 8 Seco Dacitas R4 13-jul.
L546 601021 7566959 4468 Diaclasa 72 340 D 6 0 SR Plana 8 Seco Dacitas R4 13-jul.
L547 601021 7566959 4468 Diaclasa 80 160 D 5 0 SR Plana 8 Seco Dacitas R4 13-jul.
L548 601021 7566959 4468 Diaclasa 85 168 D 5 0 SR Plana 8 Seco Dacitas R4 13-jul.
L549 601021 7566959 4468 Diaclasa 88 159 D 10 0 SR Plana 8 Seco Dacitas R4 13-jul.
L550 601021 7566959 4468 Diaclasa 87 172 D 6 0 SR Plana 8 Seco Dacitas R4 13-jul.
L551 601021 7566959 4468 Diaclasa 88 167 D 7 0 SR Plana 8 Seco Dacitas R4 13-jul.
L554 601021 7566959 4468 Diaclasa 80 145 D 4 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L555 601021 7566959 4468 Diaclasa 72 150 D 3 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L556 601021 7566959 4468 Diaclasa 71 156 D 4 5 SR Rugosa 8 Seco Dacitas R4 13-jul.
L557 601021 7566959 4468 Diaclasa 66 327 D 2 0 SR Plana 8 Seco Dacitas R4 13-jul.
L558 601021 7566959 4468 Diaclasa 80 120 D 5 2 SR Plana 8 Seco Dacitas R4 13-jul.
L560 600776 7566999 4484 Diaclasa 62 336 D 5 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
Página 19 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
379
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L561 600719 7566966 4483 Diaclasa 78 87 D 3 20 SR Rugosa 8 Seco Dacitas R4 13-jul.
L562 600719 7566966 4483 Diaclasa 86 345 D 2 10 SR Rugosa 8 Seco Dacitas R4 13-jul.
L563 600719 7566966 4483 Diaclasa 81 359 D 4 3 SR Rugosa 8 Seco Dacitas R4 13-jul.
L564 600719 7566966 4483 Diaclasa 68 345 D 5 5 SR Rugosa 8 Seco Dacitas R4 13-jul.
L565 600719 7566966 4483 Diaclasa 80 165 D 2 4 SR Rugosa 8 Seco Dacitas R4 13-jul.
L566 600719 7566966 4483 Diaclasa 86 135 D 2 8 SR Rugosa 8 Seco Dacitas R4 13-jul.
L567 600719 7566966 4483 Diaclasa 88 164 D 4 5 SR Rugosa 8 Seco Dacitas R4 13-jul.
L568 600719 7566966 4483 Diaclasa 80 160 D 5 2 SR Rugosa 8 Seco Dacitas R4 13-jul.
L569 600719 7566966 4483 Diaclasa 80 183 D 2 5 SR Rugosa 8 Seco Dacitas R4 13-jul.
L570 600719 7566966 4483 Diaclasa 72 185 D 2 6 SR Rugosa 8 Seco Dacitas R4 13-jul.
L571 600719 7566966 4483 Diaclasa 50 3 D 3 10 SR Rugosa 8 Seco Dacitas R4 13-jul.
L572 600719 7566966 4483 Diaclasa 82 154 D 4 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L573 600518 7567029 4484 Diaclasa 82 285 D 2 6 SR Rugosa 8 Seco Dacitas R4 13-jul.
L574 600518 7567029 4484 Diaclasa 84 35 D 3 4 SR Rugosa 8 Seco Dacitas R4 13-jul.
L575 600518 7567029 4484 Diaclasa 88 170 D 5 3 SR Rugosa 8 Seco Dacitas R4 13-jul.
L576 600518 7567029 4484 Diaclasa 72 136 D 4 8 SR Rugosa 8 Seco Dacitas R4 13-jul.
L577 600518 7567029 4484 Diaclasa 85 182 D 3 10 SR Rugosa 8 Seco Dacitas R4 13-jul.
L578 600518 7567029 4484 Diaclasa 87 246 D 2 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L579 600518 7567029 4484 Diaclasa 89 168 D 4 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L580 600518 7567029 4484 Diaclasa 85 224 D 2 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L582 600518 7567029 4484 Diaclasa 80 150 C 1 0 SR Rugosa 8 Seco Dacitas R4 13-jul.
L583 600518 7567029 4484 Diaclasa 87 284 C 3 2 SR Rugosa 6 Seco Dacitas R4 13-jul.
L584 600518 7567029 4484 Diaclasa 80 356 C 2 4 SR Rugosa 8 Seco Dacitas R4 13-jul.
L585 599287 7571329 5001 Diaclasa 74 120 D 2 2 SR Rugosa 10 Seco Dacitas R5 13-jul.
L586 599287 7571329 5001 Diaclasa 84 100 D 3 0 SR Ondulada 10 Seco Dacitas R5 13-jul.
L587 599287 7571329 5001 Diaclasa 80 105 D 3 0 SR Ondulada 10 Seco Dacitas R5 13-jul.
L588 599287 7571329 5001 Diaclasa 87 118 D 2 5 SR Ondulada 10 Seco Dacitas R5 13-jul.
L589 599287 7571329 5001 Diaclasa 75 95 D 5 10 SR Ondulada 10 Seco Dacitas R5 13-jul.
L590 599287 7571329 5001 Diaclasa 88 350 D 2 5 SR Plana 10 Seco Dacitas R5 13-jul.
L593 599169 7571519 5011 Diaclasa 87 80 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L594 599169 7571519 5011 Diaclasa 88 88 D 5 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L595 599169 7571519 5011 Diaclasa 70 272 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L596 599169 7571519 5011 Diaclasa 82 100 D 3 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L597 599169 7571519 5011 Diaclasa 84 268 D 6 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L598 599169 7571519 5011 Diaclasa 68 97 D 8 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L599 599169 7571519 5011 Diaclasa 70 105 D 8 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L600 599169 7571519 5011 Diaclasa 73 110 D 5 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L601 599169 7571519 5011 Diaclasa 72 120 D 5 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L602 599169 7571519 5011 Diaclasa 64 114 D 10 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L603 599169 7571519 5011 Diaclasa 58 93 D 8 2 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L604 599169 7571519 5011 Diaclasa 56 111 D 6 1 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L605 599169 7571519 5011 Diaclasa 70 110 D 7 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L606 599169 7571519 5011 Diaclasa 58 106 D 5 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L607 599169 7571519 5011 Diaclasa 74 116 D 6 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L608 599169 7571519 5011 Diaclasa 80 92 D 6 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L609 599169 7571519 5011 Diaclasa 78 115 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L610 599169 7571519 5011 Diaclasa 79 100 D 10 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L611 599169 7571519 5011 Diaclasa 79 114 D 8 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L612 599169 7571519 5011 Diaclasa 73 89 D 8 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L613 599169 7571519 5011 Diaclasa 61 99 D 6 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L614 599169 7571519 5011 Diaclasa 80 107 D 10 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L615 599169 7571519 5011 Diaclasa 80 120 D 5 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L616 599169 7571519 5011 Diaclasa 79 111 D 7 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L617 599169 7571519 5011 Diaclasa 60 93 D 6 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L618 599169 7571519 5011 Diaclasa 65 72 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L619 599169 7571519 5011 Diaclasa 60 77 D 4 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
M11 603537 7567651 4502 Diaclasa 71 215 C 3 2 SR Plana 10 Humedo Andesitas R4 13-jul.
M11 603537 7567651 4502 Diaclasa 263 75 353 C 2 0,5 SR Ondulada 14 Seco Andesitas R4 13-jul.
M11 603537 7567651 4502 Diaclasa 264 82 354 C 3 3 SR Ondulada 8 Humedo Andesitas R4 13-jul.
M12 603538 7567648 4501 Diaclasa 235 36 325 D 2 2 SR Plana 10 Seco Andesitas R4 13-jul.
Página 20 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
380
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M13 603540 7567636 4500 Diaclasa 308 64 52 D 3 0,2 SR Plana 6 Seco Andesitas R4 13-jul.
M13 603540 7567636 4500 Diaclasa 336 56 246 C 2 2 SR Plana 12 Seco Andesitas R4 13-jul.
M14 603514 7567634 4510 Diaclasa 12 82 282 D 2 0,5 SR Plana 10 Seco Andesitas R4 13-jul.
M15 603269 7567744 4517 Diaclasa 291 87 201 C 4 2 SR Plana 6 Seco Andesitas R4 13-jul.
M15 603269 7567744 4517 Diaclasa 311 66 221 D 2 5 SR Plana 8 Seco Andesitas R4 13-jul.
M15 603269 7567744 4517 Diaclasa 317 73 227 D 3 3 Arenas Plana 8 Seco Andesitas R4 13-jul.
M16 603270 7567736 4509 Diaclasa 60 86 150 C 1 1 SR Plana 10 Seco Andesitas R4 13-jul.
M16 603270 7567736 4509 Diaclasa 31 71 301 C 2 1 SR Plana 8 Seco Andesitas R4 13-jul.
M17 603512 7567701 4507 Diaclasa 210 57 300 D 3 0,5 SR Plana 8 Seco Andesitas R4 13-jul.
M17 603512 7567701 4507 Diaclasa 199 70 289 D 4 0,5 SR Plana 10 Seco Andesitas R4 13-jul.
M17 603512 7567701 4507 Diaclasa 188 66 278 D 5 0,5 SR Plana 10 Seco Andesitas R4 13-jul.
M19 603563 7567527 4494 Diaclasa 216 65 306 C 3 3 SR Curva 10 Humedo Andesitas R4 13-jul.
M19 603563 7567527 4494 Diaclasa 194 69 104 C 3 0,5 SR Ondulada 2 Humedo Andesitas R4 13-jul.
M19 603563 7567527 4494 Diaclasa 201 83 291 C 2 2 SR Ondulada 6 Humedo Andesitas R4 13-jul.
M20 603618 7567365 4494 Diaclasa 284 82 194 D 2 1 SR Ondulada 6 Humedo Andesitas R4 13-jul.
M22 603690 7567208 4481 Diaclasa 62 95 D 2 0,5 SR Plana 14 Seco Ignimbritas R3 13-jul.
M22 603690 7567208 4481 Diaclasa 78 275 C 1 6 Arenas Rugosa 16 Seco Ignimbritas R3 13-jul.
M23 603690 7567183 4475 Diaclasa 80 242 D 2 5 SR Rugosa 12 Humedo Ignimbritas R3 13-jul.
M24 603691 7567171 4478 Diaclasa 165 78 75 C 1 8 SR Ondulada 12 Seco Ignimbritas R3 13-jul.
M24 603691 7567171 4478 Diaclasa 80 242 C 2 2 Arenas Curva 16 Seco Ignimbritas R3 13-jul.
M24 603691 7567171 4478 Diaclasa 281 85 191 C 1 20 SR Curva 6 Seco Ignimbritas R3 13-jul.
M24 603691 7567171 4478 Diaclasa 22 292 C 1 0,2 SR Plana 12 Seco Ignimbritas R3 13-jul.
M25 603688 7567153 4480 Diaclasa 55 58 C 1 10 SR Plana 12 Seco Ignimbritas R3 13-jul.
M25 603688 7567153 4480 Diaclasa 75 160 C 1 12 SR Plana 12 Seco Ignimbritas R3 13-jul.
M26 603686 7567141 4467 Diaclasa 74 15 C 1 12 Arenas Plana 14 Seco Ignimbritas R3 13-jul.
M26 603686 7567141 4467 Diaclasa 52 82 322 C 1 15 Arenas Ondulada 14 Seco Ignimbritas R3 13-jul.
M28 603679 7567108 4470 Diaclasa 78 82 C 1 4 Arenas Plana 10 Seco Ignimbritas R3 13-jul.
M28 603679 7567108 4470 Diaclasa 85 32 C 2 5 Arenas Plana 10 Seco Ignimbritas R3 13-jul.
M29 603545 7567034 4472 Diaclasa 174 63 84 C 1 10 SR Plana 8 Seco Andesitas R4 13-jul.
M29 603545 7567034 4472 Diaclasa 274 72 184 C 2 4 SR Escalonada 12 Seco Andesitas R4 13-jul.
M29 603545 7567034 4472 Diaclasa 83 252 D 3 2 SR Plana 12 Seco Andesitas R4 13-jul.
M29 603545 7567034 4472 Diaclasa 70 195 C 2 5 SR Ondulada 14 Seco Andesitas R4 13-jul.
M31 603406 7566993 4496 Diaclasa 325 63 235 C 5 3 SR Ondulada 12 Seco Andesitas R4 13-jul.
M31 603406 7566993 4496 Diaclasa 70 345 C 1 0,5 SR Plana 12 Seco Andesitas R4 13-jul.
M31 603406 7566993 4496 Diaclasa 320 66 230 C 5 1 SR Plana 10 Seco Andesitas R4 13-jul.
M31 603406 7566993 4496 Diaclasa 319 68 41 C 3 2 SR Plana 12 Seco Andesitas R4 13-jul.
M32 603397 7566986 4488 Diaclasa 325 55 35 D 1 3 SR Plana 8 Seco Andesitas R4 13-jul.
M32 603397 7566986 4488 Diaclasa 320 70 230 D 4 1 SR Plana 8 Seco Andesitas R4 13-jul.
M33 603525 7566735 4474 Diaclasa 320 78 230 D 2 0,5 SR Plana 8 Seco Andesitas R4 13-jul.
M33 603525 7566735 4474 Diaclasa 3 79 273 C 4 0,5 Arenas Plana 10 Seco Andesitas R4 13-jul.
M33 603525 7566735 4474 Diaclasa 338 72 248 D 1 1 SR Plana 10 Seco Andesitas R4 13-jul.
M34 603215 7566686 4479 Diaclasa 77 130 C 3 2 SR Plana 8 Seco Andesitas R4 13-jul.
M34 603215 7566686 4479 Diaclasa 86 236 D 3 0,5 SR Plana 6 Seco Andesitas R4 13-jul.
M34 603215 7566686 4479 Diaclasa 76 71 D 6 1 SR Plana 12 Seco Andesitas R4 13-jul.
M34 603215 7566686 4479 Diaclasa 259 81 349 C 2 3 SR Plana 12 Seco Andesitas R4 13-jul.
M34 603215 7566686 4479 Diaclasa 284 81 194 D 3 2 Arenas Plana 6 Seco Andesitas R4 13-jul.
M35 603210 7566683 4480 Diaclasa 72 79 162 C 2 3 SR Plana 3 Seco Andesitas R4 13-jul.
M35 603210 7566683 4480 Diaclasa 39 82 309 C 3 0,5 Arenas Curva 10 Seco Andesitas R4 13-jul.
M35 603210 7566683 4480 Diaclasa 305 76 55 D 3 5 Arenas Plana 10 Seco Andesitas R4 13-jul.
M36 603468 7566330 4459 Diaclasa 85 195 D 2 0,5 SR Plana 8 Seco Andesitas R4 13-jul.
M36 603468 7566330 4459 Diaclasa 293 83 67 D 3 1 SR Plana 10 Seco Andesitas R4 13-jul.
M36 603468 7566330 4459 Diaclasa 337 68 23 D 2 0,5 SR Plana 8 Seco Andesitas R4 13-jul.
M36 603468 7566330 4459 Diaclasa 46 80 136 C 3 0,1 SR Plana 6 Seco Andesitas R4 13-jul.
M36 603468 7566330 4459 Diaclasa 293 67 67 C 3 2 SR Curva 8 Seco Andesitas R4 13-jul.
M37 602713 7565805 4406 Diaclasa 85 232 C 2 4 SR Plana 10 Seco Ignimbritas R3 13-jul.
M37 602713 7565805 4406 Diaclasa 88 156 C 3 2 SR Plana 10 Seco Ignimbritas R3 13-jul.
M37 602713 7565805 4406 Diaclasa 78 155 C 2 5 SR Plana 10 Seco Ignimbritas R3 13-jul.
M38 602699 7565807 4406 Diaclasa 78 302 C 3 1 Arenas Plana 10 Seco Ignimbritas R3 13-jul.
M38 602699 7565807 4406 Diaclasa 78 289 C 2 0,3 Arenas Plana 10 Seco Ignimbritas R3 13-jul.
M38 602699 7565807 4406 Diaclasa 80 240 C 1 1 SR Plana 10 Seco Ignimbritas R3 13-jul.
Página 21 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
381
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M39 602690 7565808 4409 Diaclasa 85 259 C 2 2 SR Plana 12 Seco Ignimbritas R3 13-jul.
M39 602690 7565808 4409 Diaclasa 81 235 C 1 2 SR Escalonada 14 Seco Ignimbritas R3 13-jul.
M39 602690 7565808 4409 Diaclasa 84 295 C 1 0,2 SR Plana 10 Seco Ignimbritas R3 13-jul.
M39 602690 7565808 4409 Diaclasa 87 82 C 3 1 SR Escalonada 10 Seco Ignimbritas R3 13-jul.
M40 602632 7565805 4413 Diaclasa 81 50 D 3 10 Plana 16 Seco Ignimbritas R3 13-jul.
M40 602632 7565805 4413 Diaclasa 73 205 C 2 0,5 Plana 12 Seco Ignimbritas R3 13-jul.
M40 602632 7565805 4413 Diaclasa 79 220 C 3 1 Plana 12 Seco Ignimbritas R3 13-jul.
M40 602632 7565805 4413 Diaclasa 81 240 D 2 3 Plana 10 Seco Ignimbritas R3 13-jul.
M40 602632 7565805 4413 Diaclasa 85 246 C 1 2 Plana 12 Seco Ignimbritas R3 13-jul.
M40 602632 7565805 4413 Diaclasa 87 38 C 2 3 Plana 10 Seco Ignimbritas R3 13-jul.
M40 602632 7565805 4413 Diaclasa 87 45 D 1 12 Plana 10 Seco Ignimbritas R3 13-jul.
M9 603540 7567694 4501 Diaclasa 349 62 259 C 1 1 SR Plana 12 Seco Andesitas R4 13-jul.
M9 603540 7567694 4501 Diaclasa 320 70 230 D 4 3 SR Ondulada 8 Seco Andesitas R4 13-jul.
M9 603540 7567694 4501 Diaclasa 272 63 182 D 2 0,2 SR Escalonada 8 Seco Andesitas R4 13-jul.
M9 603540 7567694 4501 Diaclasa 63 67 D 2 2 SR Curva 8 Seco Andesitas R4 13-jul.
N10 598398 7571597 5213 Diaclasa 80 172 C 3 2 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N11 598398 7571597 5213 Diaclasa 83 174 C 3 2 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N12 598398 7571597 5213 Diaclasa 79 181 C 3 2 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N13 598398 7571597 5213 Diaclasa 80 179 C 3 2 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N6 598398 7571597 5213 Diaclasa 86 230 C 3 2 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N7 598398 7571597 5213 Diaclasa 81 205 C 3 2 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N8 598398 7571597 5213 Diaclasa 89 196 C 3 2 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N9 598398 7571597 5213 Diaclasa 80 160 C 3 2 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
L552 601021 7566959 4468 Falla 85 310 D 1 0 SR Plana 8 Seco Dacitas R4 13-jul.
L553 601021 7566959 4468 Falla 72 348 D 1 0 SR Plana 8 Seco Dacitas R4 13-jul.
M16 603270 7567736 4509 Falla 347 85 257 C 1 2 SR Escalonada 14 Seco Andesitas R4 13-jul.
M18 603527 7567704 4503 Falla 176 82 266 C 1 6 Gravas Ondulada 14 Seco Andesitas R4 13-jul.
N1 598398 7571597 5213 Falla de Rumbo 89 185 5 C 5 1 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N2 598398 7571597 5213 Falla de Rumbo 82 245 4 C 5 1 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N3 598398 7571597 5213 Falla de Rumbo 85 265 2 C 5 1 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N4 598398 7571597 5213 Falla de Rumbo 89 275 3 C 5 1 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
N5 598398 7571597 5213 Falla de Rumbo 86 235 C 5 1 SR Plana 2 Seco Dacita-Andesita R4 13-jul.
L591 599169 7571519 5011 Falla Dextral 5 120 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
L592 599169 7571519 5011 Falla Dextral 3 109 D 1 0 SR Plana 8 Seco Dacita-Andesita R4 13-jul.
M27 603684 7567131 4474 Falla Dextral 79 256 C 2 2 SR Curva 10 Seco Ignimbritas R3 13-jul.
M10 603542 7567682 4502 Falla Inversa 31 209 C 1 2 SR Curva 6 Seco Andesitas R4 13-jul. desplazmaiento 10 cm
M14 603514 7567634 4510 Falla Inversa 66 42 336 D 3 1 SR Escalonada 12 Seco Andesitas R4 13-jul.
M22 603690 7567208 4481 Falla Inversa 77 144 C 1 1 SR Plana 12 Seco Ignimbritas R3 13-jul.
M27 603684 7567131 4474 Falla Inversa 84 47 C 1 2 Arenas Plana 14 Seco Ignimbritas R3 13-jul.
M12 603538 7567648 4501 Falla Normal 173 62 83 C 1 7 SR Escalonada 10 Seco Andesitas R4 13-jul.
M13 603540 7567636 4500 Falla Normal 340 70 20 C 9 7 SR Escalonada 12 Seco Andesitas R4 13-jul. Desplazamiento 8 cm
M14 603514 7567634 4510 Falla Normal 10 69 280 D 1 2 SR Ondulada 12 Seco Andesitas R4 13-jul.
M17 603512 7567701 4507 Falla Normal 196 70 106 C 1 2 Arenas Escalonada 10 Seco Andesitas R4 13-jul.
M19 603563 7567527 4494 Falla Normal 211 72 301 C 1 2 SR Escalonada 10 Seco Andesitas R4 13-jul.
M20 603618 7567365 4494 Falla Normal 258 88 348 C 1 12 SR Escalonada 6 Humedo Andesitas R4 13-jul.
M20 603618 7567365 4494 Falla Normal 290 87 200 C 4 2 SR Ondulada 8 Humedo Andesitas R4 13-jul.
M21 603620 7567363 4494 Falla Normal 270 88 180 C 1 2 SR Plana 8 Humedo Andesitas R4 13-jul.
M22 603690 7567208 4481 Falla Normal 65 131 C 1 1 SR Plana 14 Seco Ignimbritas R3 13-jul.
M28 603679 7567108 4470 Falla Normal 240 85 150 C 3 4 SR Plana 12 Seco Ignimbritas R3 13-jul.
M28 603679 7567108 4470 Falla Normal 88 146 C 2 2 Arenas Plana 12 Seco Ignimbritas R3 13-jul.
M28 603679 7567108 4470 Falla Normal 81 152 C 2 10 SR Plana 12 Seco Ignimbritas R3 13-jul.
M30 603543 7567025 4494 Falla Normal 81 216 C 1 2 SR Ondulada 14 Seco Andesitas R4 13-jul.
M32 603397 7566986 4488 Falla Normal 319 49 41 C 3 4 SR Ondulada 10 Seco Andesitas R4 13-jul.
M23 603690 7567183 4475 Falla Sinestral 86 46 C 1 20 SR Rugosa 12 Humedo Ignimbritas R3 13-jul.
M25 603688 7567153 4480 Falla Sinestral 290 90 200 C 1 12 SR Plana 12 Seco Ignimbritas R3 13-jul.
D-15 601162 7567993 4553 Pseudoestratificación 53 260 C Seco Andesitas R4 13-jul.
D-16 599869 7570025 4823 Pseudoestratificación 8 210 C Seco Andesitas R4 13-jul.
D-17 599319 7570444 4949 Pseudoestratificación 11 220 C Seco Andesitas R4 13-jul.
L559 600776 7566999 4484 Pseudoestratificación 60 185 C Seco Dacitas R4 13-jul.
L581 600518 7567029 4484 Pseudoestratificación 65 84 C Seco Dacitas R4 13-jul.
Página 22 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
382
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L620 599169 7571519 5011 Pseudoestratificación 65 150 C Seco Dacita-Andesita R4 13-jul.
M10 603542 7567682 4502 Pseudoestratificación 6 303 C Seco Andesitas R4 13-jul.
M11 603537 7567651 4502 Pseudoestratificación 33 240 C Seco Andesitas R4 13-jul.
M14 603514 7567634 4510 Pseudoestratificación 125 12 35 C Seco Andesitas R4 13-jul.
M16 603270 7567736 4509 Pseudoestratificación 70 21 340 C Seco Andesitas R4 13-jul.
M17 603512 7567701 4507 Pseudoestratificación 326 42 236 C Seco Andesitas R4 13-jul.
M29 603545 7567034 4472 Pseudoestratificación 31 21 C Seco Andesitas R4 13-jul.
M35 603210 7566683 4480 Pseudoestratificación 340 35 250 C Seco Andesitas R4 13-jul.
M39 602690 7565808 4409 Pseudoestratificación 4 10 C Seco Ignimbritas R2 13-jul.
M9 603540 7567694 4501 Pseudoestratificación 285 5 195 C Seco Andesitas R4 13-jul.
D-21 599826 7569253 4720 Diaclasa 76 328 D 3 0 SR Rugosa 12 Seco Flujo de detritos R2 14-jul.
D-21 599826 7569253 4720 Diaclasa 75 230 D 1 0 SR Rugosa 12 Seco Flujo de detritos R2 14-jul.
D-21 599826 7569253 4720 Diaclasa 68 263 C 3 0,2 SR Escalonada 14 Seco Flujo de detritos R2 14-jul.
D-22 599760 7569278 4720 Diaclasa 21 70 C 1 1 SR Escalonada 14 Seco Flujo de detritos R2 14-jul.
D-22 599760 7569278 4720 Diaclasa 79 88 C 1 0,5 SR Escalonada 14 Seco Flujo de detritos R2 14-jul.
D-23 599549 7569420 4805 Diaclasa 75 355 C 6 5 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-24 599488 7569477 4842 Diaclasa 52 268 C 1 2,5 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-24 599492 7569477 4843 Diaclasa 87 315 C 2 3 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-24 599492 7569477 4843 Diaclasa 88 105 C 1 0,5 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-24 599492 7569477 4843 Diaclasa 72 188 C 1 2 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-24 599492 7569477 4843 Diaclasa 75 118 C 2 1,5 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-24 599492 7569477 4843 Diaclasa 64 105 C 5 1,5 SR Ondulada 8 Seco Brecha de base R3 14-jul.
D-25 599350 7569580 4843 Diaclasa 75 280 C 1 1 SR Rugosa-Ondulada 10 Seco Brecha de base R3 14-jul.
D-25 599350 7569580 4843 Diaclasa 86 124 C 1 0,5 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-25 599350 7569580 4843 Diaclasa 72 343 C 3 3 SR Rugosa-Ondulada 10 Seco Brecha de base R3 14-jul.
D-25 599350 7569580 4843 Diaclasa 66 175 C 2 1 SR Rugosa-Ondulada 10 Seco Brecha de base R3 14-jul.
D-26 599220 7569632 4887 Diaclasa 76 332 C 5 15 SR Rugosa 12 Seco Brecha de base R3 14-jul.
D-26 599220 7569632 4887 Diaclasa 60 270 D 1 2,5 SR Escalonada-Rugosa 14 Seco Brecha de base R3 14-jul.
D-26 599220 7569632 4887 Diaclasa 58 145 D 1 3 SR Rugosa 12 Seco Brecha de base R3 14-jul.
D-26 599220 7569632 4887 Diaclasa 74 356 D 1 3 SR Rugosa 10 Seco Brecha de base R3 14-jul.
D-26 599215 7569633 4887 Diaclasa 74 222 C 3 7 SR Ondulada 8 Seco Brecha de base R3 14-jul.
D-26 599214 7569633 4887 Diaclasa 65 135 C 1 6 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-26 599214 7569633 4887 Diaclasa 75 295 D 1 5 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-27 599210 7569644 4905 Diaclasa 72 330 D 1 4 SR Ondulada 12 Seco Brecha de base R3 14-jul.
D-27 599210 7569644 4905 Diaclasa 75 135 D 1 2 SR Escalonada 14 Seco Brecha de base R3 14-jul.
D-27 599065 7569612 4958 Diaclasa 84 34 C 1 0 SR Ondulada 6 Seco Brecha de base R3 14-jul.
D-28 598793 7569364 4965 Diaclasa 82 185 C 1 2 SR Plana 4 Seco Andesitas R4 14-jul.
D-28 598793 7569364 4965 Diaclasa 58 216 C 3 0,2 SR Plana 4 Seco Andesitas R4 14-jul.
D-28 598793 7569364 4965 Diaclasa 45 175 C 3 1 SR Plana 6 Seco Andesitas R4 14-jul.
D-28 598793 7569364 4965 Diaclasa 78 4 C 1 0,5 SR Plana 4 Seco Andesitas R4 14-jul.
L623 596017 7568943 5626 Diaclasa 73 235 D 3 0 SR Plana 2 Seco Andesitas R4 14-jul.
L624 596017 7568943 5626 Diaclasa 78 340 D 3 0 SR Plana 2 Seco Andesitas R4 14-jul.
L625 596017 7568943 5626 Diaclasa 74 92 D 3 10 SR Plana 6 Seco Andesitas R4 14-jul.
L627 596017 7568943 5626 Diaclasa 86 35 D 2 0,5 SR Plana 2 Seco Andesitas R4 14-jul.
L629 596017 7568943 5626 Diaclasa 64 185 D 6 0,5 SR Curva 12 Seco Andesitas R4 14-jul.
L630 596017 7568943 5626 Diaclasa 30 156 D 6 0 SR Ondulada 8 Seco Andesitas R4 14-jul.
L631 596017 7568943 5626 Diaclasa 62 170 D 3 2 SR Plana 2 Seco Andesitas R4 14-jul.
L632 596050 7569100 5626 Diaclasa 60 138 D 3 4 SR Plana 6 Seco Andesitas R4 14-jul.
L633 596050 7569100 5626 Diaclasa 84 175 D 8 2 SR Plana 10 Seco Andesitas R4 14-jul.
L634 596050 7569100 5626 Diaclasa 82 188 D 4 10 SR Plana 6 Seco Andesitas R4 14-jul.
L635 596050 7569100 5626 Diaclasa 67 115 D 4 10 SR Plana 6 Seco Andesitas R4 14-jul.
L636 596050 7569100 5626 Diaclasa 75 256 C 3 0 SR Plana 12 Seco Andesitas R4 14-jul.
L638 596661 7569157 5355 Diaclasa 8 84 98 D 5 3 SR Curva 6 Seco Andesitas R4 14-jul.
L639 596661 7569157 5355 Diaclasa 32 80 122 D 4 1 SR Ondulada 6 Seco Andesitas R4 14-jul.
L641 596661 7569157 5355 Diaclasa 334 66 244 D 3 3 SR Escalonada 8 Seco Andesitas R4 14-jul.
L642 597209 7568746 5302 Diaclasa 24 86 114 D 1 10 SR Plana 8 Seco Dacitas R4 14-jul.
L643 597209 7568746 5302 Diaclasa 10 87 100 D 3 4 SR Plana 8 Seco Dacitas R4 14-jul.
L644 597209 7568746 5302 Diaclasa 27 55 297 D 6 8 SR Plana 8 Seco Dacitas R4 14-jul.
L645 597209 7568746 5302 Diaclasa 30 51 300 D 6 5 SR Plana 8 Seco Dacitas R4 14-jul.
L647 597209 7568746 5302 Diaclasa 68 80 338 D 6 5 SR Plana 8 Seco Dacitas R4 14-jul.
Página 23 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
383
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L649 597209 7568746 5302 Diaclasa 10 75 100 D 4 5 SR Plana 8 Seco Dacitas R4 14-jul.
L650 597209 7568746 5302 Diaclasa 14 76 284 D 3 20 Bloques Plana 8 Seco Dacitas R4 14-jul.
L651 597541 7568605 5104 Diaclasa 87 100 D 4 0,5 SR Ondulada 6 Seco Dacitas R4 14-jul.
L652 597541 7568605 5104 Diaclasa 80 65 C 3 1 Arenas Ondulada 4 Seco Dacitas R4 14-jul.
L653 597541 7568605 5104 Diaclasa 86 65 D 4 0,2 SR Plana 6 Seco Dacitas R4 14-jul.
L654 597541 7568605 5104 Diaclasa 84 75 D 2 1 Arenas Ondulada 6 Seco Dacitas R4 14-jul.
L655 597541 7568605 5104 Diaclasa 88 250 C 3 0,5 SR Ondulada 6 Seco Dacitas R4 14-jul.
L657 597541 7568605 5104 Diaclasa 87 75 D 2 0,5 SR Plana 6 Seco Dacitas R4 14-jul.
L658 597541 7568605 5104 Diaclasa 84 264 C 5 0 SR Plana 6 Seco Dacitas R4 14-jul.
M42 598782 7567931 4752 Diaclasa 57 282 D 1 5 SR Plana 10 Seco Dacitas R4 14-jul.
M42 598782 7567931 4752 Diaclasa 74 188 D 2 2 SR Curva 12 Seco Dacitas R4 14-jul.
M42 598782 7567931 4752 Diaclasa 74 12 D 1 2 SR Plana 12 Seco Dacitas R4 14-jul.
M42 598782 7567931 4752 Diaclasa 76 290 D 1 22 SR Plana 10 Seco Dacitas R4 14-jul.
M43 598773 7567919 4723 Diaclasa 85 169 D 2 0 SR Ondulada 8 Seco Dacitas R4 14-jul.
M43 598773 7567919 4723 Diaclasa 80 9 C 2 0 SR Ondulada 12 Seco Dacitas R4 14-jul.
M43 598773 7567919 4723 Diaclasa 82 44 C 2 0 SR Plana 4 Seco Dacitas R4 14-jul.
M43 598773 7567919 4723 Diaclasa 81 325 C 1 10 SR Plana 2 Seco Dacitas R4 14-jul.
M44 598778 7567919 4742 Diaclasa 80 142 C 1 12 SR Plana 12 Seco Dacitas R4 14-jul.
M44 598778 7567919 4742 Diaclasa 79 5 C 1 5 SR Escalonada 14 Seco Dacitas R4 14-jul.
M45 598775 7567925 4743 Diaclasa 75 15 D 2 3 SR Escalonada 14 Seco Dacitas R4 14-jul.
M45 598775 7567925 4743 Diaclasa 89 205 C 1 8 SR Escalonada 12 Seco Dacitas R4 14-jul.
M47 598775 7567929 4738 Diaclasa 85 175 C 1 4 SR Escalonada 10 Seco Dacitas R4 14-jul.
M47 598775 7567929 4738 Diaclasa 260 74 D 2 2 SR Plana 12 Seco Dacitas R4 14-jul.
M47 598775 7567929 4738 Diaclasa 60 102 D 2 2 SR Escalonada 12 Seco Dacitas R4 14-jul.
M47 598775 7567929 4738 Diaclasa 77 30 C 1 0 SR Plana 10 Seco Dacitas R4 14-jul.
M48 598761 7567944 4746 Diaclasa 80 352 C 1 2 SR Plana 10 Seco Dacitas R4 14-jul.
M48 598761 7567944 4746 Diaclasa 82 32 C 1 4 SR Plana 10 Seco Dacitas R4 14-jul.
M49 598747 7567972 4751 Diaclasa 86 4 C 6 30 SR Plana 8 Seco Dacitas R4 14-jul.
M50 598741 7567990 4755 Diaclasa 72 178 C 8 5 SR Plana 8 Seco Dacitas R4 14-jul.
M51 598665 7568029 4782 Diaclasa 54 174 C 3 2 SR Plana 8 Seco Dacitas R4 14-jul.
M55 597950 7568610 4996 Diaclasa 215 76 125 D 1 5 Arenas Plana 10 Seco Dacitas R4 14-jul.
M56 597961 7568613 5008 Diaclasa 70 115 D 3 4 SR Plana 12 Seco Dacitas R4 14-jul.
M56 597961 7568613 5008 Diaclasa 78 318 C 2 0,5 SR Plana 6 Seco Dacitas R4 14-jul.
M56 597961 7568613 5008 Diaclasa 52 321 C 1 0,5 SR Plana 4 Seco Dacitas R4 14-jul.
M56 597961 7568613 5008 Diaclasa 52 282 C 3 1 SR Plana 10 Seco Dacitas R4 14-jul.
M57 598004 7568580 5003 Diaclasa 47 314 C 8 1 SR Plana 4 Seco Dacitas R4 14-jul.
M57 598004 7568580 5003 Diaclasa 35 307 C 8 3 SR Plana 4 Seco Dacitas R4 14-jul.
M57 598004 7568580 5003 Diaclasa 41 308 C 8 3 SR Plana 4 Seco Dacitas R4 14-jul.
M59 598024 7568583 4989 Diaclasa 78 338 C 8 8 SR Plana 4 Seco Dacitas R4 14-jul.
M59 598024 7568583 4989 Diaclasa 63 330 C 8 0,5 SR Plana 4 Seco Dacitas R4 14-jul.
M63 598104 7568511 4970 Diaclasa 78 140 C 2 0,1 SR Plana 4 Seco Dacitas R4 14-jul.
M63 598104 7568511 4970 Diaclasa 82 142 C 1 0,3 SR Plana 4 Seco Dacitas R4 14-jul.
N21 601194 7574121 4698 Diaclasa 86 320 C 4 1 SR Plana 4 Seco Dacitas R4 14-jul.
N22 601194 7574121 4698 Diaclasa 80 230 C 4 5 SR Plana 4 Seco Dacitas R4 14-jul.
N23 601194 7574121 4698 Diaclasa 87 200 C 4 1 SR Plana 4 Seco Dacitas R4 14-jul.
N24 601194 7574121 4698 Diaclasa 79 115 C 4 7 SR Plana 4 Seco Dacitas R4 14-jul.
N25 601194 7574121 4698 Diaclasa 88 50 C 4 20 SR Plana 4 Seco Dacitas R4 14-jul.
N26 601194 7574121 4698 Diaclasa 80 352 C 4 2 SR Plana 4 Seco Dacitas R4 14-jul.
N27 601194 7574121 4698 Diaclasa 77 245 C 4 10 SR Plana 4 Seco Dacitas R4 14-jul.
N31 602224 7574476 4645 Diaclasa 88 330 C 3 1 SR Plana 4 Seco Dacitas R4 14-jul.
N32 602224 7574476 4645 Diaclasa 85 290 C 3 0,5 SR Plana 4 Seco Dacitas R4 14-jul.
N33 602224 7574476 4645 Diaclasa 79 312 C 3 2 SR Plana 4 Seco Dacitas R4 14-jul.
N34 602224 7574476 4645 Diaclasa 87 320 C 3 3 SR Plana 4 Seco Dacitas R4 14-jul.
N35 602224 7574476 4645 Diaclasa 88 300 C 3 2 SR Plana 4 Seco Dacitas R4 14-jul.
N36 602224 7574476 4645 Diaclasa 79 295 C 3 3 SR Plana 4 Seco Dacitas R4 14-jul.
N37 602224 7574476 4645 Diaclasa 88 329 C 3 1 SR Plana 4 Seco Dacitas R4 14-jul.
N38 602224 7574476 4645 Diaclasa 80 277 C 3 3 SR Plana 4 Seco Dacitas R4 14-jul.
N39 602224 7574476 4645 Diaclasa 81 314 C 3 1 SR Plana 4 Seco Dacitas R4 14-jul.
N40 602224 7574476 4645 Diaclasa 89 285 C 3 5 SR Plana 4 Seco Dacitas R4 14-jul.
N41 602224 7574476 4645 Diaclasa 79 288 C 3 2 SR Plana 4 Seco Dacitas R4 14-jul.
Página 24 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
384
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
N42 602224 7574476 4645 Diaclasa 80 304 C 3 4 SR Plana 4 Seco Dacitas R4 14-jul.
N43 602224 7574476 4645 Diaclasa 85 316 C 3 3 SR Plana 4 Seco Dacitas R4 14-jul.
N44 602224 7574476 4645 Diaclasa 80 330 C 3 1 SR Plana 4 Seco Dacitas R4 14-jul.
N45 602224 7574476 4645 Diaclasa 80 321 C 3 0,5 SR Plana 4 Seco Dacitas R4 14-jul.
N46 602224 7574476 4645 Diaclasa 73 342 C 3 0,5 SR Plana 4 Seco Dacitas R4 14-jul.
N47 602224 7574476 4645 Diaclasa 89 326 C 3 10 SR Plana 4 Seco Dacitas R4 14-jul.
L621 596017 7568943 5626 Falla 82 74 172 C 1 4 SR Ondulada 6 Seco Andesitas R4 14-jul.
L622 596017 7568943 5626 Falla 88 75 178 C 1 0 SR Plana 6 Seco Andesitas R4 14-jul.
M49 598747 7567972 4751 Falla 78 353 C 2 12 SR Plana 8 Seco Dacitas R4 14-jul.
M61 598094 7568530 4963 Falla 80 128 C 2 30 Gravas Plana 6 Seco Dacitas R4 14-jul.
N15 601194 7574121 4698 Falla 83 85 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
N16 601194 7574121 4698 Falla 79 93 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
N18 601194 7574121 4698 Falla 87 285 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
N48 602224 7574476 4645 Falla 84 314 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
N49 602224 7574476 4645 Falla 85 310 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
N17 601194 7574121 4698 Falla Dextral 87 20 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
L637 596661 7569157 5355 Falla Inversa 21 76 291 C 1 4 SR Plana 8 Seco Andesitas R4 14-jul.
L640 596661 7569157 5355 Falla Inversa 340 45 250 C 1 2 SR Plana 6 Seco Andesitas R4 14-jul. Desplazamiento 10cm
L646 597209 7568746 5302 Falla Inversa 55 71 325 C 1 0 SR Plana 8 Seco Dacitas R4 14-jul.
L648 597209 7568746 5302 Falla Inversa 38 71 308 C 1 4 SR Plana 8 Seco Dacitas R4 14-jul.
M42 598782 7567931 4752 Falla Inversa 77 15 C 1 1 SR Plana 2 Seco Dacitas R4 14-jul.
M44 598778 7567919 4742 Falla Inversa 82 292 C 1 5 SR Plana 6 Seco Dacitas R4 14-jul.
M46 598775 7567928 4737 Falla Inversa 68 146 C 1 4 SR Ondulada 14 Seco Dacitas R4 14-jul.
M48 598761 7567944 4746 Falla Inversa 73 152 C 1 25 SR Escalonada 10 Seco Dacitas R4 14-jul.
M58 598019 7568579 4994 Falla Inversa 55 331 C 10 5 SR Plana 4 Seco Dacitas R4 14-jul.
M58 598019 7568579 4994 Falla Inversa 57 337 C 10 6 SR Plana 4 Seco Dacitas R4 14-jul.
M63 598104 7568511 4970 Falla Inversa 38 125 C 1 0 SR Curva 6 Seco Dacitas R4 14-jul.
L628 596017 7568943 5626 Falla Normal 75 194 D 1 1 SR Escalonada 6 Seco Andesitas R4 14-jul. Desplazamiento 4cm
L656 597541 7568605 5104 Falla Normal 70 64 C 1 2 SR Ondulada 6 Seco Dacitas R4 14-jul. Desplazamiento 15 cm
M42 598782 7567931 4752 Falla Normal 82 11 C 2 2 SR Plana 4 Seco Dacitas R4 14-jul.
M42 598782 7567931 4752 Falla Normal 79 11 C 2 3 SR Plana 4 Seco Dacitas R4 14-jul.
M44 598778 7567919 4742 Falla Normal 77 325 C 1 5 SR Ondulada 8 Seco Dacitas R4 14-jul.
M51 598665 7568029 4782 Falla Normal 71 170 C 1 10 SR Plana 8 Seco Dacitas R4 14-jul.
M51 598665 7568029 4782 Falla Normal 80 182 C 1 15 Arenas Plana 8 Seco Dacitas R4 14-jul.
M55 597950 7568610 4996 Falla Normal 84 130 C 1 12 SR Ondulada 6 Seco Dacitas R4 14-jul.
M60 598026 7568583 4986 Falla Normal 84 130 C 2 4 Arenas Plana 4 Seco Dacitas R4 14-jul.
M60 598026 7568583 4986 Falla Normal 86 128 C 1 10 SR Plana 4 Seco Dacitas R4 14-jul.
M62 598097 7568515 4971 Falla Normal 76 308 C 1 12 SR Plana 4 Seco Dacitas R4 14-jul.
M62 598097 7568515 4971 Falla Normal 78 279 C 1 12 Gravas Escalonada 6 Seco Dacitas R4 14-jul.
M63 598104 7568511 4970 Falla Normal 78 290 C 1 2 SR Plana 6 Seco Dacitas R4 14-jul.
N14 601194 7574121 4698 Falla Normal 80 75 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
N19 601194 7574121 4698 Falla Normal 70 110 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
N20 601194 7574121 4698 Falla Normal 78 305 C 1 0 SR Plana 4 Seco Dacitas R4 14-jul.
N28 601194 7574121 4698 Foliacion 3 160 C 10 0 SR Plana 4 Seco Dacitas R4 14-jul.
N29 601194 7574121 4698 Foliacion 10 170 C 10 0 SR Plana 4 Seco Dacitas R4 14-jul.
N30 601194 7574121 4698 Foliacion 10 157 C 10 0 SR Plana 4 Seco Dacitas R4 14-jul.
N50 602224 7574476 4645 Foliacion 12 159 C 10 0 SR Plana 5 Seco Dacitas R4 14-jul.
L626 596017 7568943 5626 Pseudoestratificación 31 77 C Seco Andesitas R4 14-jul.
M48 598761 7567944 4746 Pseudoestratificación 10 280 C Seco Dacitas R4 14-jul.
M55 597950 7568610 4996 Pseudoestratificación 33 190 C Seco Dacitas R4 14-jul.
M64 596891 7570413 5370 Diaclasa 70 35 C 2 3 SR Rugosa 12 Seco Andesitas R4 15-jul.
M64 596891 7570413 5370 Diaclasa 71 120 C 1 2 SR Escalonada 12 Seco Andesitas R4 15-jul.
M64 596891 7570413 5370 Diaclasa 78 48 D 2 1 SR 12 Seco Andesitas R4 15-jul.
M64 596891 7570413 5370 Diaclasa 75 20 C 2 1 SR Ondulada 10 Seco Andesitas R4 15-jul.
M64 596891 7570413 5370 Diaclasa 78 156 C 3 1 SR Rugosa 14 Seco Andesitas R4 15-jul.
M64 596891 7570413 5370 Diaclasa 89 62 C 1 1 SR Escalonada 12 Seco Andesitas R4 15-jul.
M66 596707 7570259 5404 Diaclasa 82 150 C 4 5 SR Plana 8 Seco Andesitas R4 15-jul.
M66 596707 7570259 5404 Diaclasa 88 40 C 1 3 SR Plana 12 Seco Andesitas R4 15-jul.
M66 596707 7570259 5404 Diaclasa 68 338 C 1 2 SR Ondulada 12 Seco Andesitas R4 15-jul.
M67 595921 7569400 5582 Diaclasa 48 10 D 1 0 SR Escalonada 12 Seco Dacitas R4 15-jul.
Página 25 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
385
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M67 595921 7569400 5582 Diaclasa 55 305 D 1 5 SR Plana 8 Seco Dacitas R4 15-jul.
M67 595921 7569400 5582 Diaclasa 78 255 C 1 0 SR Plana 10 Seco Dacitas R4 15-jul.
M68 595870 7569262 5628 Diaclasa 52 35 D 1 0,5 SR Ondulada-Escalonada 14 Seco Andesitas R4 15-jul.
M68 595870 7569262 5628 Diaclasa 76 7 D 2 1 SR Plana 14 Seco Andesitas R4 15-jul.
M68 595870 7569262 5628 Diaclasa 63 298 D 1 3 SR Escalonada 10 Seco Andesitas R4 15-jul.
M69 596041 7569110 5622 Diaclasa 80 195 D 3 5 SR Escalonada 14 Seco Andesitas R4 15-jul.
M69 596041 7569110 5622 Diaclasa 88 334 D 1 4 SR Plana 8 Seco Andesitas R4 15-jul.
M70 597023 7569707 5312 Diaclasa 82 115 C 4 10 SR Escalonada-Rugosa 14 Seco Dacitas R4 15-jul.
M70 597023 7569707 5312 Diaclasa 67 115 C 3 6 SR Escalonada 14 Seco Dacitas R4 15-jul.
M70 597023 7569707 5312 Diaclasa 85 213 C 2 3 SR Rugosa 12 Seco Dacitas R4 15-jul.
M70 597023 7569707 5312 Diaclasa 88 145 C 1 10 SR Plana 4 Seco Dacitas R4 15-jul.
M70 597023 7569707 5312 Diaclasa 78 265 C 3 2 SR Plana 4 Seco Dacitas R4 15-jul.
M70 597023 7569707 5312 Diaclasa 52 86 C 3 2 SR Escalonada 14 Seco Dacitas R4 15-jul.
M70 597023 7569707 5312 Diaclasa 61 73 C 2 4 SR Ondulada 12 Seco Dacitas R4 15-jul.
M70 597023 7569707 5312 Diaclasa 90 105 C 2 0 SR Plana 8 Seco Dacitas R4 15-jul.
M71 597582 7569888 5306 Diaclasa 88 45 C 1 10 SR Escalonada-Rugosa 14 Seco Andesitas R4 15-jul.
M71 597582 7569888 5306 Diaclasa 86 153 C 2 3 SR Plana 12 Seco Andesitas R4 15-jul.
M71 597582 7569888 5306 Diaclasa 75 155 C 5 6 SR Plana 10 Seco Andesitas R4 15-jul.
M72 597759 7569712 5214 Diaclasa 80 2 D 1 10 SR Ondulada-Escalonada 14 Seco Brecha de base R3 15-jul.
M72 597759 7569712 5214 Diaclasa 68 178 D 2 3 SR Plana 8 Seco Brecha de base R3 15-jul.
M72 597759 7569712 5214 Diaclasa 58 283 D 1 8 SR Escalonada 14 Seco Andesitas R4 15-jul.
M72 597759 7569712 5214 Diaclasa 85 185 C 3 2 SR Escalonada 14 Seco Andesitas R4 15-jul.
M73 597799 7569599 5149 Diaclasa 78 9 D 1 0 SR Rugosa 10 Seco Brecha de base R3 15-jul.
M73 597799 7569599 5149 Diaclasa 83 195 C 1 7 SR Rugosa 12 Seco Brecha de base R3 15-jul.
M73 597799 7569599 5149 Diaclasa 37 212 D 1 0 SR Rugosa 8 Seco Brecha de base R3 15-jul.
M65 596880 7570414 5381 Falla Inversa 70 280 C 1 2 SR Plana 10 Seco Andesitas R4 15-jul. Rechazo de 40 cm
M66 596707 7570259 5404 Falla Normal 84 323 C 1 7 SR Plana 10 Seco Andesitas R4 15-jul. Rechazo de 18 cm
M64 596891 7570413 5370 Pseudoestratificación 22 255 C Seco Andesitas R4 15-jul.
M66 596707 7570259 5404 Pseudoestratificación 18 344 C Seco Andesitas R4 15-jul.
M67 595921 7569400 5582 Pseudoestratificación 32 175 C Seco Dacitas R4 15-jul.
M68 595870 7569262 5628 Pseudoestratificación 41 151 C Seco Andesitas R4 15-jul.
M69 596041 7569110 5622 Pseudoestratificación 70 150 C Seco Andesitas R4 15-jul.
M71 597582 7569888 5306 Pseudoestratificación 42 0 C Seco Andesitas R4 15-jul.
M72 597759 7569712 5214 Pseudoestratificación 18 292 C Seco Andesitas R4 15-jul.
D-29 604290 7573650 4607 Diaclasa 45 282 C 1 3 SR Rugosa-Ondulada 12 Seco Dacitas R4 16-jul.
D-29 604290 7573650 4607 Diaclasa 50 168 C 2 3,5 SR Plana-Rugosa 10 Seco Dacitas R4 16-jul.
D-29 604290 7573650 4607 Diaclasa 70 190 C 0 SR Plana-Rugosa 10 Seco Dacitas R4 16-jul.
D-30 604418 7573585 4610 Diaclasa 66 340 D 2 5 SR Plana-Rugosa 8 Seco Dacitas R4 16-jul.
D-30 604418 7573585 4610 Diaclasa 70 305 D 1 0 SR Rugosa-Ondulada 12 Seco Dacitas R4 16-jul.
D-30 604418 7573585 4610 Diaclasa 76 290 D 0 SR Plana-Rugosa 8 Seco Dacitas R4 16-jul.
D-30 604418 7573585 4610 Diaclasa 76 276 C 2 4 SR Plana-Ondulada 8 Seco Dacitas R4 16-jul.
D-30 604418 7573585 4610 Diaclasa 74 295 C 1 5 Arenas Plana 4 Seco Dacitas R4 16-jul.
D-31 604454 7573598 4603 Diaclasa 71 345 C 4 0,5 SR Plana-Rugosa 12 Seco Dacitas R4 16-jul.
D-31 604454 7573598 4603 Diaclasa 74 45 D 2 1,5 SR Rugosa 12 Seco Dacitas R4 16-jul.
D-32 604621 7573820 4640 Diaclasa 83 330 C 2 0 SR Plana-Ondulada 6 Seco Dacitas R4 16-jul.
D-32 604621 7573820 4640 Diaclasa 74 180 C 2 0,5 SR Rugosa 12 Seco Dacitas R4 16-jul.
D-32 604621 7573820 4640 Diaclasa 85 105 C 2 0 SR Rugosa 8 Seco Dacitas R4 16-jul.
D-33 604664 7573889 4666 Diaclasa 65 38 D 5 0 SR Plana 4 Seco Dacitas R4 16-jul.
D-33 604664 7573889 4666 Diaclasa 12 245 D 1 2 Arenas Plana 4 Seco Dacitas R4 16-jul.
D-34 604738 7572914 4685 Diaclasa 86 244 C 5 1,5 Arenas Plana 4 Seco Dacitas R4 16-jul.
D-34 604738 7572914 4685 Diaclasa 71 315 C 1 1,5 SR Plana-Ondulada 8 Seco Dacitas R4 16-jul.
D-34 604738 7572914 4685 Diaclasa 52 335 D 1 0,5 SR Plana 4 Seco Dacitas R4 16-jul.
D-34 604738 7572914 4685 Diaclasa 80 65 C 3 1,5 SR Plana 4 Seco Dacitas R4 16-jul.
D-34 604738 7572914 4685 Diaclasa 72 175 C 2 0 SR Rugosa 8 Seco Dacitas R4 16-jul.
D-34 604738 7572914 4685 Diaclasa 86 85 C 2 0,2 SR Plana-Rugosa 8 Seco Dacitas R4 16-jul.
D-35 604812 7573871 4676 Diaclasa 80 295 D 2 3 SR Ondulada 8 Seco Dacitas R4 16-jul.
D-35 604812 7573871 4676 Diaclasa 78 270 C 1 1 Arenas Plana-Ondulada 8 Seco Dacitas R4 16-jul.
D-35 604812 7573871 4676 Diaclasa 80 283 C 2 1 Arenas Escalonada 14 Seco Dacitas R4 16-jul.
D-35 604812 7573871 4676 Diaclasa 54 287 D 2 1 SR Ondulada 8 Seco Dacitas R4 16-jul.
D-35 604812 7573871 4676 Diaclasa 66 318 C 2 1,5 SR Plana-Ondulada 8 Seco Dacitas R4 16-jul.
Página 26 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
386
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
D-35 604812 7573871 4676 Diaclasa 80 10 C 2 5 Arenas Escalonada-Rugosa 14 Seco Dacitas R4 16-jul.
D-35 604812 7573871 4676 Diaclasa 68 130 D 1 0,5 SR Rugosa-Ondulada 12 Seco Dacitas R4 16-jul.
D-36 605080 7573852 4666 Diaclasa 75 222 D 2 0 SR Plana-Ondulada 8 Seco Dacitas R4 16-jul.
D-36 605080 7573852 4666 Diaclasa 46 28 C 1 1 SR Ondulada 8 Seco Dacitas R4 16-jul.
D-37 605254 7574060 4624 Diaclasa 82 240 D 3 1,5 SR Plana-Ondulada 8 Seco Dacitas R4 16-jul.
D-37 605254 7574060 4624 Diaclasa 58 240 C 1 1 SR Plana 4 Seco Dacitas R4 16-jul.
D-37 605254 7574060 4624 Diaclasa 68 245 D 1 1 SR Ondulada 8 Seco Dacitas R4 16-jul.
D-37 605254 7574060 4624 Diaclasa 47 205 D 1 0 SR Plana 4 Seco Dacitas R4 16-jul.
D-37 605254 7574060 4624 Diaclasa 80 85 D 2 3,5 SR Escalonada-Rugosa 14 Seco Dacitas R4 16-jul.
D-37 605254 7574060 4624 Diaclasa 70 315 C 1 2 Arenas Plana-Ondulada 8 Seco Dacitas R4 16-jul.
D-37 605254 7574060 4624 Diaclasa 89 273 C 1 0 SR Plana-Rugosa 10 Seco Dacitas R4 16-jul.
D-38 605118 7574222 4662 Diaclasa 78 268 C 1 1 Arenas Plana 4 Seco Dacitas R4 16-jul.
D-38 605118 7574222 4662 Diaclasa 82 82 D 3 0,2 SR Plana-Ondulada 8 Seco Dacitas R4 16-jul.
D-38 605118 7574222 4662 Diaclasa 85 5 C 2 1,5 Arenas Plana 4 Seco Dacitas R4 16-jul.
D-38 605118 7574222 4662 Diaclasa 75 185 D 2 0,5 Arenas Plana-Ondulada 8 Seco Dacitas R4 16-jul.
D-38 605118 7574222 4662 Diaclasa 74 26 C 4 0 Plana 4 Seco Dacitas R4 16-jul.
D-39 604767 7574100 4630 Diaclasa 86 140 C 1 10 Arenas Plana 4 Seco Dacitas R4 16-jul.
D-39 604767 7574100 4630 Diaclasa 65 132 C 2 2,5 SR Plana 4 Seco Dacitas R4 16-jul.
D-39 604767 7574100 4630 Diaclasa 87 304 C 2 0 SR Ondulada 8 Seco Dacitas R4 16-jul.
D-39 604767 7574100 4630 Diaclasa 56 221 C 2 1 SR Rugosa-Ondulada 14 Seco Dacitas R4 16-jul.
D-39 604767 7574100 4630 Diaclasa 80 92 C 2 1 SR Plana-Rugosa 12 Seco Dacitas R4 16-jul.
L663 602713 7574969 4620 Diaclasa 83 240 D 4 2 SR Rugosa 10 Seco Dacitas R4 16-jul.
L664 602713 7574969 4620 Diaclasa 78 220 D 7 2 SR Rugosa 10 Seco Dacitas R4 16-jul.
L665 602713 7574969 4620 Diaclasa 80 200 D 6 1 SR Rugosa 10 Seco Dacitas R4 16-jul.
L666 602713 7574969 4620 Diaclasa 82 196 D 7 2 SR Rugosa 10 Seco Dacitas R4 16-jul.
L667 602713 7574969 4620 Diaclasa 81 328 D 4 0 SR Rugosa 10 Seco Dacitas R4 16-jul.
L668 602713 7574969 4620 Diaclasa 80 335 D 4 4 SR Rugosa 10 Seco Dacitas R4 16-jul.
L669 602713 7574969 4620 Diaclasa 84 230 D 8 3 SR Rugosa 10 Seco Dacitas R4 16-jul.
L670 602713 7574969 4620 Diaclasa 81 326 D 6 1 SR Rugosa 10 Seco Dacitas R4 16-jul.
L671 602713 7574969 4620 Diaclasa 88 306 D 5 0 SR Rugosa 10 Seco Dacitas R4 16-jul.
L672 602713 7574969 4620 Diaclasa 87 309 D 2 4 Arenas Rugosa 10 Seco Dacitas R4 16-jul.
L673 602713 7574969 4620 Diaclasa 83 313 D 2 4 Arenas Rugosa 10 Seco Dacitas R4 16-jul.
L674 602713 7574969 4620 Diaclasa 87 25 D 3 2 Arenas Rugosa 10 Seco Dacitas R4 16-jul.
L675 602713 7574969 4620 Diaclasa 86 336 D 2 0 Arenas Rugosa 10 Seco Dacitas R4 16-jul.
L676 602713 7574969 4620 Diaclasa 85 308 D 4 0 SR Plana 8 Seco Dacitas R4 16-jul.
L677 602713 7574969 4620 Diaclasa 78 31 D 3 1 SR Rugosa 8 Seco Dacitas R4 16-jul.
L678 602713 7574969 4620 Diaclasa 80 16 D 2 3 SR Rugosa 8 Seco Dacitas R4 16-jul.
L679 602713 7574969 4620 Diaclasa 77 328 C 3 4 Arenas Rugosa 8 Seco Dacitas R4 16-jul.
L680 602713 7574969 4620 Diaclasa 79 282 D 4 3 SR Plana 8 Seco Dacitas R4 16-jul.
L681 602713 7574969 4620 Diaclasa 85 11 C 2 10 SR Plana 8 Seco Dacitas R4 16-jul.
L682 602713 7574969 4620 Diaclasa 88 357 C 2 12 SR Rugosa 8 Seco Dacitas R4 16-jul.
L683 602713 7574969 4620 Diaclasa 65 3 D 2 6 SR Rugosa 8 Seco Dacitas R4 16-jul.
L686 597989 7573644 4930 Diaclasa 88 279 D 3 4 SR Plana 8 Seco Dacitas R4 16-jul.
L687 597989 7573644 4930 Diaclasa 87 284 D 2 2 SR Plana 8 Seco Dacitas R4 16-jul.
L688 597989 7573644 4930 Diaclasa 88 296 D 1 2 SR Plana 8 Seco Dacitas R4 16-jul.
L689 597469 7573465 4946 Diaclasa 80 205 D 2 0 SR Plana 4 Seco Dacitas R3 16-jul.
L690 597469 7573465 4946 Diaclasa 84 213 D 3 2 SR Plana 4 Seco Dacitas R3 16-jul.
L691 597469 7573465 4946 Diaclasa 87 208 D 2 1 SR Plana 4 Seco Dacitas R3 16-jul.
L692 597469 7573465 4946 Diaclasa 89 294 D 4 0 SR Plana 4 Seco Dacitas R3 16-jul.
L693 597469 7573465 4946 Diaclasa 82 296 C 6 0 SR Plana 4 Seco Dacitas R3 16-jul.
L694 597469 7573465 4946 Diaclasa 88 311 C 8 2 SR Plana 4 Seco Dacitas R3 16-jul.
L695 597469 7573465 4946 Diaclasa 80 34 D 2 0 SR Plana 4 Seco Dacitas R3 16-jul.
L696 597469 7573465 4946 Diaclasa 71 76 D 2 0 SR Plana 4 Seco Dacitas R3 16-jul.
L697 597469 7573465 4946 Diaclasa 84 207 C 3 0 SR Plana 4 Seco Dacitas R3 16-jul.
L698 597469 7573465 4946 Diaclasa 68 145 C 3 15 SR Plana 4 Seco Dacitas R3 16-jul.
L699 597469 7573465 4946 Diaclasa 78 38 D 2 0 SR Plana 4 Seco Dacitas R3 16-jul.
L700 597182 7573517 4502 Diaclasa 86 15 C 10 5 SR Plana 4 Seco Dacitas R3 16-jul.
L701 597182 7573517 4502 Diaclasa 90 12 C 10 6 SR Plana 4 Seco Dacitas R3 16-jul.
L702 597182 7573517 4502 Diaclasa 80 6 C 10 8 SR Plana 4 Seco Dacitas R3 16-jul.
L703 597182 7573517 4502 Diaclasa 90 358 D 10 10 SR Plana 4 Seco Dacitas R3 16-jul.
Página 27 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
387
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L704 597182 7573517 4502 Diaclasa 86 16 D 8 0 SR Plana 4 Seco Dacitas R3 16-jul.
L705 597182 7573517 4502 Diaclasa 82 18 D 6 2 SR Plana 4 Seco Dacitas R3 16-jul.
L706 597182 7573517 4502 Diaclasa 89 5 D 7 4 SR Plana 4 Seco Dacitas R3 16-jul.
L707 597182 7573517 4502 Diaclasa 80 3 D 6 20 SR Plana 4 Seco Dacitas R3 16-jul.
L708 597182 7573517 4502 Diaclasa 85 13 D 5 10 SR Plana 4 Seco Dacitas R3 16-jul.
L709 597182 7573517 4502 Diaclasa 89 7 D 4 25 SR Plana 4 Seco Dacitas R3 16-jul.
L710 597182 7573517 4502 Diaclasa 88 8 D 8 5 SR Plana 4 Seco Dacitas R3 16-jul.
L711 597182 7573517 4502 Diaclasa 89 9 D 10 12 SR Plana 4 Seco Dacitas R3 16-jul.
M74 604352 7573651 4605 Diaclasa 86 265 D 6 4 SR Escalonada 14 Seco Dacitas R4 16-jul.
M74 604352 7573651 4605 Diaclasa 78 186 C 3 4 SR Escalonada 14 Seco Dacitas R4 16-jul.
M74 604352 7573651 4605 Diaclasa 82 340 C 1 2 SR Plana 12 Seco Dacitas R4 16-jul.
M74 604352 7573651 4605 Diaclasa 89 186 D 4 1 SR Plana 12 Seco Dacitas R4 16-jul.
M74 604352 7573651 4605 Diaclasa 78 183 D 3 4 SR Escalonada 12 Seco Dacitas R4 16-jul.
M74 604352 7573651 4605 Diaclasa 82 186 D 4 1 SR Plana 12 Seco Dacitas R4 16-jul.
M74 604352 7573651 4605 Diaclasa 22 168 D 1 4 SR Escalonada 14 Seco Dacitas R4 16-jul.
M75 604383 7573625 4604 Diaclasa 78 175 C 3 8 Arenas Escalonada 16 Seco Dacitas R4 16-jul.
M75 604383 7573625 4604 Diaclasa 55 45 C 3 7 Arenas Ondulada 16 Seco Dacitas R4 16-jul.
M75 604383 7573625 4604 Diaclasa 82 105 D 2 2 SR Ondulada 14 Seco Dacitas R4 16-jul.
M75 604383 7573625 4604 Diaclasa 78 317 D 3 2 SR Plana 16 Seco Dacitas R4 16-jul.
M75 604383 7573625 4604 Diaclasa 66 211 C 4 5 Arenas Plana 16 Seco Dacitas R4 16-jul.
M75 604383 7573625 4604 Diaclasa 190 88 100 D 2 2 SR Ondulada 14 Seco Dacitas R4 16-jul.
M75 604383 7573625 4604 Diaclasa 76 138 D 2 2 SR Plana 14 Seco Dacitas R4 16-jul.
M76 604617 7573956 4653 Diaclasa 84 62 D 1 8 Arenas Escalonada 16 Seco Dacitas R4 16-jul.
M78 604647 7573948 4671 Diaclasa 76 250 C 3 4 SR Plana 14 Seco Dacitas R4 16-jul.
M78 604647 7573948 4671 Diaclasa 81 5 D 3 10 SR Escalonada 16 Seco Dacitas R4 16-jul.
M78 604647 7573948 4671 Diaclasa 81 290 D 2 6 SR Escalonada 14 Seco Dacitas R4 16-jul.
M78 604647 7573948 4671 Diaclasa 104 79 14 C 2 12 SR Escalonada 12 Seco Dacitas R4 16-jul.
M79 604709 7573950 4669 Diaclasa 75 72 C 6 0,5 SR Plana 10 Seco Dacitas R4 16-jul.
M79 604709 7573950 4669 Diaclasa 86 97 C 6 6 SR Ondulada 14 Seco Dacitas R4 16-jul.
M79 604709 7573950 4669 Diaclasa 83 30 C 6 5 SR Ondulada 14 Seco Dacitas R4 16-jul.
M79 604709 7573950 4669 Diaclasa 60 72 D 1 3 SR Plana 14 Seco Dacitas R4 16-jul.
M79 604709 7573950 4669 Diaclasa 80 250 C 3 8 SR Escalonada 14 Seco Dacitas R4 16-jul.
M79 604709 7573950 4669 Diaclasa 85 248 C 3 5 SR Plana 14 Seco Dacitas R4 16-jul.
M80 604819 7573863 4680 Diaclasa 71 35 D 6 5 SR Ondulada 16 Seco Dacitas R4 16-jul.
M80 604819 7573863 4680 Diaclasa 84 82 C 4 2 SR Escalonada 14 Seco Dacitas R4 16-jul.
M80 604819 7573863 4680 Diaclasa 64 312 D 3 6 SR Escalonada 14 Seco Dacitas R4 16-jul.
M80 604819 7573863 4680 Diaclasa 77 235 C 3 1 SR Escalonada 14 Seco Dacitas R4 16-jul.
M80 604819 7573863 4680 Diaclasa 84 124 D 2 4 SR Escalonada 14 Seco Dacitas R4 16-jul.
M80 604819 7573863 4680 Diaclasa 55 284 D 1 0 SR Plana 14 Seco Dacitas R4 16-jul.
M80 604819 7573863 4680 Diaclasa 70 90 D 2 3 SR Escalonada 14 Seco Dacitas R4 16-jul.
L659 602713 7574969 4620 Falla 87 125 C 1 0 SR Rugosa 10 Seco Dacitas R4 16-jul.
L660 602713 7574969 4620 Falla 80 340 C 1 2 SR Rugosa 10 Seco Dacitas R4 16-jul.
L662 602713 7574969 4620 Falla 41 344 C 1 0 SR Rugosa 10 Seco Dacitas R4 16-jul.
L684 597989 7573644 4930 Falla 87 223 D 1 0,5 SR Plana 8 Seco Dacitas R4 16-jul.
L685 597989 7573644 4930 Falla 86 100 D 1 2 SR Plana 8 Seco Dacitas R4 16-jul.
M77 604641 7573962 4661 Falla Inversa 78 113 C 1 27 Arenas Escalonada 10 Seco Dacitas R4 16-jul.
M77 604641 7573962 4661 Falla Inversa 76 82 D 2 4 SR Ondulada 10 Seco Dacitas R4 16-jul.
M77 604641 7573962 4661 Falla Normal 194 70 284 C 1 10 SR Curva 14 Seco Dacitas R4 16-jul.
M77 604641 7573962 4661 Falla Normal 72 98 C 4 4 Arenas Escalonada 14 Seco Dacitas R4 16-jul.
M78 604647 7573948 4671 Falla Normal 200 79 290 C 3 5 SR Escalonada 14 Seco Dacitas R4 16-jul.
M78 604647 7573948 4671 Falla Normal 80 320 C 1 8 SR Escalonada 12 Seco Dacitas R4 16-jul.
M78 604647 7573948 4671 Falla Normal 77 204 C 2 3 SR Plana 14 Seco Dacitas R4 16-jul.
D-29 604290 7573650 4607 Pseudoestratificación 60 154 C Seco Dacitas R4 16-jul.
D-30 604418 7573585 4610 Pseudoestratificación 40 5 C Seco Dacitas R4 16-jul.
D-31 604454 7573598 4603 Pseudoestratificación 50 251 C Seco Dacitas R4 16-jul.
D-33 604664 7573889 4666 Pseudoestratificación 55 140 C Seco Dacitas R4 16-jul.
D-34 604738 7572914 4685 Pseudoestratificación 55 124 C Seco Dacitas R4 16-jul.
D-36 605080 7573852 4666 Pseudoestratificación 75 131 C Seco Dacitas R4 16-jul.
L661 602713 7574969 4620 Pseudoestratificación 25 130 C Seco Dacitas R4 16-jul.
M74 604352 7573651 4605 Pseudoestratificación 85 82 C Seco Dacitas R4 16-jul.
Página 28 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
388
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M75 604383 7573625 4604 Pseudoestratificación 87 125 C Seco Dacitas R4 16-jul.
M76 604617 7573956 4653 Pseudoestratificación 44 146 C Seco Dacitas R4 16-jul.
M80 604819 7573863 4680 Pseudoestratificación 52 120 C Seco Dacitas R4 16-jul.
D-40 606589 7570113 4585 Diaclasa 85 235 C 2 1,5 Arenas Ondulada 8 Seco Ignimbritas R3 17-jul.
D-40 606589 7570113 4585 Diaclasa 58 175 D 1 3,5 Arenas Rugosa 12 Seco Ignimbritas R3 17-jul.
D-40 606589 7570113 4585 Diaclasa 90 175 C 1 2 Arenas Rugosa-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-40 606589 7570113 4585 Diaclasa 70 70 C 3 3,5 Arenas Plana-Rugosa 8 Seco Ignimbritas R3 17-jul.
D-41 606472 7569776 4593 Diaclasa 65 296 C 2 3 SR Plana-Rugosa 10 Seco Ignimbritas R3 17-jul.
D-41 606472 7569776 4593 Diaclasa 82 110 D 2 0,5 SR Plana-Ondulada 10 Seco Ignimbritas R3 17-jul.
D-41 606472 7569776 4593 Diaclasa 45 225 C 2 2 SR Plana-Rugosa 12 Seco Ignimbritas R3 17-jul.
D-41 606472 7569776 4593 Diaclasa 70 285 D 2 1,5 SR Plana-Rugosa 8 Seco Ignimbritas R3 17-jul.
D-42 606473 7569770 4593 Diaclasa 81 55 D 1 3,5 SR Rugosa 10 Seco Ignimbritas R3 17-jul.
D-43 605804 7568412 4611 Diaclasa 45 165 D 1 0 SR Plana-Rugosa 10 Seco Ignimbritas R3 17-jul.
D-43 605804 7568412 4611 Diaclasa 80 195 D 1 0 SR Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-43 605804 7568412 4611 Diaclasa 89 90 D 2 2 SR Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-43 605804 7568412 4611 Diaclasa 66 225 D 1 0 SR Ondulada 8 Seco Ignimbritas R3 17-jul.
D-44 606263 7568057 4604 Diaclasa 70 240 D 2 1,5 SR Ondulada 10 Seco Ignimbritas R3 17-jul.
D-44 606263 7568057 4604 Diaclasa 89 280 D 2 2 SR Ondulada 8 Seco Ignimbritas R3 17-jul.
D-45 606268 7568055 4604 Diaclasa 64 251 D 2 0,5 SR Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-45 606268 7568055 4604 Diaclasa 60 277 C 2 2,5 SR Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-45 606268 7568055 4604 Diaclasa 88 60 C 1 0 SR Plana 4 Seco Ignimbritas R3 17-jul.
D-45 606268 7568055 4604 Diaclasa 44 290 C 2 1 SR Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-46 606397 7567973 4591 Diaclasa 75 245 C 3 9 Arenas Plana-Rugosa 12 Seco Ignimbritas R3 17-jul.
D-46 606397 7567973 4591 Diaclasa 73 288 C 2 0,5 SR Ondulada 8 Seco Ignimbritas R3 17-jul.
D-46 606397 7567973 4591 Diaclasa 76 105 C 1 0,2 SR Rugosa-Ondulada 10 Seco Ignimbritas R3 17-jul.
D-46 606397 7567973 4591 Diaclasa 82 280 C 2 2 Arenas Ondulada 8 Seco Ignimbritas R3 17-jul.
D-46 606397 7567973 4591 Diaclasa 40 267 C 1 1 SR Rugosa-Ondulada 12 Seco Ignimbritas R3 17-jul.
D-46 606397 7567973 4591 Diaclasa 75 130 C 4 1,5 SR Plana-Ondulada 12 Seco Ignimbritas R3 17-jul.
D-46 606397 7567973 4591 Diaclasa 85 100 C 3 1 SR Plana 4 Seco Ignimbritas R3 17-jul.
D-47 603850 7569465 4542 Diaclasa 85 325 D 1 3 Arenas Ondulada 8 Seco Ignimbritas R3 17-jul.
D-47 603850 7569465 4542 Diaclasa 58 135 D 2 1 SR Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-47 603850 7569465 4542 Diaclasa 62 328 D 1 2 SR Plana-Rugosa 8 Seco Ignimbritas R3 17-jul.
D-47 603850 7569465 4542 Diaclasa 48 270 D 2 0 SR Plana-Rugosa 10 Seco Ignimbritas R3 17-jul.
D-47 603850 7569465 4542 Diaclasa 31 322 C 2 2 Arenas Rugosa 12 Seco Ignimbritas R3 17-jul.
D-47 603850 7569465 4542 Diaclasa 58 95 D 1 0,5 SR Rugosa 10 Seco Ignimbritas R3 17-jul.
D-47 603850 7569465 4542 Diaclasa 74 290 C 2 2 Arenas Rugosa-Ondulada 12 Seco Ignimbritas R3 17-jul.
D-48 604587 7569403 4573 Diaclasa 75 252 D 1 2,5 SR Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-48 604587 7569403 4573 Diaclasa 73 50 D 2 0 SR Rugosa 12 Seco Ignimbritas R3 17-jul.
D-48 604587 7569403 4573 Diaclasa 61 300 D 1 4 SR Rugosa 10 Seco Ignimbritas R3 17-jul.
D-48 604587 7569403 4573 Diaclasa 85 104 C 1 6 Arenas Plana-Rugosa 12 Seco Ignimbritas R3 17-jul.
D-48 604587 7569403 4573 Diaclasa 68 335 D 2 5 Arenas Rugosa 12 Seco Ignimbritas R3 17-jul.
D-48 604587 7569403 4573 Diaclasa 76 33 C 4 5 Arenas Plana-Ondulada 10 Seco Ignimbritas R3 17-jul.
L712 602844 7573598 4627 Diaclasa 81 280 D 4 1 SR Plana 8 Seco Dacitas R4 17-jul.
L713 602844 7573598 4627 Diaclasa 64 282 D 3 0 SR Plana 8 Seco Dacitas R4 17-jul.
L714 602844 7573598 4627 Diaclasa 70 256 D 5 0 SR Plana 8 Seco Dacitas R4 17-jul.
L716 602844 7573598 4627 Diaclasa 80 320 D 4 2 Arenas Plana 8 Seco Dacitas R4 17-jul.
L717 602844 7573598 4627 Diaclasa 80 60 C 2 10 SR Plana 8 Seco Dacitas R4 17-jul.
L719 602844 7573598 4627 Diaclasa 87 225 C 2 5 SR Plana 8 Seco Dacitas R4 17-jul.
L720 602844 7573598 4627 Diaclasa 74 85 D 4 2 SR Plana 8 Seco Dacitas R4 17-jul.
L721 602844 7573598 4627 Diaclasa 89 272 D 3 0 SR Plana 8 Seco Dacitas R4 17-jul.
L726 602844 7573598 4627 Diaclasa 85 110 C 4 0 SR Plana 6 Seco Dacitas R4 17-jul.
L727 602844 7573598 4627 Diaclasa 89 100 C 5 1 SR Plana 6 Seco Dacitas R4 17-jul.
L728 602844 7573598 4627 Diaclasa 87 107 C 4 0 SR Plana 6 Seco Dacitas R4 17-jul.
L729 602844 7573598 4627 Diaclasa 88 111 C 3 0 SR Plana 6 Seco Dacitas R4 17-jul.
L730 602844 7573598 4627 Diaclasa 86 114 C 3 0 SR Plana 6 Seco Dacitas R4 17-jul.
L731 602844 7573598 4627 Diaclasa 60 100 D 2 2 SR Plana 6 Seco Dacitas R4 17-jul.
L732 602844 7573598 4627 Diaclasa 62 109 D 1 3 SR Plana 6 Seco Dacitas R4 17-jul.
L734 602844 7573598 4627 Diaclasa 68 124 C 4 0 SR Curva 6 Seco Dacitas R4 17-jul.
L735 602844 7573598 4627 Diaclasa 65 94 D 3 0 SR Plana 6 Seco Dacitas R4 17-jul.
L736 602844 7573598 4627 Diaclasa 83 97 D 2 0 SR Plana 6 Seco Dacitas R4 17-jul.
Página 29 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
389
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L737 602844 7573598 4627 Diaclasa 80 90 D 4 2 SR Plana 6 Seco Dacitas R4 17-jul.
L739 602620 7573423 4670 Diaclasa 88 146 C 4 8 SR Rugosa 6 Seco Dacitas R4 17-jul.
L741 602620 7573423 4670 Diaclasa 83 75 D 3 0 SR Rugosa 6 Seco Dacitas R4 17-jul.
L742 602620 7573423 4670 Diaclasa 60 150 C 4 2 SR Rugosa 6 Seco Dacitas R4 17-jul.
L743 602620 7573423 4670 Diaclasa 79 166 C 3 10 SR Rugosa 6 Seco Dacitas R4 17-jul.
L744 602620 7573423 4670 Diaclasa 87 260 C 2 0 SR Rugosa 6 Seco Dacitas R4 17-jul.
L745 602620 7573423 4670 Diaclasa 89 126 D 4 5 SR Rugosa 6 Seco Dacitas R4 17-jul.
L746 602620 7573423 4670 Diaclasa 70 80 D 3 6 SR Rugosa 6 Seco Dacitas R4 17-jul.
L747 602620 7573423 4670 Diaclasa 87 84 D 2 6 SR Rugosa 8 Seco Dacitas R4 17-jul.
L748 602620 7573423 4670 Diaclasa 81 72 D 4 0 SR Rugosa 8 Seco Dacitas R4 17-jul.
L749 602620 7573423 4670 Diaclasa 60 136 C 3 0 SR Rugosa 8 Seco Dacitas R4 17-jul.
L750 602620 7573423 4670 Diaclasa 88 165 C 3 10 SR Ondulada 8 Seco Dacitas R4 17-jul.
L751 602620 7573423 4670 Diaclasa 81 320 D 2 0 SR Ondulada 8 Seco Dacitas R4 17-jul.
L752 602620 7573423 4670 Diaclasa 85 318 C 3 25 Bloques Ondulada 8 Seco Dacitas R4 17-jul.
L753 602620 7573423 4670 Diaclasa 85 345 C 2 0 SR Plana 8 Seco Dacitas R4 17-jul.
L754 602620 7573423 4670 Diaclasa 87 5 C 1 40 SR Plana 8 Seco Dacitas R4 17-jul.
L755 602620 7573423 4670 Diaclasa 84 350 D 2 2 SR Ondulada 8 Seco Dacitas R4 17-jul.
L756 602620 7573423 4670 Diaclasa 87 326 D 4 6 SR Plana 8 Seco Dacitas R4 17-jul.
L757 602620 7573423 4670 Diaclasa 89 310 D 3 0 SR Plana 8 Seco Dacitas R4 17-jul.
L758 604025 7569543 4579 Diaclasa 70 105 D 4 2 Arenas Plana 6 Seco Dacitas R4 17-jul.
L759 604025 7569543 4579 Diaclasa 57 99 D 5 4 Arenas Plana 6 Seco Dacitas R4 17-jul.
L760 604025 7569543 4579 Diaclasa 82 115 D 3 3 Arenas Plana 6 Seco Dacitas R4 17-jul.
L761 604025 7569543 4579 Diaclasa 70 126 D 1 2 Arenas Plana 6 Seco Dacitas R4 17-jul.
L762 604025 7569543 4579 Diaclasa 73 120 D 3 0 SR Plana 6 Seco Dacitas R4 17-jul.
L763 604025 7569543 4579 Diaclasa 85 123 D 3 1 SR Plana 6 Seco Dacitas R4 17-jul.
L764 604025 7569543 4579 Diaclasa 80 103 D 5 4 SR Plana 6 Seco Dacitas R4 17-jul.
L765 604727 7569747 4572 Diaclasa 60 104 D 3 1 SR Plana 6 Seco Dacitas R4 17-jul.
L766 604727 7569747 4572 Diaclasa 88 45 D 3 1 SR Plana 6 Seco Dacitas R4 17-jul.
L767 604727 7569747 4572 Diaclasa 50 97 D 2 3 SR Plana 6 Seco Dacitas R4 17-jul.
L768 604727 7569747 4572 Diaclasa 78 100 D 6 2 Arenas Plana 6 Seco Dacitas R4 17-jul.
L769 604727 7569747 4572 Diaclasa 83 104 D 3 1 Arenas Plana 6 Seco Dacitas R4 17-jul.
L770 604727 7569747 4572 Diaclasa 87 355 D 4 2 Arenas Plana 6 Seco Dacitas R4 17-jul.
L771 604727 7569747 4572 Diaclasa 85 138 D 2 1 Arenas Plana 6 Seco Dacitas R4 17-jul.
L772 604727 7569747 4572 Diaclasa 65 326 D 2 2 Arenas Plana 6 Seco Dacitas R4 17-jul.
L773 605502 7570166 4573 Diaclasa 84 96 D 6 2 SR Plana 6 Seco Dacitas R4 17-jul.
L776 605502 7570166 4573 Diaclasa 62 260 D 3 3 SR Plana 6 Seco Dacitas R4 17-jul.
L779 605502 7570166 4573 Diaclasa 87 135 C 6 2 SR Plana 6 Seco Dacitas R4 17-jul.
L781 605502 7570166 4573 Diaclasa 70 30 D 3 5 SR Plana 6 Seco Dacitas R4 17-jul.
L782 605502 7570166 4573 Diaclasa 75 27 D 3 2 SR Plana 6 Seco Dacitas R4 17-jul.
L783 605502 7570166 4573 Diaclasa 81 350 D 4 0 SR Plana 8 Seco Ignimbritas R3 17-jul.
M81 605488 7570174 4575 Diaclasa 61 220 D 5 0 SR Plana 12 Seco Ignimbritas R2 17-jul.
M81 605488 7570174 4575 Diaclasa 87 85 D 4 0,2 SR Plana 8 Seco Ignimbritas R2 17-jul.
M81 605488 7570174 4575 Diaclasa 39 326 C 1 0,2 SR Plana 12 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Diaclasa 65 214 D 4 1 SR Plana 12 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Diaclasa 32 32 C 2 1 SR Escalonada 11 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Diaclasa 40 230 D 4 0 SR Plana 10 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Diaclasa 89 295 C 1 1 SR Escalonada 14 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Diaclasa 64 330 D 1 0,5 SR Plana 14 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Diaclasa 65 290 D 1 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M83 605471 7570143 4596 Diaclasa 68 165 D 3 2 SR Escalonada 14 Seco Ignimbritas R2 17-jul.
M83 605471 7570143 4596 Diaclasa 84 310 D 4 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M84 605998 7569870 4591 Diaclasa 72 302 D 3 0,5 SR Plana 14 Seco Ignimbritas R2 17-jul.
M84 605998 7569870 4591 Diaclasa 63 14 C 1 2 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M84 605998 7569870 4591 Diaclasa 76 134 D 2 3 SR Escalonada 14 Seco Ignimbritas R2 17-jul.
M84 605998 7569870 4591 Diaclasa 50 287 D 2 3 SR Plana 14 Seco Ignimbritas R2 17-jul.
M84 605998 7569870 4591 Diaclasa 69 232 D 3 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M84 605998 7569870 4591 Diaclasa 74 295 D 1 2 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M85 606997 7570082 4589 Diaclasa 70 54 C 3 2 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M85 606997 7570082 4589 Diaclasa 76 256 C 3 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M85 606997 7570082 4589 Diaclasa 66 242 C 4 3 SR Plana 14 Seco Ignimbritas R2 17-jul.
Página 30 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
390
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M85 606997 7570082 4589 Diaclasa 62 74 C 3 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M85 606997 7570082 4589 Diaclasa 81 11 D 3 2 SR Plana 14 Seco Ignimbritas R2 17-jul.
M85 606997 7570082 4589 Diaclasa 82 48 D 2 0 SR Plana 14 Seco Ignimbritas R2 17-jul.
M85 606997 7570082 4589 Diaclasa 75 96 D 1 1 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M85 606997 7570082 4589 Diaclasa 72 27 D 4 3 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Diaclasa 45 148 D 3 0 SR Escalonada 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Diaclasa 76 95 C 14 1 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Diaclasa 72 91 C 12 1 Arenas Ondulada 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Diaclasa 78 195 D 3 2 SR Escalonada 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Diaclasa 80 105 C 3 3 SR Plana 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Diaclasa 72 100 C 8 2 SR Plana 14 Seco Ignimbritas R2 17-jul.
M87 603713 7569506 4585 Diaclasa 75 328 C 3 2 Arenas Escalonada 14 Seco Ignimbritas R2 17-jul.
M87 603713 7569506 4585 Diaclasa 75 345 C 2 1 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M87 603713 7569506 4585 Diaclasa 66 47 D 1 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M87 603713 7569506 4585 Diaclasa 82 C 5 10 SR Plana 14 Seco Ignimbritas R2 17-jul.
M87 603713 7569506 4585 Diaclasa 73 261 C 1 1 Arenas Escalonada 14 Seco Ignimbritas R2 17-jul.
M87 603713 7569506 4585 Diaclasa 83 5 D 6 2 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M87 603713 7569506 4585 Diaclasa 85 70 C 4 2 SR Escalonada 16 Seco Ignimbritas R2 17-jul.
M88 603745 7569612 4585 Diaclasa 68 118 D 2 10 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M88 603745 7569612 4585 Diaclasa 64 170 C 3 8 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M88 603745 7569612 4585 Diaclasa 76 181 C 2 2 Arenas Ondulada 14 Seco Ignimbritas R2 17-jul.
M88 603745 7569612 4585 Diaclasa 67 26 C 1 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M89 604114 7569452 4596 Diaclasa 75 345 C 1 2 Arenas Plana 14 Seco Ignimbritas R2 17-jul.
M89 604114 7569452 4596 Diaclasa 60 310 C 1 2 SR Plana 14 Seco Ignimbritas R2 17-jul.
M89 604114 7569452 4596 Diaclasa 76 300 C 1 4 SR Plana 14 Seco Ignimbritas R2 17-jul.
M89 604114 7569452 4596 Diaclasa 60 110 D 3 2 SR Escalonada 14 Seco Ignimbritas R2 17-jul.
M89 604114 7569452 4596 Diaclasa 42 340 D 1 3 SR Escalonada 14 Seco Ignimbritas R2 17-jul.
M89 604114 7569452 4596 Diaclasa 87 160 D 2 5 Arenas Escalonada 14 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Diaclasa 86 325 C 1 0,2 Arenas Curva 14 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Diaclasa 72 52 D 1 0,5 SR Plana 16 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Diaclasa 75 251 D 2 2 SR Plana 12 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Diaclasa 80 269 C 3 0 SR Plana 12 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Diaclasa 71 260 C 3 10 SR Plana 14 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Diaclasa 78 25 D 3 4 Arenas Escalonada 14 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Diaclasa 74 35 C 5 7 Arenas Plana 12 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Diaclasa 80 293 C 1 3 Arenas Plana 12 Seco Ignimbritas R2 17-jul.
M91 605271 7569381 4580 Diaclasa 80 110 C 3 2 SR Plana 12 Seco Ignimbritas R2 17-jul.
M91 605271 7569381 4580 Diaclasa 75 285 C 3 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M91 605271 7569381 4580 Diaclasa 83 282 D 2 1 SR Escalonada 14 Seco Ignimbritas R2 17-jul.
M91 605271 7569381 4580 Diaclasa 35 263 D 5 0,5 SR Ondulada 14 Seco Ignimbritas R2 17-jul.
M91 605271 7569381 4580 Diaclasa 76 310 C 2 0 SR Plana 12 Seco Ignimbritas R2 17-jul.
L718 602844 7573598 4627 Falla 80 155 C 1 0 SR Plana 8 Seco Dacitas R4 17-jul.
L740 602620 7573423 4670 Falla 80 330 D 1 0 SR Rugosa 6 Seco Dacitas R4 17-jul.
L774 605502 7570166 4573 Falla 87 120 D 1 0 SR Plana 6 Seco Dacitas R4 17-jul.
L780 605502 7570166 4573 Falla 75 156 D 1 4 SR Plana 6 Seco Dacitas R4 17-jul.
M81 605488 7570174 4575 Falla 60 128 C 1 0,2 SR Plana 12 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Falla 85 120 C 2 2 SR Plana 10 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Falla 84 120 C 2 1 SR Plana 10 Seco Ignimbritas R2 17-jul.
M84 605998 7569870 4591 Falla 77 278 C 0 14 Seco Ignimbritas R2 17-jul.
D-45 606268 7568055 4604 Falla Dextral 72 325 C 1 1,5 SR Ondulada 8 Seco Ignimbritas R3 17-jul.
D-41 606472 7569776 4593 Falla Inversa 49 282 C 1 1 Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-42 606473 7569770 4593 Falla Inversa 75 302 C 1 0,5 SR Plana-Ondulada 8 Seco Ignimbritas R3 17-jul.
D-48 604587 7569403 4573 Falla Inversa 86 136 C 1 0 Arenas Plana 12 Seco Ignimbritas R3 17-jul.
M81 605488 7570174 4575 Falla Inversa 315 76 225 C 4 20 SR Plana 12 Seco Ignimbritas R2 17-jul.
M81 605488 7570174 4575 Falla Inversa 65 210 C 1 5 SR Plana 12 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Falla Inversa 65 231 C 3 0,2 SR Plana 2 Seco Ignimbritas R2 17-jul.
M88 603745 7569612 4585 Falla Inversa 64 98 C 3 0,5 SR Escalonada 16 Seco Ignimbritas R2 17-jul.
M88 603745 7569612 4585 Falla Inversa 58 96 C 3 0,5 SR Plana 16 Seco Ignimbritas R2 17-jul.
D-42 606473 7569770 4593 Falla Normal 57 163 C 1 5 SR Plana 4 Seco Ignimbritas R3 17-jul.
D-44 606263 7568057 4604 Falla Normal 79 245 C 1 4 SR Plana 6 Seco Ignimbritas R3 17-jul.
Página 31 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
391
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L722 602844 7573598 4627 Falla Normal 82 305 C 1 0 SR Plana 8 Seco Dacitas R4 17-jul.
L723 602844 7573598 4627 Falla Normal 80 300 C 1 0 SR Plana 8 Seco Dacitas R4 17-jul.
L724 602844 7573598 4627 Falla Normal 80 110 C 1 3 SR Plana 4 Seco Dacitas R4 17-jul. Desplazamiento 10cm
L725 602844 7573598 4627 Falla Normal 83 122 75 C 1 20 Bloques Plana 4 Seco Dacitas R4 17-jul.
L733 602844 7573598 4627 Falla Normal 78 255 D 1 0 SR Plana 6 Seco Dacitas R4 17-jul. Desplazamiento 12cm
L738 602620 7573423 4670 Falla Normal 72 80 C 1 2 SR Plana 6 Seco Dacitas R4 17-jul. Desplazamiento 10cm
L775 605502 7570166 4573 Falla Normal 80 130 D 1 0 SR Plana 6 Seco Dacitas R4 17-jul. Desplazamiento 15 cm
L777 605502 7570166 4573 Falla Normal 65 132 D 1 0 SR Plana 6 Seco Dacitas R4 17-jul. Desplazamiento 15 cm
L778 605502 7570166 4573 Falla Normal 68 115 C 1 0 SR Plana 6 Seco Dacitas R4 17-jul. Desplazamiento 10 cm
M81 605488 7570174 4575 Falla Normal 67 140 C 3 1 Arenas Plana 12 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Falla Normal 85 285 C 1 4 SR Plana 12 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Falla Normal 75 125 C 1 10 Arenas Plana 10 Seco Ignimbritas R2 17-jul.
M82 605505 7570166 4578 Falla Normal 71 291 C 1 0 SR Plana 10 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Falla Normal 76 102 C 1 2,5 SR Plana 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Falla Normal 64 114 C 1 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Falla Normal 65 125 C 2 1 SR Plana 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Falla Normal 78 110 C 5 4 SR Plana 14 Seco Ignimbritas R2 17-jul.
M86 605050 7569400 4576 Falla Normal 81 285 C 5 3 SR Plana 14 Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Falla Normal 83 310 C 2 3 Arenas Curva 14 Seco Ignimbritas R2 17-jul.
L715 602844 7573598 4627 Pseudoestratificación 86 345 C Seco Dacitas R4 17-jul.
M86 605050 7569400 4576 Pseudoestratificación 26 200 C Seco Ignimbritas R2 17-jul.
M90 604565 7569415 4568 Pseudoestratificación 83 2 C Seco Ignimbritas R2 17-jul.
L784 596900 7573093 5084 Diaclasa 327 77 237 D 8 0 SR Escalonada 8 Seco Brecha de base R2 18-jul.
L785 596900 7573093 5084 Diaclasa 323 68 233 D 8 0 SR Escalonada 8 Seco Brecha de base R2 18-jul.
L793 596900 7573093 5084 Diaclasa 64 95 D 4 0 SR Escalonada 10 Seco Brecha de base R2 18-jul.
L810 596900 7573093 5084 Diaclasa 83 20 C 10 5 SR Plana 10 Seco Brecha de base R3 18-jul.
M92 597439 7573433 4942 Diaclasa 32 180 D 1 0,3 SR Plana-Rugosa 10 Seco Andesitas R4 18-jul.
M92 597439 7573433 4942 Diaclasa 89 230 D 5 2 SR Plana 12 Seco Andesitas R4 18-jul.
M92 597439 7573433 4942 Diaclasa 82 339 D 2 0 SR Rugosa 10 Seco Andesitas R4 18-jul.
M92 597439 7573433 4942 Diaclasa 85 117 C 1 1 Arenas Escalonada 14 Seco Andesitas R4 18-jul.
M92 597439 7573433 4942 Diaclasa 74 239 D 2 0,2 SR Plana 4 Seco Andesitas R4 18-jul.
M92 597439 7573433 4942 Diaclasa 36 224 D 3 1 SR Plana 8 Seco Andesitas R4 18-jul.
M92 597439 7573433 4942 Diaclasa 84 284 D 1 1 SR Rugosa 14 Seco Andesitas R4 18-jul.
M92 597439 7573433 4942 Diaclasa 56 300 C 2 0,2 SR Plana 4 Seco Andesitas R4 18-jul.
M93 597364 7573240 5016 Diaclasa 67 182 D 2 0,5 SR Escalonada-Rugosa 12 Seco Dacitas R4 18-jul.
M93 597364 7573240 5016 Diaclasa 87 87 C 1 1,5 Arenas Rugosa 14 Seco Dacitas R4 18-jul.
M93 597364 7573240 5016 Diaclasa 78 17 D 2 1 SR Escalonada 12 Seco Dacitas R4 18-jul.
M93 597364 7573240 5016 Diaclasa 49 90 D 1 0,5 SR Ondulada 12 Seco Dacitas R4 18-jul.
M93 597364 7573240 5016 Diaclasa 70 105 C 2 3 SR Escalonada 12 Seco Dacitas R4 18-jul.
M93 597364 7573240 5016 Diaclasa 86 295 C 1 14 SR Escalonada 14 Seco Dacitas R4 18-jul.
M93 597364 7573240 5016 Diaclasa 78 5 D 3 5 Arenas Escalonada-Rugosa 14 Seco Dacitas R4 18-jul.
M93 597364 7573240 5016 Diaclasa 60 275 D 1 4 SR Plana 14 Seco Dacitas R4 18-jul.
M95 597368 7573171 5028 Diaclasa 53 93 C 1 0,5 SR Plana 12 Seco Brecha de base R3 18-jul.
M96 597309 7573186 5146 Diaclasa 90 195 C 3 0,2 SR Plana-Ondulada 8 Seco Andesitas R4 18-jul.
M96 597309 7573186 5146 Diaclasa 87 204 C 2 0 SR Plana 10 Seco Andesitas R4 18-jul.
M96 597309 7573186 5146 Diaclasa 75 48 C 4 0 SR Plana 10 Seco Andesitas R4 18-jul.
M96 597309 7573186 5146 Diaclasa 90 210 C 3 0 SR Plana-Ondulada 8 Seco Andesitas R4 18-jul.
M96 597309 7573186 5146 Diaclasa 85 315 D 2 0 SR Plana-Ondulada 8 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 80 253 C 1 3 SR Plana-Ondulada 14 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 75 214 C 3 1 SR Ondulada-Escalonada 14 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 77 75 C 1 6 SR Ondulada 12 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 70 28 D 4 0 SR Escalonada 14 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 82 342 C 1 1 SR Plana-Ondulada 8 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 73 265 C 2 0,5 SR Escalonada 14 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 76 261 C 4 0 SR Escalonada 14 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 82 10 C 1 1 SR Escalonada 14 Seco Andesitas R4 18-jul.
M97 597102 7572917 5143 Diaclasa 78 285 C 3 1 SR Escalonada 14 Seco Andesitas R4 18-jul.
M98 597073 7572838 5176 Diaclasa 87 130 D 1 1 SR Rugosa-Ondulada 12 Seco Andesitas R4 18-jul.
M98 597073 7572838 5176 Diaclasa 70 267 D 3 0 SR Plana 6 Seco Andesitas R4 18-jul.
M98 597073 7572838 5176 Diaclasa 88 0 C 4 0,5 Calcita Plana 10 Seco Andesitas R4 18-jul.
Página 32 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
392
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M98 597073 7572838 5176 Diaclasa 76 170 C 5 2 SR Escalonada 12 Seco Andesitas R4 18-jul.
M98 597073 7572838 5176 Diaclasa 82 121 C 1 1 SR Plana 4 Seco Andesitas R4 18-jul.
M98 597073 7572838 5176 Diaclasa 75 345 C 2 2 SR Escalonada 10 Seco Andesitas R4 18-jul.
M98 597073 7572838 5176 Diaclasa 64 195 D 3 0,5 Calcita Escalonada 14 Seco Andesitas R4 18-jul.
M98 597073 7572838 5176 Diaclasa 60 245 C 3 1 SR Plana-Ondulada 8 Seco Andesitas R4 18-jul.
M98 597073 7572838 5176 Diaclasa 80 225 D 2 0,5 Calcita Escalonada 14 Seco Andesitas R4 18-jul.
L794 596900 7573093 5084 Falla 80 97 C 1 2 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L795 596900 7573093 5084 Falla 82 165 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L798 596900 7573093 5084 Falla 75 60 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L799 596900 7573093 5084 Falla 60 218 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L800 596900 7573093 5084 Falla 315 87 45 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L804 596900 7573093 5084 Falla 80 50 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L805 596900 7573093 5084 Falla 82 37 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul. Desplazamiento 20cm
L790 596900 7573093 5084 Falla Inversa 86 190 C 1 0 SR Escalonada 6 Seco Brecha de base R2 18-jul. Desplazamiento 3cm
L792 596900 7573093 5084 Falla Inversa 85 201 C 1 0 SR Escalonada 6 Seco Brecha de base R2 18-jul. Desplazamiento 2cm
L808 596900 7573093 5084 Falla Inversa 335 82 245 C 1 5 SR Curva 10 Seco Brecha de base R2 18-jul. Desplazamiento 80cm
M96 597309 7573186 5146 Falla Inversa 78 70 C 1 0,5 SR Plana-Ondulada 10 Seco Andesitas R4 18-jul. Rechazo 14 cm
L786 596900 7573093 5084 Falla Normal 78 212 D 1 0 SR Escalonada 8 Seco Brecha de base R2 18-jul. Desplazamiento 2cm
L787 596900 7573093 5084 Falla Normal 70 227 D 1 0 SR Escalonada 8 Seco Brecha de base R2 18-jul. Desplazamiento 7cm
L788 596900 7573093 5084 Falla Normal 84 244 C 1 3 Arenas Escalonada 6 Seco Brecha de base R2 18-jul. Desplazamiento 4cm
L789 596900 7573093 5084 Falla Normal 333 85 243 C 1 0 SR Escalonada 6 Seco Brecha de base R2 18-jul. Desplazamiento 2cm
L791 596900 7573093 5084 Falla Normal 83 205 C 1 0 SR Escalonada 6 Seco Brecha de base R2 18-jul. Desplazamiento 1cm
L796 596900 7573093 5084 Falla Normal 74 72 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L797 596900 7573093 5084 Falla Normal 140 70 230 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L801 596900 7573093 5084 Falla Normal 87 40 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul. Desplazamiento 20cm
L802 596900 7573093 5084 Falla Normal 85 42 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul. Desplazamiento 20cm
L803 596900 7573093 5084 Falla Normal 300 75 210 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L806 596900 7573093 5084 Falla Normal 310 70 220 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L807 596900 7573093 5084 Falla Normal 80 14 C 1 0 SR Ondulada 10 Seco Brecha de base R2 18-jul.
L809 596900 7573093 5084 Falla Normal 220 84 130 C 1 0 SR Plana 10 Seco Brecha de base R2 18-jul. Desplazamiento 1m
M92 597439 7573433 4942 Falla Normal 42 295 C 1 0,5 SR Plana 6 Seco Andesitas R4 18-jul.
M92 597439 7573433 4942 Falla Normal 62 234 C 1 0 SR Plana 8 Seco Andesitas R4 18-jul.
M95 597368 7573171 5028 Falla Normal 52 183 C 1 0,5 SR Plana 12 Seco Brecha de base R3 18-jul.
M96 597309 7573186 5146 Falla Normal 85 188 C 3 0,5 SR Ondulada-Escalonada 10 Seco Andesitas R4 18-jul. Rechazo 10
M96 597309 7573186 5146 Pseudoestratificación 32 44 C Seco Andesitas R4 18-jul.
D49 618775 7560372 4641 Diaclasa 78 5 D 2 0,5 Arena Plana 4 Seco Dacitas R4 5-ago.
L812 619161 7562867 4932 Diaclasa 88 215 D 3 10 Bloques Plana 8 Seco Dacitas R4 5-ago.
L813 619161 7562867 4932 Diaclasa 89 290 D 3 15 Bloques Plana 8 Seco Dacitas R4 5-ago.
L814 619161 7562867 4932 Diaclasa 90 330 D 4 10 Bloques Plana 8 Seco Dacitas R4 5-ago.
L815 619161 7562867 4932 Diaclasa 90 250 D 4 5 Bloques Plana 8 Seco Dacitas R4 5-ago.
L816 619161 7562867 4932 Diaclasa 80 170 D 2 4 SR Plana 8 Seco Dacitas R4 5-ago.
L826 619721 7563352 4926 Diaclasa 75 216 C 5 5 SR Plana 8 Seco Dacitas R4 5-ago.
L827 619721 7563352 4926 Diaclasa 76 54 C 5 3 SR Plana 8 Seco Dacitas R4 5-ago.
L828 619721 7563352 4926 Diaclasa 81 33 C 3 6 SR Plana 8 Seco Dacitas R4 5-ago.
L830 619721 7563352 4926 Diaclasa 75 35 C 2 10 Bloques Plana 8 Seco Dacitas R4 5-ago.
L832 620202 7563755 4924 Diaclasa 88 85 D 4 45 Arena Plana 8 Seco Dacitas R4 5-ago.
L833 620202 7563755 4924 Diaclasa 89 86 D 3 5 SR Plana 8 Seco Dacitas R4 5-ago.
L834 620202 7563755 4924 Diaclasa 85 152 D 2 2 SR Ondulada 8 Seco Dacitas R4 5-ago.
L835 620202 7563755 4924 Diaclasa 70 97 D 5 1 SR Ondulada 8 Seco Dacitas R4 5-ago.
L836 620202 7563755 4924 Diaclasa 80 91 D 5 2 SR Ondulada 8 Seco Dacitas R4 5-ago.
M102 619994 7562356 5009 Diaclasa 75 35 C 1 1 SR Plana 12 Seco Dacitas R4 5-ago.
M102 619994 7562356 5009 Diaclasa 83 65 C 1 0,5 SR Plana 12 Seco Dacitas R4 5-ago.
M102 619994 7562356 5009 Diaclasa 85 346 C 2 1 SR Escalonada 12 Seco Dacitas R4 5-ago.
M102 619994 7562356 5009 Diaclasa 72 340 C 2 0 SR Plana 12 Seco Dacitas R4 5-ago.
M103 620070 7563003 4995 Diaclasa 75 86 165 C 2 3 SR Plana 12 Seco Dacitas R4 5-ago.
M103 620070 7563003 4995 Diaclasa 65 9 D 4 0,2 SR Plana 12 Seco Dacitas R4 5-ago.
M103 620070 7563003 4995 Diaclasa 65 11 D 2 0,2 SR Curva 10 Seco Dacitas R4 5-ago.
M103 620070 7563003 4995 Diaclasa 86 70 356 D 2 1 SR Curva 10 Seco Dacitas R4 5-ago.
M104 620140 7563342 4975 Diaclasa 80 185 C 2 3 Arenas Escalonada 10 Seco Dacitas R4 5-ago.
M104 620140 7563342 4975 Diaclasa 184 86 274 D 1 0,5 Arenas Plana 12 Seco Dacitas R4 5-ago.
Página 33 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
393
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M105 620177 7563733 4927 Diaclasa 73 270 D 4 2 SR Escalonada 12 Seco Dacitas R4 5-ago.
M105 620177 7563733 4927 Diaclasa 42 254 D 1 1 SR Escalonada 12 Seco Dacitas R4 5-ago.
M105 620177 7563733 4927 Diaclasa 76 278 D 2 1 SR Escalonada 12 Seco Dacitas R4 5-ago.
M107 620237 7563874 4862 Diaclasa 85 110 C 2 4 Arenas Escalonada 12 Seco Dacitas R4 5-ago.
M99 618901 7561435 4786 Diaclasa 42 164 D 1 2 SR Ondulada 10 Seco Dacitas R4 5-ago.
M99 618901 7561435 4786 Diaclasa 74 145 D 1 0,5 SR Plana 10 Seco Dacitas R4 5-ago.
M99 618901 7561435 4786 Diaclasa 70 347 C 2 0,2 SR Ondulada 12 Seco Dacitas R4 5-ago.
M99 618901 7561435 4786 Diaclasa 74 110 C 2 0 SR Plana 10 Seco Dacitas R4 5-ago.
M99 618901 7561435 4786 Diaclasa 77 86 C 1 0,2 SR Plana 12 Seco Dacitas R4 5-ago.
L819 619161 7562867 4932 Falla 45 70 C 1 0 SR Rugosa 8 Seco Dacitas R4 5-ago.
D51 618682 7560076 4716 Falla Inversa 45 150 D 1 SR Ondulada-Rugosa 12 Seco Dacitas R4 5-ago. Rechazo 5 cm (foto)
D53 618448 7559416 4806 Falla Inversa 68 228 C 1 1 a 2 Arena Rugosa-Ondulada 10 Seco Dacitas R4 5-ago. Rechazo 4 cm
D54 618230 7558950 4718 Falla Inversa 68 273 C 4 1 a 3 SR Plana-Ondulada 14 Seco Dacitas R4 5-ago. Rechazo 15 cm
D54 618230 7558950 4718 Falla Inversa 48 267 C 2 0,5 SR Plana-Rugosa 12 Seco Dacitas R4 5-ago. Rechazo 3 cm
D55 618154 7558784 4737 Falla Inversa 67 109 C 1 0,5 a 6 Arena Plana 4 Seco Dacitas R4 5-ago. Rechazo 1 cm
D57 617781 7558778 4673 Falla Inversa 46 330 D 1 0,2 SR Ondulada 4 Seco Dacitas R4 5-ago. Rechazo 12 cm
D58 617670 7558793 4655 Falla Inversa 82 5 C 1 5 SR Rugosa-Escalonada 14 Seco Dacitas R4 5-ago. Rechazo 4 cm
D61 618656 7560221 4674 Falla Inversa 70 277 C 1 0,5 a 3 Arena Rugosa 10 Seco Dacitas R4 5-ago. Rechazo 12 cm
D61 618656 7560221 4674 Falla Inversa 79 111 C 1 1 a 5 Arena Rugosa-Escalonada 14 Seco Dacitas R4 5-ago. Rechazo 8 cm
D61 618656 7560221 4674 Falla Inversa 40 20 C 1 1 a 3 SR Plana-Ondulada 8 Seco Dacitas R4 5-ago. Rechazo 9 cm
M100 619447 7561488 4936 Falla Inversa 87 335 C 1 1 SR Plana 8 Seco Dacitas R4 5-ago. Desplazamiento 5cm
M106 620231 7563821 4896 Falla Inversa 83 210 C 1 5 SR Curva 8 Seco Dacitas R4 5-ago. Desplazamiento 12cm
M107 620237 7563874 4862 Falla Inversa 89 33 C 1 2 Plana 10 Seco Dacitas R4 5-ago. Desplazamiento 14 cm
D49 618775 7560372 4641 Falla Normal 79 100 C 1 2 a 5 Arena Plana 8 Seco Dacitas R4 5-ago. Desplazamiento 14 cm
D49 618775 7560372 4641 Falla Normal 85 23 C 1 0,5 a 5 Arena Plana 4 Seco Dacitas R4 5-ago. Desplazamiento 2 cm
D50 618704 7560113 4705 Falla Normal 86 204 C 1 1 a 10 Arena Plana-Ondulada 8 Seco Dacitas R4 5-ago. Desplazamiento 8 cm
D50 618704 7560113 4705 Falla Normal 78 204 C 1 10 a 30 Arena Ondulada-Rugosa 8 Seco Dacitas R4 5-ago. Desplazamiento 7 cm
D52 618580 7559457 4791 Falla Normal 70 315 C 1 SR Plana-Escalonada 12 Seco Dacitas R4 5-ago.
D52 618580 7559457 4791 Falla Normal 89 95 C 1 SR Plana-Escalonada 12 Seco Dacitas R4 5-ago. Desplazamiento 11 cm
D52 618580 7559457 4791 Falla Normal 75 14 C 1 1,5 a 5 Arena Ondulada-Escalonada 14 Seco Dacitas R4 5-ago. Desplazamiento 8 cm
D56 617925 7558777 4698 Falla Normal 41 303 C 1 2 Arena Rugosa-Ondulada 12 Seco Dacitas R4 5-ago. Desplazamiento 5cm
D56 617923 7558777 4698 Falla Normal 74 280 C 1 2,5 a 5 Arena Rugosa-Ondulada 12 Seco Dacitas R4 5-ago. Desplazamiento 4 cm
D59 617554 7558848 4640 Falla Normal 87 189 C 1 0,3 a 2 SR Plana-Ondulada 8 Seco Dacitas R4 5-ago. Desplazamiento 3 cm
D60 618360 7559925 4685 Falla Normal 67 223 C 1 1 a 2 Arena Plana-Rugosa 10 Seco Dacitas R4 5-ago. Desplazamiento 6 cm
D62 618705 7560315 4640 Falla Normal 78 162 C 1 0,5 a 3 Arena Ondulada-Rugosa 12 Seco Dacitas R4 5-ago. Desplazamiento 7 cm
L818 619161 7562867 4932 Falla Normal 50 115 C 1 0 SR Rugosa 8 Seco Dacitas R4 5-ago. Desplazamiento 5 cm
L820 619161 7562867 4932 Falla Normal 40 240 C 1 0 SR Rugosa 8 Seco Dacitas R4 5-ago.
L821 619161 7562867 4932 Falla Normal 87 282 C 1 1 SR Rugosa 8 Seco Dacitas R4 5-ago. Desplazamiento 2 a 4 cm
L822 619161 7562867 4932 Falla Normal 80 295 C 1 0,5 SR Rugosa 8 Seco Dacitas R4 5-ago. Desplazamiento 2 a 4 cm
L823 619161 7562867 4932 Falla Normal 86 303 C 1 0 SR Rugosa 8 Seco Dacitas R4 5-ago. Desplazamiento 2 a 4 cm
L824 619161 7562867 4932 Falla Normal 85 266 C 1 2 SR Rugosa 8 Seco Dacitas R4 5-ago. Desplazamiento 2 a 4 cm
L825 619161 7562867 4932 Falla Normal 70 310 C 1 1 SR Rugosa 8 Seco Dacitas R4 5-ago. Desplazamiento 3 cm
L837 620202 7563755 4924 Falla Normal 80 145 170 D 1 0 SR Ondulada 8 Seco Dacitas R4 5-ago.
L838 620267 7563920 4848 Falla Normal 72 340 D 1 1 SR Plana 8 Seco Dacitas R4 5-ago. Desplazamiento 2 cm
L839 620267 7563920 4848 Falla Normal 80 333 D 1 0,5 SR Plana 8 Seco Dacitas R4 5-ago. Desplazamiento 5 cm
L840 620267 7563920 4848 Falla Normal 81 352 D 1 1,5 SR Plana 8 Seco Dacitas R4 5-ago. Desplazamiento 4 cm
L841 620267 7563920 4848 Falla Normal 83 350 D 1 1 SR Plana 8 Seco Dacitas R4 5-ago. Desplazamiento 3 cm
M100 619447 7561488 4936 Falla Normal 148 79 238 C 1 2 SR Ondulada 10 Seco Dacitas R4 5-ago. Desplazamiento 10cm
M100 619447 7561488 4936 Falla Normal 157 73 247 C 1 0,5 SR Curva 10 Seco Dacitas R4 5-ago. Desplazamiento 15cm
M101 619487 7561521 4942 Falla Normal 70 198 C 1 12 SR Plana 12 Seco Dacitas Argilica R4 5-ago.
M102 619994 7562356 5009 Falla Normal 24 194 C 3 0,2 SR Plana 10 Seco Dacitas R4 5-ago.
M102 619994 7562356 5009 Falla Normal 82 55 C 1 0,5 SR Plana 12 Seco Dacitas R4 5-ago.
M102 619994 7562356 5009 Falla Normal 76 172 C 1 0,5 SR Plana 12 Seco Dacitas R4 5-ago.
M105 620177 7563733 4927 Falla Normal 193 79 283 C 1 4 Arenas Plana 12 Seco Dacitas R4 5-ago. Desplazamiento 8 cm
M107 620237 7563874 4862 Falla Normal 56 157 C 1 5 Plana 10 Seco Dacitas R4 5-ago. Desplazamiento 7cm
M107 620237 7563874 4862 Falla Normal 82 190 C 2 10 Plana 10 Seco Dacitas R4 5-ago. Desplazamiento 5cm
M108 613250 7557802 4676 Falla Normal 160 74 70 C 1 3 SR Ondulada 10 Seco Dacita-Andesita R4 5-ago.
M99 618901 7561435 4786 Falla Normal 47 140 C 1 12 SR Plana 12 Seco Dacitas R4 5-ago. Desplazamiento12cm
M99 618901 7561435 4786 Falla Normal 83 100 C 1 1 Arenas Plana 10 Seco Dacitas R4 5-ago. Desplazamiento13cm
L811 619161 7562867 4932 Foliacion 64 35 C 1 0 SR Plana 4 Seco Dacitas R4 5-ago.
Página 34 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
394
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L817 619161 7562867 4932 Foliacion 58 255 C 1 0 SR Plana 4 Seco Dacitas R4 5-ago.
L829 619721 7563352 4926 Pseudoestratificación 38 125 C Seco Dacitas R4 5-ago.
L831 620202 7563755 4924 Pseudoestratificación 72 185 C Seco Dacitas R4 5-ago.
M102 619994 7562356 5009 Pseudoestratificación 30 216 C Seco Dacitas R4 5-ago.
M103 620070 7563003 4995 Pseudoestratificación 49 158 D Seco Dacitas R4 5-ago.
M104 620140 7563342 4975 Pseudoestratificación 32 204 C Seco Dacitas R4 5-ago.
M107 620237 7563874 4862 Pseudoestratificación 35 250 C Seco Dacitas R4 5-ago. Desplazamiento 12cm
D63 618033 7557181 4524 Diaclasa 77 178 D 4 0,5 Arena Plana-Ondulada 8 Seco Dacitas R4 6-ago.
D63 618033 7557181 4524 Diaclasa 84 11 C 3 1 a 2 Arena Plana-Ondulada 8 Seco Dacitas R4 6-ago.
D63 618033 7557181 4524 Diaclasa 55 293 D 3 0,2 Arena Rugosa-Plana 12 Seco Dacitas R4 6-ago.
D65 617369 7556982 4547 Diaclasa 78 274 C 2 2 Arena Ondulada-Rugosa 12 Seco Dacitas R4 6-ago.
D65 617369 7556982 4547 Diaclasa 88 354 D 2 1 Arena Plana 8 Seco Dacitas R4 6-ago.
D65 617369 7556982 4547 Diaclasa 83 303 D 5 0,5 a 1 Arena Ondulada-Rugosa 12 Seco Dacitas R4 6-ago.
D65 617369 7556982 4547 Diaclasa 78 214 D 4 0,2 a 2 Arena Ondulada 12 Seco Dacitas R4 6-ago.
D68 616451 7556569 4618 Diaclasa 82 153 D 1 SR Rugosa 12 Seco Dacitas R4 6-ago.
D68 616451 7556569 4618 Diaclasa 87 132 D 1 1 a 2 Arena Rugosa 12 Seco Dacitas R4 6-ago.
D68 616451 7556569 4618 Diaclasa 82 271 C 2 6 a 10 Arena Plana-Escalonada 14 Seco Dacitas R4 6-ago.
D69 615398 7556204 4632 Diaclasa 83 212 D 2 0,5 a 3 Arena Plana 4 Seco Andesitas R4 6-ago.
D69 615398 7556204 4632 Diaclasa 83 209 C 2 5 Arena Rugosa-Escalonada 14 Seco Andesitas R4 6-ago.
D75 615788 7555334 4772 Diaclasa 72 58 C 2 SR Ondulada-Rugosa 12 Seco Dacitas R4 6-ago.
D75 615788 7555334 4772 Diaclasa 70 40 D 2 SR Ondulada-Rugosa 12 Seco Dacitas R4 6-ago.
L842 615309 7557748 4616 Diaclasa 59 218 C 3 2 SR Plana 10 Seco Traquita Andesita R4 6-ago.
L843 615309 7557748 4616 Diaclasa 70 245 D 2 10 SR Plana 10 Seco Traquita Andesita R4 6-ago.
L844 615309 7557748 4616 Diaclasa 88 290 D 4 0 SR Plana 10 Seco Traquita Andesita R4 6-ago.
L845 615309 7557748 4616 Diaclasa 72 308 D 2 30 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L846 615309 7557748 4616 Diaclasa 89 178 D 6 3 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L847 615309 7557748 4616 Diaclasa 85 174 D 5 2 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L848 615309 7557748 4616 Diaclasa 89 176 D 4 5 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L849 615309 7557748 4616 Diaclasa 80 196 D 4 2 SR Plana 10 Seco Traquita Andesita R4 6-ago.
L850 615197 7557515 4644 Diaclasa 86 168 D 3 2 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L851 615197 7557515 4644 Diaclasa 72 192 D 3 4 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L852 615197 7557515 4644 Diaclasa 58 150 D 3 2 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L853 615197 7557515 4644 Diaclasa 60 130 D 6 1 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L854 615197 7557515 4644 Diaclasa 85 174 D 4 3 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L855 614626 7557052 4618 Diaclasa 76 60 D 3 3 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L856 614626 7557052 4618 Diaclasa 70 210 D 4 8 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L857 614626 7557052 4618 Diaclasa 87 224 D 3 0 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L858 614626 7557052 4618 Diaclasa 78 100 D 5 3 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L859 614626 7557052 4618 Diaclasa 68 249 C 4 10 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L860 614626 7557052 4618 Diaclasa 72 244 C 4 15 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L861 614626 7557052 4618 Diaclasa 70 211 C 3 0 Arena Plana 10 Seco Traquita Andesita R4 6-ago.
L862 614626 7557052 4618 Diaclasa 69 192 C 8 0 SR Ondulada 10 Seco Traquita Andesita R4 6-ago.
L866 613928 7556779 4632 Diaclasa 60 160 C 3 5 SR Ondulada 10 Seco Traquita Andesita R4 6-ago.
L873 612217 7556193 4826 Diaclasa 85 300 D 2 2 SR Ondulada 12 Seco Dacitas R4 6-ago.
L876 612217 7556193 4826 Diaclasa 61 154 C 3 2 SR Ondulada 12 Seco Dacitas R4 6-ago.
L877 612217 7556193 4826 Diaclasa 50 60 C 2 0 SR Ondulada 12 Seco Dacitas R4 6-ago.
L880 613626 7557506 4678 Diaclasa 60 114 C 2 5 SR Plana 8 Seco Dacitas R4 6-ago.
L881 613626 7557506 4678 Diaclasa 80 104 D 3 1 SR Plana 8 Seco Dacitas R4 6-ago.
L882 613626 7557506 4678 Diaclasa 78 357 D 3 0,5 Arena Plana 8 Seco Dacitas R4 6-ago.
L883 613626 7557506 4678 Diaclasa 62 290 D 2 0 SR Plana 8 Seco Dacitas R4 6-ago.
L865 613928 7556779 4632 Falla 62 346 C 1 0 SR Ondulada 10 Seco Traquita Andesita R4 6-ago.
L869 613757 7556479 4645 Falla 45 140 C 1 1 Silice Ondulada 10 Seco Traquita Andesita R4 6-ago.
L870 613757 7556479 4645 Falla 58 150 C 1 2 SR Ondulada 10 Seco Traquita Andesita R4 6-ago.
L871 613757 7556479 4645 Falla 51 240 C 1 1 SR Ondulada 10 Seco Traquita Andesita R4 6-ago.
L872 612217 7556193 4826 Falla 35 80 C 1 0 SR Ondulada 12 Seco Traquita Andesita R4 6-ago.
L874 612217 7556193 4826 Falla 65 178 C 1 0 SR Ondulada 12 Seco Dacitas R4 6-ago.
L875 612217 7556193 4826 Falla 70 200 C 1 0 SR Ondulada 12 Seco Dacitas R4 6-ago.
M109 612815 7557642 4711 Falla 193 78 103 C 1 8 Arena Plana 8 Seco Dacita-Andesita R4 6-ago.
M110 611661 7556887 4791 Falla 123 84 213 C 1 5 SR Escalonada 12 Seco Andesitas R4 6-ago.
M108 613250 7557802 4676 Falla 162 84 72 C 1 1 SR Plana 10 Seco Dacita-Andesita R4 6-ago.
Página 35 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
395
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M109 612815 7557642 4711 Falla 215 75 125 C 1 10 Arena Escalonada 8 Seco Dacita-Andesita R4 6-ago.
D64 617822 7557116 4531 Falla Inversa 85 226 C 1 0,2 a 1,5 SR Rugosa 12 Seco Dacitas R4 6-ago. Rechazo 2 cm
D70 615373 7556217 4631 Falla Inversa 82 176 C 1 1 Arena Plana-Ondulada 4 Seco Andesitas R4 6-ago. Rechazo 10 cm
D71 614501 7555581 4678 Falla Inversa 71 355 C 1 4 Arena Plana 4 Seco Brecha de base R3 6-ago. Rechazo 6 cm
D73 614887 7555157 4655 Falla Inversa 86 75 C 1 14 Arena Rugosa-Ondulada 12 Seco Andesitas R4 6-ago. Rechazo 15 cm
D73 614887 7555157 4655 Falla Inversa 86 220 C 1 6 Arena Rugosa-Escalonada 14 Seco Andesitas R4 6-ago. Desplazamiento 17 cm
D74 615505 7554591 4704 Falla Inversa 87 280 C 1 0,2 SR Ondulada 14 Seco Andesitas R4 6-ago. Rechazo 2,5 cm
D74 615505 7554591 4704 Falla Inversa 58 330 D 1 7 SR Rugosa-Escalonada 14 Seco Andesitas R4 6-ago. Rechazo 10 cm
D76 616196 7555510 4688 Falla Inversa 64 240 C 1 7 a 15 Arena Escalonada 14 Seco Brecha de base R3 6-ago. Rechazo 20 cm
D66 616887 7556793 4573 Falla Normal 55 304 C 1 4 SR Ondulada-Rugosa 12 Seco Brecha de base R3 6-ago. Desplazamiento 3 cm
D67 616686 7556673 4633 Falla Normal 74 143 C 1 1 a 5 Arena Rugosa-Escalonada 14 Seco Brecha de base R3 6-ago. Desplazamiento 3 cm
D72 614517 7555554 4676 Falla Normal 68 15 D 1 SR Plana 4 Seco Brecha de base R3 6-ago.
E641 611122 7556009 5035 Falla Normal 148 75 58 C 1 10 SR Escalonada 12 Seco Andesitas R4 6-ago.
E641 611122 7556009 5035 Falla Normal 71 342 C 1 3 SR Plana 6 Seco Andesitas R4 6-ago.
L864 613928 7556779 4632 Falla Normal 58 175 260 C 1 0 SR Ondulada 10 Seco Traquita Andesita R4 6-ago.
L867 613757 7556479 4645 Falla Normal 59 120 C 1 0 SR Ondulada 10 Seco Traquita Andesita R4 6-ago. Desplazamiento 7cm
L868 613757 7556479 4645 Falla Normal 44 85 185 C 1 0 SR Ondulada 10 Seco Traquita Andesita R4 6-ago. Desplazamiento 7cm
L879 613626 7557506 4678 Falla Normal 89 165 C 1 2 Arena Plana 8 Seco Dacitas R4 6-ago.
M108 613250 7557802 4676 Falla Normal 140 83 50 C 2 4 SR Escalonada 10 Seco Dacita-Andesita R4 6-ago. Desplazamiento 10 cm
M110 611661 7556887 4791 Falla Normal 82 67 352 C 1 2 SR Escalonada 12 Seco Andesitas R4 6-ago.
M111 611566 7555550 4971 Falla Normal 84 330 C 1 2 SR Escalonada 10 Seco Andesitas R4 6-ago.
E641 611122 7556009 5035 Pseudoestratificación 20 144 C Seco Andesitas R4 6-ago.
L863 613928 7556779 4632 Pseudoestratificación 50 220 C Seco Traquita Andesita R4 6-ago.
L878 613626 7557506 4678 Pseudoestratificación 52 125 C Seco Dacitas R4 6-ago.
M110 611661 7556887 4791 Pseudoestratificación 29 161 C Seco Andesitas R4 6-ago.
M111 611566 7555550 4971 Pseudoestratificación 24 168 C Seco Andesitas R4 6-ago.
D78 610657 7557189 4896 Diaclasa 51 157 C 1 0,2 SR Plana 4 Seco Dacitas R4 7-ago.
D79 610506 7556996 4918 Diaclasa 78 162 C 3 0,1 SR Plana-Ondulada 8 Seco Dacitas R4 7-ago.
D79 610506 7556996 4918 Diaclasa 80 60 D 3 0,5 Arena Plana 8 Seco Dacitas R4 7-ago.
D79 610506 7556996 4918 Diaclasa 82 155 D 1 0,2 Arena Plana-Ondulada 4 Seco Dacitas R4 7-ago.
D80 609278 7556652 5172 Diaclasa 88 143 D 3 SR Plana 4 Seco Andesitas R4 7-ago.
D80 609278 7556652 5172 Diaclasa 70 214 C 1 0,2 a 1 SR Plana 4 Seco Andesitas R4 7-ago.
D80 609278 7556652 5172 Diaclasa 48 242 C 1 1 SR Plana 4 Seco Andesitas R4 7-ago.
D82 608902 7557115 5318 Diaclasa 80 112 C 1 1 a 3 Arena Plana 4 Seco Andesitas R4 7-ago.
L884 611059 7563189 4620 Diaclasa 80 88 D 6 0 SR Plana 10 Seco Dacitas R4 7-ago.
L885 611059 7563189 4620 Diaclasa 82 80 D 6 3 SR Plana 10 Seco Dacitas R4 7-ago.
L886 611059 7563189 4620 Diaclasa 89 60 D 5 1 SR Plana 10 Seco Dacitas R4 7-ago.
L887 611059 7563189 4620 Diaclasa 82 65 D 5 0 SR Ondulada 10 Seco Dacitas R4 7-ago.
L888 611059 7563189 4620 Diaclasa 85 67 D 5 2 SR Plana 10 Seco Dacitas R4 7-ago.
L889 611059 7563189 4620 Diaclasa 70 60 D 3 3 SR Ondulada 10 Seco Dacitas R4 7-ago.
L895 611059 7563189 4620 Diaclasa 60 330 C 6 0 SR Ondulada 10 Seco Dacitas R4 7-ago.
L896 611059 7563189 4620 Diaclasa 79 319 C 6 3 SR Ondulada 10 Seco Dacitas R4 7-ago.
L897 611059 7563189 4620 Diaclasa 87 327 C 6 0 SR Ondulada 10 Seco Dacitas R4 7-ago.
L898 611059 7563189 4620 Diaclasa 72 320 D 5 2 SR Ondulada 10 Seco Dacitas R4 7-ago.
L899 611059 7563189 4620 Diaclasa 70 327 D 5 3 SR Ondulada 10 Seco Dacitas R4 7-ago.
L904 610788 7562551 4680 Diaclasa 79 212 D 2 6 Oxidos de Fe Ondulada 10 Seco Dacitas R4 7-ago.
L905 610788 7562551 4680 Diaclasa 89 325 D 2 0 SR Ondulada 10 Seco Dacitas R4 7-ago.
L906 610788 7562551 4680 Diaclasa 88 350 D 2 0 SR Ondulada 10 Seco Dacitas R4 7-ago.
L907 610788 7562551 4680 Diaclasa 87 307 D 2 0 SR Ondulada 10 Seco Dacitas R4 7-ago.
L908 610172 7561947 4744 Diaclasa 87 120 C 6 6 SR Ondulada 12 Seco Dacitas R4 7-ago.
L909 610172 7561947 4744 Diaclasa 88 141 C 6 5 SR Ondulada 12 Seco Dacitas R4 7-ago.
L910 610172 7561947 4744 Diaclasa 85 136 C 6 10 SR Ondulada 12 Seco Dacitas R4 7-ago.
L911 610172 7561947 4744 Diaclasa 86 140 C 6 2 SR Ondulada 12 Seco Dacitas R4 7-ago.
L917 609612 7562546 4758 Diaclasa 42 346 D 2 0 SR Plana 6 Seco Dacitas R4 7-ago.
L920 609612 7562546 4758 Diaclasa 70 150 D 2 1 SR Plana 6 Seco Dacitas R4 7-ago.
L923 610442 7564289 4626 Diaclasa 80 276 C 3 10 SR Plana 10 Seco Dacitas R4 7-ago.
L924 610442 7564289 4626 Diaclasa 87 286 D 3 2 SR Plana 10 Seco Dacitas R4 7-ago.
L925 610442 7564289 4626 Diaclasa 89 290 D 3 0 SR Plana 10 Seco Dacitas R4 7-ago.
L926 610442 7564289 4626 Diaclasa 89 320 D 2 10 SR Plana 10 Seco Dacitas R4 7-ago.
L927 610442 7564289 4626 Diaclasa 85 316 D 3 2 SR Plana 10 Seco Dacitas R4 7-ago.
Página 36 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
396
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L928 610442 7564289 4626 Diaclasa 68 350 D 2 4 SR Plana 10 Seco Dacitas R4 7-ago.
L929 610442 7564289 4626 Diaclasa 75 306 D 3 0,5 SR Plana 10 Seco Dacitas R4 7-ago.
L930 610442 7564289 4626 Diaclasa 68 80 D 2 0 SR Plana 10 Seco Dacitas R4 7-ago.
L932 610442 7564289 4626 Diaclasa 65 114 C 2 2 SR Plana 10 Seco Dacitas R4 7-ago.
M112 611170 7561364 4718 Diaclasa 280 42 190 C 1 8 SR Plana 14 Seco Andesitas R4 7-ago.
M112 611170 7561364 4718 Diaclasa 232 80 142 C 1 6 SR Escalonada 12 Seco Andesitas R4 7-ago.
M112 611170 7561364 4718 Diaclasa 243 72 333 C 1 2 SR Escalonada 14 Seco Andesitas R4 7-ago.
M112 611170 7561364 4718 Diaclasa 240 81 150 C 4 0,5 Arena Plana 6 Seco Andesitas R4 7-ago.
M113 609090 7560900 5009 Diaclasa 60 165 C 1 2 SR Escalonada 14 Seco Andesitas R4 7-ago.
M113 609090 7560900 5009 Diaclasa 78 130 C 1 2 SR Plana 12 Seco Andesitas R4 7-ago.
M114 609095 7560829 5023 Diaclasa 220 70 130 C 2 4 SR Plana 12 Seco Andesitas R4 7-ago.
M114 609095 7560829 5023 Diaclasa 226 74 136 C 2 3 SR Escalonada 12 Seco Andesitas R4 7-ago.
M114 609095 7560829 5023 Diaclasa 228 79 138 C 1 2 SR Plana 12 Seco Andesitas R4 7-ago.
M114 609095 7560829 5023 Diaclasa 193 71 283 C 1 1 SR Plana 12 Seco Andesitas R4 7-ago.
M115 608335 7560314 5154 Diaclasa 160 82 250 D 1 2 SR Escalonada 12 Seco Brecha de base Argilica R3 7-ago.
M117 608451 7560271 5123 Diaclasa 262 75 172 D 4 2 SR Escalonada 8 Seco Andesitas R4 7-ago.
M117 608451 7560271 5123 Diaclasa 270 76 180 D 2 4 SR Escalonada 8 Seco Andesitas R4 7-ago.
L912 609801 7562092 4741 Falla 70 135 C 1 2 SR Ondulada 12 Seco Brecha de base R3 7-ago.
L913 609801 7562092 4741 Falla 62 147 C 1 0 SR Ondulada 12 Seco Brecha de base R3 7-ago.
L914 609801 7562092 4741 Falla 72 130 C 1 0 SR Ondulada 12 Seco Brecha de base R3 7-ago.
L915 609801 7562092 4741 Falla 88 100 C 1 0 SR Ondulada 12 Seco Brecha de base R3 7-ago.
L916 609801 7562092 4741 Falla 78 122 C 1 0 SR Ondulada 12 Seco Brecha de base R3 7-ago.
L918 609612 7562546 4758 Falla 55 100 D 1 0 SR Plana 6 Seco Dacitas R4 7-ago.
L919 609612 7562546 4758 Falla 32 80 D 1 0 SR Plana 6 Seco Dacitas R4 7-ago.
L922 609612 7562546 4758 Falla 84 197 C 1 1 Arena Plana 6 Seco Dacitas R4 7-ago.
M113 609090 7560900 5009 Falla 73 134 D 1 2 SR Escalonada 14 Seco Andesitas R4 7-ago.
L903 610788 7562551 4680 Falla Dextral 28 135 D 1 0 SR Plana 10 Seco Dacitas R4 7-ago. Desplazamiento 5 cm
D78 610657 7557189 4896 Falla Inversa 85 257 C 3 0,2 a 1,5 SR Rugosa-Escalonada 12 Seco Dacitas R4 7-ago. Rechazo 5 cm
D78 610657 7557189 4896 Falla Inversa 75 262 D 3 0,5 SR Rugosa 12 Seco Dacitas R4 7-ago. Rechazo 2cm (microfalla)
D82 608902 7557115 5318 Falla Inversa 38 305 D 1 1 SR Rugosa-Ondulada 12 Seco Andesitas R4 7-ago.
E-656 609104 7560874 5004 Falla Inversa 74 285 122 C 1 5 SR Escalonada 12 Seco Andesitas R4 7-ago. Desplazamiento 8cm
M115 608335 7560314 5154 Falla Inversa 160 70 70 C 1 5 SR Escalonada 12 Seco Brecha de base Argilica R3 7-ago.
M115 608335 7560314 5154 Falla Inversa 161 64 251 C 1 0,5 Milonita Escalonada 6 Seco Andesitas R4 7-ago. Rechazo 18 cm
M116 608392 7560302 5137 Falla Inversa 43 275 C 1 1 SR Plana 14 Seco Andesitas Argilica R4 7-ago. Rechazo 10 cm
M119 608956 7560247 5036 Falla Inversa 203 54 113 C 1 12 SR Plana 14 Seco Andesitas R4 7-ago.
D78 610657 7557189 4896 Falla Normal 78 98 D 1 0,5 SR Rugosa 12 Seco Dacitas R4 7-ago. Desplazamiento 2 cm
D80 609278 7556652 5172 Falla Normal 45 240 C 1 1 a 10 Arena Plana 4 Seco Andesitas R4 7-ago. Desplazamiento 27 cm
D81 608738 7556960 5355 Falla Normal 50 58 C 1 0,5 a 2 SR Rugosa-Escalonada 14 Seco Andesitas R4 7-ago.
E-656 609104 7560874 5004 Falla Normal 70 287 C 1 15 SR Plana 10 Seco Andesitas R4 7-ago.
L890 611059 7563189 4620 Falla Normal 79 62 C 7 2 SR Ondulada 10 Seco Dacitas R4 7-ago. Desplazamiento 1cm
L891 611059 7563189 4620 Falla Normal 84 60 C 7 1 SR Ondulada 10 Seco Dacitas R4 7-ago. Desplazamiento 3cm
L892 611059 7563189 4620 Falla Normal 80 70 C 7 0 SR Ondulada 10 Seco Dacitas R4 7-ago. Desplazamiento 4cm
L893 611059 7563189 4620 Falla Normal 75 51 C 7 8 SR Ondulada 10 Seco Dacitas R4 7-ago. Desplazamiento 5cm
L894 611059 7563189 4620 Falla Normal 86 45 C 7 1 SR Ondulada 10 Seco Dacitas R4 7-ago. Desplazamiento 10cm
L900 611059 7563189 4620 Falla Normal 70 20 D 3 5 SR Ondulada 10 Seco Dacitas R4 7-ago. Desplazamiento 15 cm
L901 611059 7563189 4620 Falla Normal 70 23 D 1 0 SR Ondulada 10 Seco Dacitas R4 7-ago.
L902 611059 7563189 4620 Falla Normal 70 86 D 1 0 SR Ondulada 10 Seco Dacitas R4 7-ago.
L921 609612 7562546 4758 Falla Normal 44 10 D 1 15 SR Plana 6 Seco Dacitas R4 7-ago. Desplazamiento 10 cm
L931 610442 7564289 4626 Falla Normal 87 122 C 1 1 SR Plana 10 Seco Dacitas R4 7-ago. Desplazamiento 5 cm
M113 609090 7560900 5009 Falla Normal 200 80 110 C 1 7 SR Escalonada 12 Seco Andesitas R4 7-ago. Desplazamiento 30 cm
M113 609090 7560900 5009 Falla Normal 265 61 175 C 1 1 Arena Escalonada 12 Seco Andesitas R4 7-ago.
M114 609095 7560829 5023 Falla Normal 230 74 140 C 1 2 SR Plana 12 Seco Andesitas R4 7-ago. Desplazamiento 9cm
M114 609095 7560829 5023 Falla Normal 315 76 225 C 1 4 SR Plana 10 Seco Andesitas R4 7-ago. Desplazamiento 2 cm
M115 608335 7560314 5154 Falla Normal 250 86 340 C 1 2 SR Plana 8 Seco Andesitas R4 7-ago.
M115 608335 7560314 5154 Falla Normal 85 59 C 1 2 SR Escalonada 8 Seco Andesitas R4 7-ago. Desplazamiento 3cm
M115 608335 7560314 5154 Falla Normal 76 64 C 1 1 SR Escalonada 8 Seco Andesitas R4 7-ago. Desplazamiento 2cm
M116 608392 7560302 5137 Falla Normal 183 82 93 C 1 2 SR Escalonada 14 Seco Andesitas Argilica R4 7-ago.
M116 608392 7560302 5137 Falla Normal 43 120 45 C 1 10 SR Escalonada 12 Seco Andesitas R4 7-ago. Desplazamiento 15 cm
M117 608451 7560271 5123 Falla Normal 250 80 160 C 2 8 SR Escalonada 14 Seco Andesitas R4 7-ago.
M118 608840 7560260 5042 Falla Normal 183 83 273 C 1 5 SR Escalonada 8 Seco Andesitas R4 7-ago.
Página 37 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
397
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M118 608840 7560260 5042 Falla Normal 180 68 90 C 1 8 SR Escalonada 14 Seco Andesitas R4 7-ago. Desplazamiento 3 cm
M119 608956 7560247 5036 Falla Normal 190 65 100 C 1 2 SR Escalonada 12 Seco Andesitas R4 7-ago. Desplazamiento 8 cm
D79 610506 7556996 4918 Falla Sinestral 73 148 D 1 0,2 SR Plana-Ondulada 4 Seco Dacitas R4 7-ago. Desplazamiento 1 cm
M119 608956 7560247 5036 Falla Sinestral 66 144 C 1 10 SR Plana 14 Seco Andesitas R4 7-ago.
D80 609278 7556652 5172 Pseudoestratificación 55 232 C Seco Andesitas R4 7-ago.
D82 608902 7557115 5318 Pseudoestratificación 21 195 C Seco Andesitas R4 7-ago.
M113 609090 7560900 5009 Pseudoestratificación 33 220 C Seco Andesitas R4 7-ago.
D84 609855 7574238 4746 Diaclasa 87 160 D 2 SR Ondulada-Rugosa 12 Seco Ignimbritas R3 8-ago.
D84 609855 7574238 4746 Diaclasa 80 40 D 2 SR Rugosa-Ondulada 12 Seco Ignimbritas R3 8-ago.
D85 609371 7574022 4722 Diaclasa 74 145 C 6 1 SR Rugosa 10 Seco Ignimbritas R3 8-ago.
D85 609371 7574022 4722 Diaclasa 84 340 C 2 SR Plana-Ondulada 8 Seco Ignimbritas R3 8-ago.
D85 609371 7574022 4722 Diaclasa 73 25 C 2 SR Plana-Rugosa 10 Seco Ignimbritas R3 8-ago.
D87 607313 7573578 4645 Diaclasa 47 275 D 2 SR Ondulada-Rugosa 12 Seco Ignimbritas R3 8-ago.
D87 607313 7573578 4645 Diaclasa 46 312 D 3 SR Ondulada-Rugosa 12 Seco Ignimbritas R3 8-ago.
D88 607318 7573582 4645 Diaclasa 87 308 C 3 SR Plana-Rugosa 10 Seco Ignimbritas R3 8-ago.
D89 608189 7572805 4654 Diaclasa 69 22 D 2 1 SR Ondulada-Rugosa 8 Seco Ignimbritas R3 8-ago.
D89 608189 7572805 4654 Diaclasa 87 109 C 2 3,5 SR Plana-Rugosa 8 Seco Ignimbritas R3 8-ago.
D89 608189 7572805 4654 Diaclasa 70 35 D 2 4 SR Plana-Rugosa 10 Seco Ignimbritas R3 8-ago.
D89 608189 7572805 4654 Diaclasa 88 305 C 3 SR Rugosa 10 Seco Ignimbritas R3 8-ago.
D91 608065 7575005 4744 Diaclasa 88 105 C 4 0,5 SR Plana-Rugosa 10 Seco Ignimbritas R3 8-ago.
D91 608065 7575005 4744 Diaclasa 64 287 C 1 0,5 SR Plana-Rugosa 10 Seco Ignimbritas R3 8-ago.
D92 609034 7575516 4933 Diaclasa 62 92 C 4 5 Arena Plana-Ondulada 8 Seco Dacitas R4 8-ago.
D92 609034 7575516 4933 Diaclasa 88 285 D 3 SR Plana-Ondulada 8 Seco Dacitas R4 8-ago.
D92 609034 7575516 4933 Diaclasa 60 45 C 5 1 Arena Plana-Ondulada 8 Seco Dacitas R4 8-ago.
D94 608703 7575868 4958 Diaclasa 50 51 D 4 1 a 3 SR Plana-Ondulada 8 Seco Andesitas R4 8-ago.
D94 608703 7575868 4958 Diaclasa 88 160 D 2 1 a 3 Arena Rugosa 12 Seco Andesitas R4 8-ago.
D94 608703 7575868 4958 Diaclasa 84 112 D 2 SR Rugosa 12 Seco Andesitas R4 8-ago.
D95 608547 7576002 4883 Diaclasa 70 210 C 2 0,5 SR Ondulada-Rugosa 14 Seco Andesitas R4 8-ago.
D95 608547 7576002 4883 Diaclasa 86 40 D 1 SR Rugosa 12 Seco Andesitas R4 8-ago.
E666 608841 7572358 4801 Diaclasa 51 202 D 4 0,2 SR Ondulada 12 Seco Andesitas R4 8-ago.
E666 608841 7572358 4801 Diaclasa 74 50 D 3 3 SR Plana 4 Seco Andesitas R4 8-ago.
E666 608841 7572358 4801 Diaclasa 83 340 D 2 1 SR Plana 4 Seco Andesitas R4 8-ago.
E666 608841 7572358 4801 Diaclasa 86 77 C 1 4 SR Plana 4 Seco Andesitas R4 8-ago.
E668 608878 7573144 4700 Diaclasa 86 129 C 3 2 SR Plana 4 Seco Ignimbritas R3 8-ago.
L937 611730 7569645 4838 Diaclasa 79 315 C 5 0 SR Plana 10 Seco Dacitas R4 8-ago.
L938 611730 7569645 4838 Diaclasa 72 310 C 4 0 SR Plana 10 Seco Dacitas R4 8-ago.
L939 611730 7569645 4838 Diaclasa 50 260 D 2 0 SR Plana 10 Seco Dacitas R4 8-ago.
L940 611730 7569645 4838 Diaclasa 65 284 D 3 1 SR Plana 10 Seco Dacitas R4 8-ago.
L941 611730 7569645 4838 Diaclasa 74 278 D 3 1 SR Plana 10 Seco Dacitas R4 8-ago.
L962 609326 7571795 4807 Diaclasa 80 330 C 6 1 SR Plana 10 Seco Dacitas R4 8-ago.
L963 609326 7571795 4807 Diaclasa 83 319 C 6 1 SR Plana 10 Seco Dacitas R4 8-ago.
L964 609326 7571795 4807 Diaclasa 80 320 C 5 2 SR Plana 10 Seco Dacitas R4 8-ago.
L968 609326 7571795 4807 Diaclasa 78 140 C 5 0 SR Plana 10 Seco Dacitas R4 8-ago.
L969 609326 7571795 4807 Diaclasa 84 356 C 2 2 SR Plana 10 Seco Dacitas R4 8-ago.
L970 609326 7571795 4807 Diaclasa 88 165 C 3 1 SR Plana 10 Seco Dacitas R4 8-ago.
L971 609326 7571795 4807 Diaclasa 80 330 C 2 4 SR Plana 10 Seco Dacitas R4 8-ago.
L972 609326 7571795 4807 Diaclasa 85 300 C 2 10 SR Plana 10 Seco Dacitas R4 8-ago.
L973 609060 7571207 4909 Diaclasa 80 159 D 2 0 SR Plana 10 Seco Dacitas R4 8-ago.
L974 609060 7571207 4909 Diaclasa 85 200 D 2 7 SR Plana 10 Seco Dacitas R4 8-ago.
L975 609060 7571207 4909 Diaclasa 87 315 D 1 1 SR Plana 10 Seco Dacitas R4 8-ago.
L976 609060 7571207 4909 Diaclasa 68 330 D 2 0 SR Plana 10 Seco Dacitas R4 8-ago.
M120 611107 7573414 4807 Diaclasa 184 76 94 D 4 1 SR Ondulada 16 Seco Dacitas R4 8-ago.
M121 610856 7573402 4895 Diaclasa 280 88 190 C 4 3 SR Ondulada 12 Seco Dacitas R4 8-ago.
M121 610856 7573402 4895 Diaclasa 195 86 285 C 1 2 SR Ondulada 12 Seco Dacitas R4 8-ago.
M121 610856 7573402 4895 Diaclasa 76 310 C 1 3 SR Ondulada 14 Seco Dacitas R4 8-ago.
M121 610856 7573402 4895 Diaclasa 275 78 5 C 2 2 SR Escalonada 14 Seco Dacitas R4 8-ago.
M121 610856 7573402 4895 Diaclasa 128 84 38 D 1 1 SR Escalonada 12 Seco Dacitas R4 8-ago.
M122 610305 7572478 4863 Diaclasa 73 91 D 1 5 Arena Plana 10 Seco Dacitas R4 8-ago.
M122 610305 7572478 4863 Diaclasa 68 341 D 2 1 Arena Plana 8 Seco Dacitas R4 8-ago.
M122 610305 7572478 4863 Diaclasa 71 333 C 1 2 Arena Plana 12 Seco Dacitas R4 8-ago.
Página 38 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
398
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M123 609298 7572282 4831 Diaclasa 80 354 D 1 2 SR Curva 6 Seco Dacitas R4 8-ago.
M124 609120 7572404 4821 Diaclasa 72 314 C 1 3 SR Plana 12 Seco Dacitas R4 8-ago.
M124 609120 7572404 4821 Diaclasa 72 318 C 3 2 SR Plana 12 Seco Dacitas R4 8-ago.
M124 609120 7572404 4821 Diaclasa 54 50 C 1 1 SR Plana 12 Seco Dacitas R4 8-ago.
M124 609120 7572404 4821 Diaclasa 83 44 C 1 3 SR Plana 12 Seco Dacitas R4 8-ago.
M125 608657 7572711 4694 Diaclasa 90 125 C 5 2 SR Plana 10 Seco Ignimbritas R3 8-ago.
M125 608657 7572711 4694 Diaclasa 76 324 C 1 1 SR Plana 10 Seco Ignimbritas R3 8-ago.
M126 608523 7572924 4688 Diaclasa 78 320 C 2 10 SR Plana 10 Seco Ignimbritas R3 8-ago.
M126 608523 7572924 4688 Diaclasa 70 225 C 1 SR Plana 10 Seco Ignimbritas R3 8-ago.
M126 608523 7572924 4688 Diaclasa 78 200 C 1 5 SR Plana 10 Seco Ignimbritas R3 8-ago.
M126 608523 7572924 4688 Diaclasa 70 54 C 2 4 SR Plana 10 Seco Ignimbritas R3 8-ago.
M127 604516 7575804 4650 Diaclasa 66 145 C 3 1 Arena Plana 8 Seco Dacitas R4 8-ago.
M127 604516 7575804 4650 Diaclasa 80 140 C 2 2 Arena Plana 8 Seco Dacitas R4 8-ago.
M128 605329 7576347 4682 Diaclasa 79 150 C 2 0,5 SR Curva 4 Seco Ignimbritas R3 8-ago.
M128 605329 7576347 4682 Diaclasa 82 10 C 2 0,5 SR Plana 4 Seco Ignimbritas R3 8-ago.
M129 607164 7579290 4822 Diaclasa 75 213 C 2 10 Arena Escalonada 4 Seco Ignimbritas R3 8-ago.
M129 607164 7579290 4822 Diaclasa 86 344 D 1 5 SR Plana 8 Seco Ignimbritas R3 8-ago.
M130 607691 7580515 4929 Diaclasa 355 88 265 C 1 1 SR Plana 8 Seco Andesitas R4 8-ago.
L933 611730 7569645 4838 Falla 84 173 C 1 1 Arena Plana 10 Seco Dacitas R4 8-ago.
L934 611730 7569645 4838 Falla 75 188 C 1 0 Arena Plana 10 Seco Dacitas R4 8-ago.
L935 611730 7569645 4838 Falla 50 166 255 C 1 0 Arena Plana 10 Seco Dacitas R4 8-ago.
L942 611155 7571642 4899 Falla 88 165 C 1 2 SR Rugosa 14 Seco Dacitas R4 8-ago.
L943 611155 7571642 4899 Falla 60 176 C 1 2 SR Rugosa 14 Seco Dacitas R4 8-ago.
L945 611155 7571642 4899 Falla 79 282 C 1 3 SR Rugosa 14 Seco Dacitas R4 8-ago.
L946 611155 7571642 4899 Falla 75 254 C 1 0 SR Rugosa 14 Seco Dacitas R4 8-ago.
L947 611155 7571642 4899 Falla 88 263 C 1 0 SR Rugosa 14 Seco Dacitas R4 8-ago.
L948 611155 7571642 4899 Falla 83 244 C 1 0 SR Rugosa 14 Seco Dacitas R4 8-ago.
L950 611155 7571642 4899 Falla 8 210 C 1 0 SR Plana 10 Seco Dacitas R4 8-ago.
L951 611155 7571642 4899 Falla 43 108 C 1 0 SR Plana 10 Seco Dacitas R4 8-ago.
L952 611155 7571642 4899 Falla 52 112 C 1 0 SR Plana 10 Seco Dacitas R4 8-ago.
L953 611155 7571642 4899 Falla 33 97 C 1 0 SR Plana 10 Seco Dacitas R4 8-ago.
L965 609326 7571795 4807 Falla 87 132 C 1 2 SR Plana 10 Seco Dacitas R4 8-ago.
L966 609326 7571795 4807 Falla 89 348 D 1 10 SR Plana 10 Seco Dacitas R4 8-ago.
L967 609326 7571795 4807 Falla 83 356 C 1 3 SR Plana 10 Seco Dacitas R4 8-ago.
M120 611107 7573414 4807 Falla 232 69 322 C 1 8 Arena Escalonada 16 Seco Dacitas R4 8-ago.
M130 607691 7580515 4929 Falla 109 85 19 C 1 5 SR Plana 10 Seco Andesitas R4 8-ago.
E668 608878 7573144 4700 Falla 54 252 C 1 4 SR Plana 2 Seco Ignimbritas R3 8-ago.
D93 609041 7575521 4936 Falla Dextral 57 115 D 1 SR Rugosa 12 Seco Andesitas R4 8-ago. Desplazamiento 5,5 cm
D83 610977 7574001 4743 Falla Inversa 81 200 C 1 1,5 SR Plana 4 Seco Ignimbritas R3 8-ago. Rechazo 3 cm
D83 610977 7574001 4743 Falla Inversa 89 55 C 1 0,5 a 2,5 SR Plana-Rugosa 8 Seco Ignimbritas R3 8-ago. Rechazo 4cm
D83 610977 7574001 4743 Falla Inversa 82 94 C 1 1 Arena Ondulada-Rugosa 12 Seco Ignimbritas R3 8-ago. Rechazo 1,5 cm
D87 607313 7573578 4645 Falla Inversa 89 305 C 1 0,5 SR Rugosa-Ondulada 12 Seco Ignimbritas R3 8-ago. Rechazo 1,5 cm
D89 608189 7572805 4654 Falla Inversa 50 230 C 1 1,5 SR Plana-Rugosa 10 Seco Ignimbritas R3 8-ago.
D89 608189 7572805 4654 Falla Inversa 70 25 C 1 1 SR Plana-Ondulada 8 Seco Ignimbritas R3 8-ago.
D90 608400 7572855 4676 Falla Inversa 64 85 D 1 1 SR Ondulada-Escalonada 14 Seco Ignimbritas R3 8-ago.
D92 609034 7575516 4933 Falla Inversa 45 105 D 1 SR Ondulada-Escalonada 12 Seco Dacitas R4 8-ago. Rechazo 1 cm (microfalla)
L936 611730 7569645 4838 Falla Inversa 65 182 C 1 0 Arena Plana 10 Seco Dacitas R4 8-ago. Desplazamiento 30 cm
M125 608657 7572711 4694 Falla Inversa 79 295 C 1 2 SR Plana 10 Seco Ignimbritas R3 8-ago. Rechazo 12 cm
M128 605329 7576347 4682 Falla Inversa 22 268 96 C 1 2 SR Escalonada 4 Seco Ignimbritas R3 8-ago. Rechazo 4cm
M128 605329 7576347 4682 Falla Inversa 25 264 C 1 2 SR Plana 4 Seco Ignimbritas R3 8-ago.
M128 605329 7576347 4682 Falla Inversa 10 170 C 2 1 SR Plana 4 Seco Ignimbritas R3 8-ago. Rechazo 35
M129 607164 7579290 4822 Falla Inversa 83 187 C 1 0,5 SR Plana 4 Seco Ignimbritas R3 8-ago. Rechazo 3 cm
D83 610977 7574001 4743 Falla Normal 85 62 D 1 0,2 SR Plana 4 Seco Ignimbritas R3 8-ago. Desplazamiento 3,5 cm
D84 609855 7574238 4746 Falla Normal 85 185 D 1 5 Arena Ondulada-Rugosa 12 Seco Ignimbritas R3 8-ago. Desplazamiento 2 cm
D85 609371 7574022 4722 Falla Normal 56 215 C 1 2 SR Ondulada-Escalonada 14 Seco Ignimbritas R3 8-ago. Desplazamiento 5,5cm
D91 608065 7575005 4744 Falla Normal 68 270 D 1 2 SR Plana-Ondulada 8 Seco Ignimbritas R3 8-ago. Desplazamiento 1,5 cm
D91 608065 7575005 4744 Falla Normal 79 110 D 1 1 a 4 SR Plana-Rugosa 12 Seco Ignimbritas R3 8-ago. Desplazamiento 1 cm
D92 609034 7575516 4933 Falla Normal 65 140 C 1 0,5 a 3 Arena Plana 4 Seco Dacitas R4 8-ago. Desplazamiento2,5
E666 608841 7572358 4801 Falla Normal 167 81 257 C 1 SR Curva 6 Seco Andesitas R4 8-ago.
E668 608878 7573144 4700 Falla Normal 212 81 122 59 C 1 0,5 SR Plana 4 Seco Ignimbritas R3 8-ago. Desplazamiento 5cm
Página 39 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
399
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L944 611155 7571642 4899 Falla Normal 65 266 C 1 0 SR Rugosa 14 Seco Dacitas R4 8-ago. Desplazamiento 15 cm
L949 611155 7571642 4899 Falla Normal 62 268 C 1 0 SR Rugosa 14 Seco Dacitas R4 8-ago.
L954 611250 7572012 4769 Falla Normal 88 10 C 1 0 SR Plana 6 Seco Ignimbritas R3 8-ago. Desplazamiento 5 cm
L955 611250 7572012 4769 Falla Normal 70 8 C 1 0 SR Plana 6 Seco Ignimbritas R3 8-ago. Desplazamiento 10 cm
L956 611250 7572012 4769 Falla Normal 85 196 C 1 0 SR Plana 6 Seco Ignimbritas R3 8-ago. Desplazamiento 3 cm
L957 611250 7572012 4769 Falla Normal 62 260 350 C 1 0 SR Plana 6 Seco Ignimbritas R3 8-ago.
L958 611250 7572012 4769 Falla Normal 84 275 C 1 10 SR Plana 6 Seco Ignimbritas R3 8-ago. Desplazamiento 5 cm
L959 611250 7572012 4769 Falla Normal 55 23 C 1 2 Oxidos de Fe Plana 6 Seco Ignimbritas R3 8-ago. Desplazamiento 10 cm
L960 611250 7572012 4769 Falla Normal 63 350 260 D 1 2 SR Plana 6 Seco Ignimbritas R3 8-ago. Desplazamiento 80 cm
M123 609298 7572282 4831 Falla Normal 264 66 174 C 1 2 Arena Plana 12 Seco Dacitas R4 8-ago.
M125 608657 7572711 4694 Falla Normal 72 120 D 1 0,5 SR Plana 10 Seco Ignimbritas R3 8-ago. Desplazamiento 3cm
M125 608657 7572711 4694 Falla Normal 62 232 C 1 4 SR Plana 10 Seco Ignimbritas R3 8-ago. Desplazamiento 15 cm
M125 608657 7572711 4694 Falla Normal 68 10 C 1 4 SR Plana 10 Seco Ignimbritas R3 8-ago.
M126 608523 7572924 4688 Falla Normal 82 330 C 1 7 SR Plana 10 Seco Ignimbritas R3 8-ago. Desplazamiento 10 cm
M126 608523 7572924 4688 Falla Normal 76 315 C 1 3 SR Plana 10 Seco Ignimbritas R3 8-ago. Desplazamiento 15 cm
M127 604516 7575804 4650 Falla Normal 69 104 C 1 8 SR Ondulada 8 Seco Dacitas R4 8-ago. Desplazamiento 15 cm
M128 605329 7576347 4682 Falla Normal 80 146 C 1 0,5 SR Curva 4 Seco Ignimbritas R3 8-ago.
M128 605329 7576347 4682 Falla Normal 85 144 C 1 2 SR Plana 4 Seco Ignimbritas R3 8-ago.
M130 607691 7580515 4929 Falla Normal 87 270 C 1 5 Arena Plana 6 Seco Andesitas R4 8-ago.
D86 609312 7574025 4728 Falla Sinestral 78 139 165 C 1 1 SR Plana-Rugosa 12 Seco Ignimbritas R3 8-ago. Rechazo 2,5 cm
M122 610305 7572478 4863 Falla Sinestral 146 53 236 D 1 5 Arena Plana 10 Seco Dacitas R4 8-ago. Desplazamiento 30 cm
M130 607691 7580515 4929 Falla Sinestral 80 185 D 1 1 Arena Plana 12 Seco Andesitas R4 8-ago. Desplazamiento 10cm
D94 608703 7575868 4958 Pseudoestratificación 72 194 C Seco Andesitas R4 8-ago.
L961 609326 7571795 4807 Pseudoestratificación 50 265 C Seco Ignimbritas R2 8-ago.
M121 610856 7573402 4895 Pseudoestratificación 73 264 C Seco Dacitas R4 8-ago.
M122 610305 7572478 4863 Pseudoestratificación 62 2 C Seco Dacitas R4 8-ago.
M123 609298 7572282 4831 Pseudoestratificación 60 260 C Seco Dacitas R4 8-ago.
M124 609120 7572404 4821 Pseudoestratificación 60 358 C Seco Dacitas R4 8-ago.
M127 604516 7575804 4650 Pseudoestratificación 80 205 C Seco Ignimbritas R3 8-ago.
D100 617997 7570897 4892 Diaclasa 72 65 162 C 7 5 Plana 8 Seco Riodacita R3 9-ago.
D102 622441 7567165 4912 Diaclasa 87 18 C 8 0,5 Arena Curva 8 Seco Andesitas R4 9-ago.
D102 622441 7567165 4912 Diaclasa 77 197 C 8 4 Arena Plana 8 Seco Andesitas R4 9-ago.
D103 622768 7566782 4934 Diaclasa 74 162 D 14 2 Arena Escalonada 8 Seco Andesitas R4 9-ago.
D103 622768 7566782 4934 Diaclasa 81 198 D 14 1 Arena Escalonada 12 Seco Andesitas R4 9-ago.
D103 622768 7566782 4934 Diaclasa 65 195 D 14 3 Arena Escalonada 8 Seco Andesitas R4 9-ago.
D104 622984 7566570 4959 Diaclasa 66 87 D 5 1 SR Escalonada 14 Seco Riodacita R3 9-ago.
D104 622984 7566570 4959 Diaclasa 71 97 D 6 1 SR Escalonada 14 Seco Riodacita R3 9-ago.
D96 617299 7571991 4683 Diaclasa 56 300 D 2 0,2 SR Ondulada-Rugosa 12 Seco Ignimbritas R2 9-ago.
D96 617299 7571991 4683 Diaclasa 85 180 D 1 5 Arena Plana-Rugosa 10 Seco Ignimbritas R2 9-ago.
D96 617299 7571991 4683 Diaclasa 87 300 C 2 2 SR Plana 4 Seco Ignimbritas R2 9-ago.
D96 617299 7571991 4683 Diaclasa 78 220 D 1 3,5 Arena Plana 4 Seco Ignimbritas R2 9-ago.
D96 617299 7571991 4683 Diaclasa 79 110 C 2 SR Plana-Ondulada 8 Seco Ignimbritas R2 9-ago.
D96 617299 7571991 4683 Diaclasa 42 190 C 3 1,2 SR Plana 4 Seco Ignimbritas R2 9-ago.
D97 617448 7570775 4778 Diaclasa 89 255 C 3 SR Plana-Ondulada 8 Seco Ignimbritas R2 9-ago.
D97 617448 7570775 4778 Diaclasa 84 320 C 2 2 SR Ondulada-Rugosa 14 Seco Ignimbritas R2 9-ago.
D97 617448 7570775 4778 Diaclasa 88 90 C 4 2 SR Plana 4 Seco Ignimbritas R2 9-ago.
D98 618020 7570917 4891 Diaclasa 71 140 C 3 1,5 SR Plana-Rugosa 12 Seco Riodacita R3 9-ago.
D99 618093 7570880 4894 Diaclasa 44 30 C 2 2 SR Plana-Ondulada 8 Seco Riodacita R3 9-ago.
D99 618093 7570880 4894 Diaclasa 60 260 D 3 0,5 a 1,5 SR Plana-Ondulada 10 Seco Riodacita R3 9-ago.
L977 614946 7581806 4944 Diaclasa 88 130 C 5 10 Arena Plana 8 Seco Riolita R4 9-ago.
L978 614946 7581806 4944 Diaclasa 87 146 C 4 5 SR Plana 8 Seco Riolita R4 9-ago.
L979 614946 7581806 4944 Diaclasa 89 182 C 5 4 SR Plana 8 Seco Riolita R4 9-ago.
L980 614946 7581806 4944 Diaclasa 80 126 C 5 6 SR Plana 8 Seco Riolita R4 9-ago.
L981 614946 7581806 4944 Diaclasa 72 135 C 5 2 SR Plana 8 Seco Riolita R4 9-ago.
L982 614946 7581806 4944 Diaclasa 85 144 C 5 4 SR Plana 8 Seco Riolita R4 9-ago.
L983 614946 7581806 4944 Diaclasa 88 130 C 3 3 SR Plana 8 Seco Riolita R4 9-ago.
L985 614992 7581319 4975 Diaclasa 65 205 C 7 0 SR Plana 8 Seco Riolita R4 9-ago.
L986 614992 7581319 4975 Diaclasa 50 208 C 7 0 SR Plana 8 Seco Riolita R4 9-ago.
L987 614992 7581319 4975 Diaclasa 63 182 D 5 0 SR Plana 8 Seco Riolita R4 9-ago.
L988 614992 7581319 4975 Diaclasa 70 190 C 5 0 SR Plana 8 Seco Riolita R4 9-ago.
Página 40 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
400
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L989 614992 7581319 4975 Diaclasa 74 196 C 5 2 SR Plana 8 Seco Riolita R4 9-ago.
L990 614992 7581319 4975 Diaclasa 61 198 C 5 2 SR Plana 8 Seco Riolita R4 9-ago.
L991 614468 7580994 5047 Diaclasa 70 160 D 6 0 SR Plana 8 Seco Riolita R4 9-ago.
L992 614468 7580994 5047 Diaclasa 80 162 C 6 4 SR Plana 8 Seco Riolita R4 9-ago.
L993 614468 7580994 5047 Diaclasa 83 156 C 6 2 SR Plana 8 Seco Riolita R4 9-ago.
L994 614468 7580994 5047 Diaclasa 84 164 C 6 5 SR Plana 8 Seco Riolita R4 9-ago.
L995 614468 7580994 5047 Diaclasa 79 168 C 6 4 SR Plana 8 Seco Riolita R4 9-ago.
L996 613975 7580155 5065 Diaclasa 4 105 C 5 0 SR Plana 8 Seco Riolita R4 9-ago.
M131 617404 7572096 4727 Diaclasa 325 74 235 C 1 1 SR Plana 14 Seco Riodacita R2 9-ago.
M131 617404 7572096 4727 Diaclasa 70 255 D 2 2 Arena Rugosa 14 Seco Riodacita R2 9-ago.
M131 617404 7572096 4727 Diaclasa 67 310 C 4 2 SR Plana 12 Seco Riodacita R2 9-ago.
M131 617404 7572096 4727 Diaclasa 61 192 D 2 4 SR Curva 12 Seco Riodacita R2 9-ago.
M131 617404 7572096 4727 Diaclasa 49 25 C 2 2 SR Plana 12 Seco Riodacita R2 9-ago.
M131 617404 7572096 4727 Diaclasa 28 270 C 1 3 SR Plana 10 Seco Riodacita R2 9-ago.
M131 617404 7572096 4727 Diaclasa 85 225 C 1 3 SR Plana 10 Seco Riodacita R2 9-ago.
M132 618511 7571123 4738 Diaclasa 77 295 C 10 SR Plana 10 Seco Ignimbritas R2 9-ago.
M132 618511 7571123 4738 Diaclasa 78 170 C 2 0,5 SR Curva 8 Seco Ignimbritas R2 9-ago.
M135 619349 7570946 4752 Diaclasa 78 65 C 3 9 SR Plana 14 Seco Dacita-Andesita R4 9-ago.
M135 619349 7570946 4752 Diaclasa 61 227 C 4 2 Arena Curva 12 Seco Dacita-Andesita R4 9-ago.
M135 619349 7570946 4752 Diaclasa 60 225 D 3 1 SR Escalonada 14 Seco Dacita-Andesita R4 9-ago.
M136 622803 7569507 4918 Diaclasa 74 28 D 4 7 SR Plana 8 Seco Andesitas R4 9-ago.
M136 622803 7569507 4918 Diaclasa 24 155 C 2 1 SR Ondulada 8 Seco Andesitas R4 9-ago.
M137 623827 7569602 4918 Diaclasa 85 55 C 6 1 SR Plana 6 Seco Ignimbritas R2 9-ago.
M137 623827 7569602 4918 Diaclasa 60 170 D 1 6 SR Rugosa 10 Seco Ignimbritas R2 9-ago.
M137 623827 7569602 4918 Diaclasa 72 233 C 2 3 SR Ondulada 8 Seco Ignimbritas R2 9-ago.
M137 623827 7569602 4918 Diaclasa 71 298 D 3 SR Rugosa 12 Seco Ignimbritas R2 9-ago.
M138 624793 7570051 4893 Diaclasa 87 255 C 3 SR Plana-Rugosa 10 Seco Ignimbritas R2 9-ago.
M138 624793 7570051 4893 Diaclasa 84 335 C 2 SR Ondulada 10 Seco Ignimbritas R2 9-ago.
M138 624793 7570051 4893 Diaclasa 45 270 D 2 1 SR Rugosa 14 Seco Ignimbritas R2 9-ago.
M138 624793 7570051 4893 Diaclasa 32 95 D 4 1 SR Ondulada 8 Seco Ignimbritas R2 9-ago.
D104 622984 7566570 4959 Falla 221 84 131 C 1 10 Arena Plana 12 Seco Riodacita R3 9-ago.
L1000 613975 7580155 5065 Falla 86 30 290 C 1 0 SR Plana 8 Seco Riolita R4 9-ago.
L997 613975 7580155 5065 Falla Dextral 5 265 C 1 0 SR Plana 8 Seco Riolita R4 9-ago. Desplzamiento 10 cm
L998 613975 7580155 5065 Falla Dextral 6 260 C 1 0 SR Plana 8 Seco Riolita R4 9-ago. Desplzamiento 5 cm
L999 613975 7580155 5065 Falla Dextral 4 272 C 1 0 SR Plana 8 Seco Riolita R4 9-ago. Desplzamiento 7 cm
D100 617997 7570897 4892 Falla Inversa 62 240 C 1 2,5 Plana-Escalonada 12 Seco Riodacita R3 9-ago. Rechazo 4 cm
D97 617448 7570775 4778 Falla Inversa 58 180 D 1 1 SR Plana-Ondulada 8 Seco Ignimbritas R2 9-ago. Rechazo 4 cm
M131 617404 7572096 4727 Falla Inversa 36 18 C 1 4 SR Escalonada 12 Seco Riodacita R2 9-ago.
M133 618616 7571018 4746 Falla Inversa 198 38 288 352 C 1 0,5 SR Plana 10 Seco Ignimbritas R2 9-ago. Rechazo 3 cm
M133 618616 7571018 4746 Falla Inversa 88 280 C 1 SR Plana 10 Seco Ignimbritas R2 9-ago.
M133 618616 7571018 4746 Falla Inversa 74 185 70 N D 1 1 SR Plana 8 Seco Ignimbritas R2 9-ago.
D101 622260 7568660 4896 Falla Normal 215 78 125 C 1 5 Arena Escalonada 8 Seco Andesitas R4 9-ago.
D96 617299 7571991 4683 Falla Normal 60 120 D 1 SR Ondulada-Rugosa 12 Seco Ignimbritas R2 9-ago. Desplazamiento 1cm
M133 618616 7571018 4746 Falla Normal 73 274 C 1 0,5 Arena Plana 10 Seco Ignimbritas R2 9-ago. Desplazamiento3cm
M133 618616 7571018 4746 Falla Normal 73 318 C 1 0,5 Arena Plana 10 Seco Ignimbritas R2 9-ago.
M133 618616 7571018 4746 Falla Normal 64 70 C 1 3 SR Escalonada 10 Seco Ignimbritas R2 9-ago. Desplazamiento 1 cm
M133 618616 7571018 4746 Falla Normal 77 74 C 4 2 SR Plana 10 Seco Ignimbritas R2 9-ago.
M133 618616 7571018 4746 Falla Normal 84 82 D 1 SR Plana 8 Seco Ignimbritas R2 9-ago.
M134 618664 7570973 4790 Falla Normal 85 265 C 2 0,5 SR Plana 8 Seco Ignimbritas R2 9-ago. Desplazamiento 5cm
M134 618664 7570973 4790 Falla Normal 83 269 C 2 0,2 SR Plana 8 Seco Ignimbritas R2 9-ago. Desplazamiento 4cm
M134 618664 7570973 4790 Falla Normal 70 60 C 1 2 SR Escalonada 12 Seco Ignimbritas R2 9-ago. Desplazamiento 3cm
M134 618664 7570973 4790 Falla Normal 82 90 C 1 1 SR Plana 8 Seco Ignimbritas R2 9-ago. Desplazamiento 4cm
L984 614946 7581806 4944 Falla Sinestral 87 35 C 1 10 SR Plana 8 Seco Riolita R4 9-ago. Desplzamiento 30 cm
L1002 627233 7578330 4605 Diaclasa 35 125 C 2 2 SR Plana 8 Seco Ignimbritas R3 10-ago.
L1004 627233 7578330 4605 Diaclasa 78 162 C 6 5 SR Plana 8 Seco Ignimbritas R3 10-ago.
L1005 627233 7578330 4605 Diaclasa 85 160 C 2 2 SR Plana 8 Seco Ignimbritas R3 10-ago.
L1006 627233 7578330 4605 Diaclasa 87 130 C 2 6 SR Plana 8 Seco Ignimbritas R3 10-ago.
L1007 627233 7578330 4605 Diaclasa 89 155 C 2 1 SR Plana 8 Seco Ignimbritas R3 10-ago.
L1008 627233 7578330 4605 Diaclasa 89 127 C 4 0 SR Plana 8 Seco Ignimbritas R3 10-ago.
L1009 627233 7578330 4605 Diaclasa 84 136 C 3 0 SR Plana 8 Seco Ignimbritas R3 10-ago.
Página 41 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
401
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L1010 611364 7567270 4630 Diaclasa 86 284 C 1 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1011 611364 7567270 4630 Diaclasa 87 276 C 2 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1013 611364 7567270 4630 Diaclasa 89 31 C 3 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1014 611364 7567270 4630 Diaclasa 89 26 C 3 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1015 611364 7567270 4630 Diaclasa 89 10 C 2 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1016 611364 7567270 4630 Diaclasa 89 27 C 2 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1017 611364 7567270 4630 Diaclasa 86 250 C 2 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1003 627233 7578330 4605 Falla 80 154 C 1 2 SR Plana 8 Seco Ignimbritas R3 10-ago.
L1012 611364 7567270 4630 Falla Dextral 10 18 C 1 0 SR Plana 6 Seco Ignimbritas R3 10-ago. Desplazamiento 10 cm
L1018 611364 7567270 4630 Falla Dextral 5 37 C 1 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1019 611364 7567270 4630 Falla Dextral 4 340 C 1 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1020 611364 7567270 4630 Falla Dextral 9 18 C 1 0 SR Plana 6 Seco Ignimbritas R3 10-ago.
L1001 627233 7578330 4605 Falla normal 55 295 C 1 10 SR Plana 8 Seco Ignimbritas R3 10-ago. Deplazamiento 40 cm
D105 617813 7557987 4545 Diaclasa 85 173 C 2 SR Ondulada 12 Seco Dacitas R3 11-ago.
D105 617813 7557987 4545 Diaclasa 35 290 D 2 2 Arena Ondulada-Rugosa 10 Seco Dacitas R3 11-ago.
D105 617813 7557987 4545 Diaclasa 52 250 D 3 0,2 Arena Rugosa 12 Seco Dacitas R3 11-ago.
D105 617813 7557987 4545 Diaclasa 74 213 D 1 0,3 a 1 Arena Plana 8 Seco Dacitas R3 11-ago.
D105 617813 7557987 4545 Diaclasa 81 353 D 1 0,5 Arena Plana 4 Seco Dacitas R3 11-ago.
D106 617745 7559901 4586 Diaclasa 72 216 C 2 2,5 SR Ondulada 14 Seco Dacitas R3 11-ago.
D108 616449 7560044 4592 Diaclasa 90 226 D 1 1 Arena Ondulada-Rugosa 12 Seco Ignimbritas R2 11-ago.
D109 616951 6560855 4616 Diaclasa 76 338 C 1 1a 5 SR Plana-Ondulada 10 Seco Ignimbritas R2 11-ago.
D109 616951 6560855 4616 Diaclasa 84 226 C 2 0,5 SR Plana 4 Seco Ignimbritas R2 11-ago.
D110 616787 7561791 4632 Diaclasa 78 160 D 2 0,5 SR Plana 4 Seco Ignimbritas R2 11-ago.
D110 616787 7561791 4632 Diaclasa 80 272 C 3 SR Ondulada 8 Seco Ignimbritas R2 11-ago.
D110 616787 7561791 4632 Diaclasa 86 70 C 1 SR Plana 4 Seco Ignimbritas R2 11-ago.
D110 616787 7561791 4632 Diaclasa 21 25 C 4 SR Plana 4 Seco Ignimbritas R2 11-ago.
D111 616902 7562247 4641 Diaclasa 76 3 C 3 SR Plana-Rugosa 10 Seco Ignimbritas R2 11-ago.
D111 616902 7562247 4641 Diaclasa 69 237 C 7 1 a 2 SR Rugosa-Escalonada 12 Seco Ignimbritas R2 11-ago.
D111 616902 7562247 4641 Diaclasa 82 65 C 2 SR Plana-Escalonada 12 Seco Ignimbritas R2 11-ago.
D112 618012 7562867 4707 Diaclasa 88 0 C 2 SR Plana 4 Seco Ignimbritas R2 11-ago.
D112 618012 7562867 4707 Diaclasa 69 334 C 3 0,2 a 2 SR Plana 4 Seco Ignimbritas R2 11-ago.
D113 616277 7562808 4638 Diaclasa 88 135 D 1 2 Arena Plana 4 Seco Ignimbritas R2 11-ago.
D113 616277 7562808 4638 Diaclasa 87 25 D 1 SR Plana 4 Seco Ignimbritas R2 11-ago.
D114 615291 7561002 4589 Diaclasa 88 133 C 3 0,5 SR Plana 4 Seco Ignimbritas R2 11-ago.
D114 615291 7561002 4589 Diaclasa 90 148 C 2 0,5 SR Plana 4 Seco Ignimbritas R2 11-ago.
D114 615291 7561002 4589 Diaclasa 52 94 C 1 1 SR Escalonada 12 Seco Ignimbritas R2 11-ago.
D107 617757 7559906 4599 Falla Inversa 78 184 C 1 4,5 SR Plana 10 Seco Dacitas R3 11-ago. Rechazo 20 cm
D108 616449 7560044 4592 Falla Inversa 79 222 C 1 3 SR Escalonada 14 Seco Ignimbritas R2 11-ago. Rechazo 8 cm
D112 618012 7562867 4707 Falla Inversa 12 315 C 1 SR Rugosa-Escalonada 14 Seco Ignimbritas R2 11-ago. Rechazo 2,5 cm
D112 618012 7562867 4707 Falla Inversa 78 280 C 1 0,5 Arena Curva 12 Seco Ignimbritas R2 11-ago. Rechazo 1,5 cm
D107 617757 7559906 4599 Falla Normal 50 200 D 1 1 a 3 Arena Rugosa-Escalonada 14 Seco Dacitas R3 11-ago.
D108 616449 7560044 4592 Falla Normal 84 320 C 1 0,5 a 5 Arena Plana-Rugosa 12 Seco Ignimbritas R2 11-ago. Desplazamiento 1 cm
D108 616449 7560044 4592 Falla Normal 72 184 C 1 0,5 SR Escalonada 10 Seco Ignimbritas R2 11-ago.
D109 616951 6560855 4616 Falla Normal 88 227 C 1 1 a 2 SR Plana 4 Seco Ignimbritas R2 11-ago. Desplazamiento 13 cm
D109 616951 6560855 4616 Falla Normal 89 128 C 1 6 SR Plana 4 Seco Ignimbritas R2 11-ago.
D111 616902 7562247 4641 Falla Normal 70 54 C 1 0,2 a 1 SR Rugosa-Escalonada 12 Seco Ignimbritas R2 11-ago. Desplazamiento 1 cm
D111 616902 7562247 4641 Falla Normal 90 305 C 1 0,5 SR Plana 4 Seco Ignimbritas R2 11-ago. Desplazamiento 6 cm
D112 618012 7562867 4707 Falla Normal 87 312 C 1 3 Arena Plana-Ondulada 8 Seco Ignimbritas R2 11-ago.
D113 616277 7562808 4638 Falla Normal 88 28 D 1 0,7 SR Plana 4 Seco Ignimbritas R2 11-ago. Desplazamiento 1,5 cm
D113 616277 7562808 4638 Falla Normal 88 130 D 1 0,5 SR Plana 4 Seco Ignimbritas R2 11-ago. Desplazamiento 3 cm
D114 615291 7561002 4589 Falla Normal 88 140 C 1 0,2 SR Plana 4 Seco Ignimbritas R2 11-ago. Desplazamiento 5 cm
D114 615291 7561002 4589 Falla Normal 88 138 C 1 5 SR Plana 4 Seco Ignimbritas R2 11-ago. Desplazamiento 3 cm
D114 615291 7561002 4589 Falla Normal 84 245 C 1 6 SR Plana 4 Seco Ignimbritas R2 11-ago. Desplazamiento 10 cm
D114 615291 7561002 4589 Falla Normal 90 50 C 1 0,2 Arena Plana 4 Seco Ignimbritas R2 11-ago. Desplazamiento 1 cm
D106 617745 7559901 4586 Falla Sinestral 88 227 C 1 0,5 a 2 SR Rugosa-Escalonada 12 Seco Dacitas R3 11-ago. Desplazamiento 25 cm
D105 617813 7557987 4545 Pseudoestratificación 63 160 C Seco Dacitas R3 11-ago.
L1021 620523 7566509 4944 Diaclasa 87 280 C 2 0,5 SR Plana 8 Seco Riodacita R3 12-ago.
L1023 620523 7566509 4944 Diaclasa 51 300 C 2 0,5 SR Plana 8 Seco Riodacita R3 12-ago.
L1027 620164 7567362 4937 Diaclasa 75 149 C 2 0 SR Rugosa 12 Seco Riodacita R3 12-ago.
L1028 620164 7567362 4937 Diaclasa 73 170 D 2 1 SR Rugosa 12 Seco Riodacita R3 12-ago.
Página 42 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
402
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L1029 619936 7568104 4937 Diaclasa 79 330 C 2 10 SR Ondulada 14 Seco Riodacita R3 12-ago.
L1031 619936 7568104 4937 Diaclasa 55 73 D 2 1,5 SR Plana 4 Seco Riodacita R3 12-ago.
L1033 620642 7567794 4897 Diaclasa 62 275 D 3 3 SR Plana 8 Seco Riodacita R3 12-ago.
L1034 620642 7567794 4897 Diaclasa 53 200 D 3 0 SR Ondulada 8 Seco Riodacita R3 12-ago.
L1035 620716 7567637 4900 Diaclasa 50 105 C 2 1 SR Rugosa 12 Seco Riodacita R3 12-ago.
L1036 620716 7567637 4900 Diaclasa 78 100 C 2 1,5 SR Rugosa 12 Seco Riodacita R3 12-ago.
L1038 621142 7567015 4929 Diaclasa 88 34 C 7 2 SR Plana 8 Seco Riodacita R3 12-ago.
L1039 621142 7567015 4929 Diaclasa 42 260 D 3 0 SR Plana 8 Seco Riodacita R3 12-ago.
L1040 621142 7567015 4929 Diaclasa 50 255 D 3 0,5 SR Plana 8 Seco Riodacita R3 12-ago.
L1042 621516 7566044 4947 Diaclasa 78 175 D 2 1 SR Ondulada 10 Seco Riodacita R3 12-ago.
L1043 621516 7566044 4947 Diaclasa 73 102 D 2 4 SR Ondulada 8 Seco Riodacita R3 12-ago.
M142 618556 7564328 4750 Diaclasa 70 83 C 3 0,2 a 1 Arena Ondulada 8 Seco Ignimbritas R2 12-ago.
M142 618556 7564328 4750 Diaclasa 66 45 D 1 1 SR Ondulada-Rugosa 12 Seco Ignimbritas R2 12-ago.
M143 612243 7567874 4649 Diaclasa 88 232 C 2 2 SR Plana 4 Seco Ignimbritas R2 12-ago.
M144 612181 7569025 4668 Diaclasa 88 280 C 2 2 SR Escalonada 14 Seco Ignimbritas R2 12-ago.
M146 613579 7572268 4717 Diaclasa 75 161 C 2 0,5 SR Plana 4 Seco Ignimbritas R2 12-ago.
M146 613579 7572268 4717 Diaclasa 74 167 C 1 0,1 SR Plana 4 Seco Ignimbritas R2 12-ago.
M145 612652 7570194 4763 Falla Dextral 77 180 C 2 0,5 a 1,5 SR Ondulada-Escalonada 14 Seco Ignimbritas R2 12-ago. Desplazamiento 6 cm
L1022 620523 7566509 4944 Falla Inversa 37 135 C 1 0,5 SR Escalonada 12 Seco Riodacita R3 12-ago. Desplazamiento 2 cm
M139 615008 7561896 4599 Falla Inversa 90 233 C 1 0,2 a 1 SR Plana 10 Seco Ignimbritas R2 12-ago. Rechazo 2 cm
M139 615008 7561896 4599 Falla Inversa 89 283 C 1 0,5 a 1 Arena Plana 4 Seco Ignimbritas R2 12-ago. Rechazo 5 cm
M141 615604 7562988 4632 Falla Inversa 87 88 C 1 1 a 3 SR Plana 4 Seco Ignimbritas R2 12-ago. Rechazo 15 cm
M141 615604 7562988 4632 Falla Inversa 73 183 C 1 1 a 2 SR Ondulada 12 Seco Ignimbritas R2 12-ago. Rechazo 40 cm
M144 612181 7569025 4668 Falla Inversa 45 10 90 C 1 3 SR Plana-Ondulada 14 Seco Ignimbritas R2 12-ago. Rechazo 7 cm
L1024 620523 7566509 4944 Falla normal 80 250 C 1 2,5 SR Escalonada 12 Seco Riodacita R3 12-ago. Desplazamiento 2 cm
L1025 620523 7566509 4944 Falla normal 79 90 C 1 1 SR Escalonada 12 Seco Riodacita R3 12-ago. Desplazamiento 1 cm
L1026 620164 7567362 4937 Falla normal 78 198 C 1 1 SR Rugosa 12 Seco Riodacita R3 12-ago. Desplazamiento 4,5 cm
L1030 619936 7568104 4937 Falla normal 85 145 D 1 2 SR Escalonada 12 Seco Riodacita R3 12-ago. Desplazamiento 5 cm
L1032 620642 7567794 4897 Falla normal 56 92 72 C 1 3,5 SR Plana 8 Seco Riodacita R3 12-ago. Desplazamiento 7 cm
L1037 620716 7567637 4900 Falla normal 66 348 65 C 1 0 SR Rugosa 12 Seco Riodacita R3 12-ago.
L1041 621516 7566044 4947 Falla normal 61 150 D 1 2,5 SR Ondulada 14 Seco Riodacita R3 12-ago. Desplazamiento 3 cm
M139 615008 7561896 4599 Falla normal 82 81 C 1 1 SR Plana 4 Seco Ignimbritas R2 12-ago. Desplazamiento 2 cm
M140 614483 7561752 4596 Falla normal 71 300 C 1 0,5 a 1 Arena Plana-Ondulada 8 Seco Ignimbritas R2 12-ago. Desplazamiento 4 cm
M140 614483 7561752 4596 Falla normal 84 295 C 1 0,5 SR Plana 4 Seco Ignimbritas R2 12-ago. Desplazamiento 29 cm
M141 615604 7562988 4632 Falla normal 67 89 C 2 SR Plana 4 Seco Ignimbritas R2 12-ago. Desplazamiento 2,5 cm
M141 615604 7562988 4632 Falla normal 75 70 C 2 0,5 a 2 SR Rugosa 12 Seco Ignimbritas R2 12-ago. Desplazamiento 1 cm
M143 612243 7567874 4649 Falla normal 90 238 C 1 0,3 a 3 Arena Plana-Rugosa 8 Seco Ignimbritas R2 12-ago. Desplazamiento 3 cm
M144 612181 7569025 4668 Falla normal 78 232 C 1 1 a 5 SR Ondulada-Rugosa 12 Seco Ignimbritas R2 12-ago. Desplazamiento 4,5 cm
M144 612181 7569025 4668 Falla normal 71 192 105 C 1 0,5 a 2 SR Plana 12 Seco Ignimbritas R2 12-ago. Desplazamiento 2 cm
L1046 597770 7584802 4571 Diaclasa 52 154 C 4 1 SR Plana 8 Seco Andesitas R4 13-ago.
L1050 600821 7583743 4563 Diaclasa 75 186 D 2 0 SR Plana-Rugosa 12 Seco Ignimbritas R3 13-ago.
L1051 600821 7583743 4563 Diaclasa 82 208 C 4 1 Arena Plana 12 Seco Ignimbritas R3 13-ago.
L1052 600821 7583743 4563 Diaclasa 80 260 C 1 1 Arena Plana-Rugosa 12 Seco Ignimbritas R3 13-ago.
L1054 601652 7578478 4580 Diaclasa 70 260 D 2 0,5 Arena Plana 12 Seco Ignimbritas R3 13-ago.
L1056 603811 7577292 4636 Diaclasa 89 151 C 3 2 SR Plana 12 Seco Ignimbritas R3 13-ago.
L1060 605940 7577810 4735 Diaclasa 86 26 C 2 0 SR Rugosa 12 Seco Ignimbritas R3 13-ago.
L1061 605940 7577810 4735 Diaclasa 81 27 D 2 0 SR Plana-Rugosa 12 Seco Ignimbritas R3 13-ago.
M147 596817 7576184 4752 Diaclasa 53 35 D 3 0,5 a 1 SR Ondulada 8 Seco Andesitas R4 13-ago.
M147 596817 7576184 4752 Diaclasa 59 45 C 2 SR Ondulada 8 Seco Andesitas R4 13-ago.
M147 596817 7576184 4752 Diaclasa 81 210 D 2 0,5 SR Ondulada 12 Seco Andesitas R4 13-ago.
M148 597729 7585067 4592 Diaclasa 81 180 D 2 SR Rugosa 12 Seco Andesitas R4 13-ago.
M148 597729 7585067 4592 Diaclasa 84 135 D 5 SR Rugosa 12 Seco Andesitas R4 13-ago.
M149 600731 7583586 4562 Diaclasa 77 187 D 1 3 SR Plana 4 Seco Ignimbritas R2 13-ago.
M149 600731 7583586 4562 Diaclasa 84 244 D 6 0,5 SR Plana 4 Seco Ignimbritas R2 13-ago.
M150 601635 7578500 4577 Diaclasa 84 315 C 1 10 SR Plana 4 Seco Ignimbritas R2 13-ago.
M150 601635 7578500 4577 Diaclasa 74 255 C 3 13 Arena Plana-Escalonada 12 Seco Ignimbritas R2 13-ago.
M150 601635 7578500 4577 Diaclasa 42 164 D 3 0,5 SR Plana-Rugosa 8 Seco Ignimbritas R2 13-ago.
M151 603698 7577194 4624 Diaclasa 88 143 C 2 2 SR Plana-Escalonada 8 Seco Ignimbritas R2 13-ago.
M151 603698 7577194 4624 Diaclasa 85 95 D 1 SR Plana-Escalonada 8 Seco Ignimbritas R2 13-ago.
M151 603698 7577194 4624 Diaclasa 87 170 C 3 4 SR Plana-Ondulada 10 Seco Ignimbritas R2 13-ago.
Página 43 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
403
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
M152 604390 7577400 4690 Diaclasa 85 202 C 1 1 SR Plana-Rugosa 10 Seco Ignimbritas R2 13-ago.
M152 604390 7577400 4690 Diaclasa 60 330 D 1 0,5 SR Plana 4 Seco Ignimbritas R2 13-ago.
M152 604390 7577400 4690 Diaclasa 88 164 C 3 2 SR Plana 4 Seco Ignimbritas R2 13-ago.
M154 604865 7576273 4652 Diaclasa 48 225 C 3 0,5 SR Plana 4 Seco Ignimbritas R2 13-ago.
M154 604865 7576273 4652 Diaclasa 81 154 C 5 0,5 SR Plana-Escalonada 8 Seco Ignimbritas R2 13-ago.
M147 596817 7576184 4752 Falla Dextral 80 204 D 1 0,5 a 3,5 SR Plana 4 Seco Andesitas R4 13-ago.
L1044 597770 7584802 4571 Falla Inversa 87 170 C 1 2 SR Plana-Ondulada 8 Seco Andesitas R4 13-ago. Desplazamiento 5 cm
L1047 597770 7584802 4571 Falla Inversa 77 347 C 1 1 SR Plana 8 Seco Andesitas R4 13-ago. Desplazamiento 10 cm
L1057 603811 7577292 4636 Falla Inversa 83 166 C 1 0 SR Plana-Rugosa 12 Seco Ignimbritas R3 13-ago. Desplazamiento 0,5 cm
L1059 604905 7576271 4657 Falla Inversa 65 290 C 3 0 SR Rugosa 12 Seco Ignimbritas R3 13-ago. Desplazamiento 1 cm
M155 605749 7577656 4710 Falla Inversa 82 0 C 1 SR Plana-Escalonada 14 Seco Ignimbritas R2 13-ago. Rechazo 1cm
L1049 597770 7584802 4571 Falla Normal 68 150 133 C 1 0 SR Plana-Rugosa 12 Seco Andesitas R4 13-ago. Desplazamiento 7 cm
L1053 601652 7578478 4580 Falla Normal 87 346 C 1 0,5 Arena Plana-Rugosa 4 Seco Ignimbritas R3 13-ago. Desplazamiento 15 cm
L1055 601652 7578478 4580 Falla Normal 82 348 C 8 1 SR Rugosa 10 Seco Ignimbritas R3 13-ago. Desplazamiento 2 cm
L1058 604905 7576271 4657 Falla Normal 60 51 C 1 0 SR Rugosa 14 Seco Ignimbritas R3 13-ago. Desplazamiento 4 cm
M149 600731 7583586 4562 Falla Normal 80 10 C 2 2 Arena Plana-Rugosa 12 Seco Ignimbritas R2 13-ago. Desplazamiento 2,5 cm
M150 601635 7578500 4577 Falla Normal 89 237 D 1 6 SR Escalonada 10 Seco Ignimbritas R2 13-ago. Desplazamiento 4 cm
M155 605749 7577656 4710 Falla Normal 80 217 C 1 SR Ondulada-Rugosa 12 Seco Ignimbritas R2 13-ago. Desplazamiento 1cm
L1048 597770 7584802 4571 Falla Sinestral 78 213 C 1 0 SR Ondulada 12 Seco Andesitas R4 13-ago. Desplazamiento 10 cm
L1045 597770 7584802 4571 Pseudoestratificación 17 212 C Seco Andesitas R4 13-ago.
M148 597729 7585067 4592 Pseudoestratificación 22 225 C Seco Andesitas R4 13-ago.
M153 604484 7576684 4683 Pseudoestratificación 68 70 C Seco Ignimbritas R3 13-ago.
D115 598469 7569289 5004 Diaclasa 62 8 D 3 1 SR Ondulada-Escalonada 8 Seco Andesitas R4 14-ago.
D115 598469 7569289 5004 Diaclasa 86 105 D 2 SR Plana-Ondulada 8 Seco Andesitas R4 14-ago.
D117 597826 7569662 5192 Diaclasa 89 225 C 6 1 a 3 SR Plana-Escalonada 10 Seco Brecha de base R3 14-ago.
D118 597724 7569710 5310 Diaclasa 73 163 C 3 SR Ondulada-Rugosa 10 Seco Brecha de base R3 14-ago.
D118 597724 7569710 5310 Diaclasa 25 125 C 4 SR Plana-Escalonada 12 Seco Brecha de base R3 14-ago.
D119 598579 7568906 4895 Diaclasa 74 305 C 2 2 SR Ondulada 8 Seco Dacitas R4 14-ago.
D120 598736 7568818 4904 Diaclasa 82 109 C 4 5,5 SR Plana-Ondulada 10 Seco Andesitas R4 14-ago.
D121 599289 7568787 4765 Diaclasa 85 350 C 2 SR Plana-Ondulada 8 Seco Brecha de base R3 14-ago.
D121 599289 7568787 4765 Diaclasa 84 192 D 2 SR Ondulada 10 Seco Brecha de base R3 14-ago.
D121 599289 7568787 4765 Diaclasa 50 330 D 1 SR Plana 4 Seco Brecha de base R3 14-ago.
J64 597748 7569452 5143 Diaclasa 88 264 C 3 Plana 4 Seco Andesitas R4 14-ago.
J66 598087 7568856 4990 Diaclasa 88 302 C 3 0,2 SR Plana-Ondulada 8 Seco Brecha de base R3 14-ago.
J68 598175 7568758 4965 Diaclasa 58 100 C 2 0,5 SR Plana 4 Seco Andesitas R4 14-ago.
L1121 602641 7565806 4410 Diaclasa 89 220 C 6 30 SR Plana 12 Seco Ignimbritas R2 14-ago.
L1122 602641 7565806 4410 Diaclasa 87 216 C 3 2 SR Plana 12 Seco Ignimbritas R2 14-ago.
L1123 602641 7565806 4410 Diaclasa 85 240 C 3 3 SR Plana 12 Seco Ignimbritas R2 14-ago.
L1124 602641 7565806 4410 Diaclasa 83 216 C 4 0 SR Plana 12 Seco Ignimbritas R2 14-ago.
M156 597494 7568993 5216 Diaclasa 60 110 C 6 1 SR Escalonada 6 Seco Dacitas R3 14-ago.
M156 597494 7568993 5216 Diaclasa 81 91 C 3 0,5 SR Escalonada 6 Seco Dacitas R3 14-ago.
M157 597510 7568984 5230 Diaclasa 78 240 D 3 3 SR Plana 6 Seco Dacitas R3 14-ago.
M158 597748 7569125 5990 Diaclasa 88 185 C 3 0,5 SR Escalonada 6 Humedo Brecha de base R3 14-ago.
M158 597748 7569125 5990 Diaclasa 81 205 C 2 3 SR Plana 12 Seco Brecha de base R3 14-ago.
M160 598281 7568633 4921 Diaclasa 74 270 C 1 3 SR Plana 4 Seco Dacitas R3 14-ago.
M160 598281 7568633 4921 Diaclasa 84 151 C 1 5 SR Plana 4 Seco Dacitas R3 14-ago.
M160 598281 7568633 4921 Diaclasa 42 350 C 1 0,5 SR Ondulada 8 Seco Dacitas R3 14-ago.
M161 598442 7567690 4710 Diaclasa 84 90 D 1 4 Arena Curva 16 Seco Riodacita R3 14-ago.
M161 598442 7567690 4710 Diaclasa 52 115 D 4 0,5 SR Ondulada 16 Seco Riodacita R3 14-ago.
M161 598442 7567690 4710 Diaclasa 77 232 C 2 12 Plana 14 Seco Riodacita R3 14-ago.
M162 598451 7567687 4755 Diaclasa 79 35 D 3 12 SR Plana 12 Seco Riodacita R3 14-ago.
M163 598451 7567687 4755 Diaclasa 82 238 D 1 10 SR Ondulada 16 Seco Riodacita R3 14-ago.
M163 598512 7567634 4728 Diaclasa 60 245 D 1 5 SR Escalonada-Plana 12 Seco Riodacita R3 14-ago.
L1063 601072 7566210 4377 Falla 84 232 C 1 1 SR Plana 12 Seco Flujo de detritos R2 14-ago.
L1064 601072 7566210 4377 Falla 89 60 C 1 2 SR Plana 12 Seco Flujo de detritos R2 14-ago.
L1065 601072 7566210 4377 Falla 88 50 C 1 2 SR Plana 12 Seco Flujo de detritos R2 14-ago.
L1068 601106 7566245 4372 Falla 83 160 C 1 0 SR Plana 12 Seco Flujo de detritos R2 14-ago.
L1070 601277 7566265 4385 Falla 85 120 C 1 0 SR Rugosa 14 Seco Flujo de detritos R2 14-ago.
L1073 601373 7566277 4381 Falla 70 156 C 1 1 SR Rugosa 14 Seco Flujo de detritos R2 14-ago.
L1083 601583 7566209 4397 Falla 88 96 C 1 0 SR Plana 10 Seco Ignimbritas R3 14-ago.
Página 44 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
404
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L1085 601583 7566209 4397 Falla 85 80 C 1 0 SR Plana 10 Seco Ignimbritas R3 14-ago.
L1086 601583 7566209 4397 Falla 48 125 C 1 0 SR Ondulada 10 Seco Ignimbritas R3 14-ago.
L1087 601583 7566209 4397 Falla 88 86 C 1 0 SR Ondulada 10 Seco Ignimbritas R3 14-ago.
L1091 601583 7566209 4397 Falla 87 94 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago.
L1092 601583 7566209 4397 Falla 89 134 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago.
L1096 601583 7566209 4397 Falla 89 130 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago.
L1099 601583 7566209 4397 Falla 88 300 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago.
L1101 601583 7566209 4397 Falla 89 344 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago.
L1102 601583 7566209 4397 Falla 88 144 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago.
L1103 601583 7566209 4397 Falla 89 330 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago.
L1104 602190 7565866 4400 Falla 80 43 C 1 2 SR Plana 10 Seco Flujo de detritos R2 14-ago.
L1105 602190 7565866 4400 Falla 84 79 C 1 1 SR Plana 10 Seco Flujo de detritos R2 14-ago.
L1106 602190 7565866 4400 Falla 75 150 C 1 0 SR Plana 10 Seco Flujo de detritos R2 14-ago.
L1107 602190 7565866 4400 Falla 86 265 C 1 0 SR Plana 10 Seco Flujo de detritos R2 14-ago.
L1108 602190 7565866 4400 Falla 89 335 C 1 0 SR Plana 10 Seco Flujo de detritos R2 14-ago.
L1109 602190 7565866 4400 Falla 89 286 C 1 3 Micro Brecha Plana 10 Seco Flujo de detritos R2 14-ago.
L1110 602190 7565866 4400 Falla 86 340 C 1 1 Micro Brecha Plana 10 Seco Flujo de detritos R2 14-ago.
L1113 602190 7565866 4400 Falla 73 160 C 1 4 Micro Brecha Ondulada 12 Seco Flujo de detritos R2 14-ago.
L1114 602190 7565866 4400 Falla 85 334 C 1 0 SR Plana 12 Seco Flujo de detritos R2 14-ago.
L1115 602190 7565866 4400 Falla 83 68 C 1 0 SR Plana 12 Seco Flujo de detritos R2 14-ago.
L1116 602190 7565866 4400 Falla 83 160 C 1 0 SR Plana 12 Seco Flujo de detritos R2 14-ago.
L1117 602190 7565866 4400 Falla 88 352 C 1 6 Micro Brecha Plana 12 Seco Flujo de detritos R2 14-ago.
M156 597494 7568993 5216 Falla 225 70 135 C 1 0,5 SR Plana 6 Seco Dacitas R3 14-ago.
M157 597510 7568984 5230 Falla 88 70 C 6 2 SR Escalonada 8 Seco Dacitas R3 14-ago.
M159 597926 7569007 5012 Falla 180 78 90 C 1 5 SR Ondulada 4 Seco Dacitas R3 14-ago.
L1075 601373 7566277 4381 Falla 87 330 C 1 0 SR Rugosa 14 Seco Flujo de detritos R2 14-ago.
M158 597748 7569125 5990 Falla 192 84 282 C 1 1 SR Escalonada 8 Seco Dacitas R3 14-ago.
M158 597748 7569125 5990 Falla 88 115 C 1 0,5 SR Escalonada 8 Seco Dacitas R3 14-ago. Desplazamiento 14 cm
M159 597926 7569007 5012 Falla 270 54 180 C 1 0,5 SR Plana-Curva 4 Seco Dacitas R3 14-ago.
M163 598512 7567634 4728 Falla 82 198 C 1 6 SR Plana 12 Seco Riodacita R3 14-ago.
L1062 601072 7566210 4377 Falla Dextral 85 30 C 1 1,5 SR Plana 12 Seco Flujo de detritos R2 14-ago.
L1077 601583 7566209 4397 Falla Dextral 80 25 C 1 2 SR Rugosa 14 Seco Ignimbritas R3 14-ago. Desplazamiento 100 cm
D118 597724 7569710 5310 Falla Inversa 43 320 D 1 0,5 SR Ondulada-Rugosa 12 Seco Brecha de base R3 14-ago. Rechazo 6 cm
D120 598736 7568818 4904 Falla Inversa 78 320 C 1 1,5 SR Plana-Ondulada 10 Seco Andesitas R4 14-ago. Rechazo 5 cm
L1078 601583 7566209 4397 Falla Inversa 89 350 C 1 0 SR Plana 10 Seco Ignimbritas R3 14-ago. Desplazamiento 180 cm
L1100 601583 7566209 4397 Falla Inversa 85 340 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago. Desplazamiento 45 cm
L1111 602190 7565866 4400 Falla Inversa 89 80 C 1 0 SR Plana 10 Seco Flujo de detritos R2 14-ago. Desplazamiento 10 cm
D115 598469 7569289 5004 Falla Normal 71 175 C 1 1,5 Arena Plana 4 Seco Andesitas R4 14-ago. Desplazamiento 3 cm
D116 597535 7569602 5161 Falla Normal 62 305 C 1 2 SR Ondulada-Escalonada 12 Seco Brecha de base R3 14-ago. Desplazamiento 4 cm
D116 597535 7569602 5161 Falla Normal 76 285 C 1 0,5 a 10 SR Plana-Ondulada 8 Seco Brecha de base R3 14-ago. Desplazamiento 13 cm
D117 597826 7569662 5192 Falla Normal 72 210 D 1 1 SR Ondulada-Escalonada 12 Seco Brecha de base R3 14-ago. Desplazamiento 20 cm
D119 598579 7568906 4895 Falla Normal 89 105 D 1 1,5 SR Ondulada 8 Seco Dacitas R4 14-ago. Desplazamiento 8 cm
D120 598736 7568818 4904 Falla Normal 40 43 C 1 2 SR Plana 8 Seco Andesitas R4 14-ago. Desplazamiento 3,5 cm
J64 597748 7569452 5143 Falla Normal 88 25 C 1 Plana 4 Seco Andesitas R4 14-ago. Desplazamiento 3 cm
J65 597780 7569165 5035 Falla Normal 50 310 C 1 0,2 SR Plana 4 Seco Andesitas R4 14-ago. Desplazamiento 2 cm
J66 598087 7568856 4990 Falla Normal 86 195 C 1 1 a 3 SR Ondulada-Escalonada 14 Seco Brecha de base R3 14-ago. Desplazamiento 2 cm
J67 598170 7568758 4965 Falla Normal 85 121 D 1 2 a 5 SR Plana-Escalonada 14 Seco Andesitas R4 14-ago. Desplazamiento 8 cm
J68 598175 7568758 4965 Falla Normal 69 140 C 1 3 a 5 SR Ondulada-Escalonada 14 Humedo Andesitas R4 14-ago. Desplazamiento 5 cm
J70 598305 7568607 4915 Falla Normal 70 310 C 1 0.5 SR Plana 4 Seco Andesitas R4 14-ago. Desplazamiento 15 cm
L1066 601106 7566245 4372 Falla Normal 85 225 C 1 3 SR Plana 12 Seco Flujo de detritos R2 14-ago. Desplazamiento 10 cm
L1067 601106 7566245 4372 Falla Normal 88 234 C 1 2 SR Plana 12 Seco Flujo de detritos R2 14-ago. Desplazamiento 30 cm
L1069 601182 7566260 4382 Falla Normal 84 80 D 1 0 SR Plana 12 Seco Ignimbritas R2 14-ago. Desplazamiento 10 cm
L1071 601373 7566277 4381 Falla Normal 67 226 C 1 3 SR Rugosa 14 Seco Flujo de detritos R2 14-ago. Desplazamiento 10 cm
L1072 601373 7566277 4381 Falla Normal 40 214 C 1 0 SR Rugosa 14 Seco Flujo de detritos R2 14-ago. Desplazamiento 5 cm
L1074 601373 7566277 4381 Falla Normal 82 84 C 1 0 SR Rugosa 14 Seco Flujo de detritos R2 14-ago. Desplazamiento 20 cm
L1076 601583 7566209 4397 Falla Normal 84 280 C 1 3 SR Rugosa 14 Seco Ignimbritas R3 14-ago. Desplazamiento 5 cm
L1079 601583 7566209 4397 Falla Normal 80 86 C 1 0 SR Plana 10 Seco Ignimbritas R3 14-ago. Desplazamiento 15 cm
L1080 601583 7566209 4397 Falla Normal 88 16 C 1 0 SR Plana 10 Seco Ignimbritas R3 14-ago.
L1081 601583 7566209 4397 Falla Normal 72 70 C 1 0 SR Plana 10 Seco Ignimbritas R3 14-ago. Desplazamiento 5 cm
L1082 601583 7566209 4397 Falla Normal 84 320 C 1 0 SR Plana 10 Seco Ignimbritas R3 14-ago. Desplazamiento 20 cm
Página 45 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
Annex XVI Appendix B
405
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L1084 601583 7566209 4397 Falla Normal 88 30 C 2 0 SR Plana 10 Seco Ignimbritas R3 14-ago. Desplazamiento 40 cm
L1088 601583 7566209 4397 Falla Normal 80 130 C 1 0 SR Plana-rugosa 10 Seco Ignimbritas R3 14-ago. Desplazamiento 20 cm
L1089 601583 7566209 4397 Falla Normal 89 154 C 1 0 SR Plana-rugosa 10 Seco Ignimbritas R3 14-ago. Desplazamiento 10 cm
L1090 601583 7566209 4397 Falla Normal 88 105 C 1 2 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago. Desplazamiento 5 cm
L1093 601583 7566209 4397 Falla Normal 89 21 C 2 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago. Desplazamiento 30 cm
L1094 601583 7566209 4397 Falla Normal 89 110 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago. Desplazamiento 15 cm
L1095 601583 7566209 4397 Falla Normal 89 314 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago.
L1097 601583 7566209 4397 Falla Normal 89 96 C 1 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago. Desplazamiento 2 cm
L1098 601583 7566209 4397 Falla Normal 89 34 C 2 0 SR Plana-rugosa 12 Seco Ignimbritas R3 14-ago. Desplazamiento 30 cm
L1112 602190 7565866 4400 Falla Normal 70 150 C 1 0 SR Ondulada 10 Seco Flujo de detritos R2 14-ago. Desplazamiento 5 cm
L1118 602309 7565830 4401 Falla Normal 87 160 C 1 1 SR Plana 12 Seco Flujo de detritos R2 14-ago. Desplazamiento 5 cm
L1119 602309 7565830 4401 Falla Normal 88 290 C 1 1,5 SR Plana 12 Seco Flujo de detritos R2 14-ago. Desplazamiento 6 cm
L1120 602309 7565830 4401 Falla Normal 80 175 C 1 20 SR Plana 12 Seco Flujo de detritos R2 14-ago. Desplazamiento 30 cm
L1125 602641 7565806 4410 Falla Normal 86 60 D 1 0 SR Plana 12 Seco Ignimbritas R2 14-ago. Desplazamiento 10 cm
M158 597748 7569125 5990 Falla Normal 170 77 260 C 1 5 SR Plana 8 Seco Dacitas R3 14-ago.
M158 597748 7569125 5990 Falla Normal 205 79 115 C 1 10 SR Curva 6 Seco Dacitas R3 14-ago.
M158 597748 7569125 5990 Falla Normal 61 175 C 1 0,5 SR Plana-Curva 4 Seco Dacitas R3 14-ago. Desplazamiento 42 cm
M158 597748 7569125 5990 Falla Normal 68 164 C 1 10 SR Curva 4 Seco Dacitas R3 14-ago. Desplazamiento 5 cm
J69 598206 7568715 4951 Falla Sinestral 59 108 C 1 2 SR Plana 4 Seco Andesitas R4 14-ago. Desplazamiento 3 cm
D119 598579 7568906 4895 Pseudoestratificación 52 342 C Seco Dacitas R5 14-ago.
D120 598736 7568818 4904 Pseudoestratificación 34 55 C Seco Andesitas R4 14-ago.
M156 597494 7568993 5216 Pseudoestratificación 18 200 C Seco Dacitas R3 14-ago.
M161 598442 7567690 4710 Pseudoestratificación 35 215 C Seco Riodacita R3 14-ago.
D124 605207 7575500 4699 Diaclasa 45 55 C 1 1 Arena Plana-Rugosa 10 Seco Dacitas R3 15-ago.
D124 605207 7575500 4699 Diaclasa 74 316 C 1 1 a 5 Arena Rugosa 12 Seco Dacitas R3 15-ago.
D125 605202 7575087 4710 Diaclasa 71 106 C 6 0,4 a 1 SR Plana 4 Seco Dacitas R3 15-ago.
D125 605202 7575087 4710 Diaclasa 60 254 D 2 1 SR Plana-Rugosa 12 Seco Dacitas R3 15-ago.
D126 605345 7574958 4736 Diaclasa 90 168 C 4 1 a 3 Arena Plana 4 Seco Dacitas R3 15-ago.
D126 605345 7574958 4736 Diaclasa 74 221 D 2 4 Arena Plana-Ondulada 14 Seco Dacitas R3 15-ago.
D126 605345 7574958 4736 Diaclasa 83 315 D 2 0,5 a 2 Arena Rugosa-Escalonada 14 Seco Dacitas R3 15-ago.
D128 606024 7574532 4686 Diaclasa 74 125 D 2 SR Rugosa-Escalonada 14 Seco Dacitas R3 15-ago.
D128 606024 7574532 4686 Diaclasa 23 195 C 1 SR Rugosa-Escalonada 14 Seco Dacitas R3 15-ago.
D129 607686 7571340 4700 Diaclasa 85 36 C 1 SR Plana 4 Seco Ignimbritas R3 15-ago.
D129 607686 7571340 4700 Diaclasa 83 105 C 3 1 SR Plana-Rugosa 12 Seco Ignimbritas R3 15-ago.
L1127 600532 7566425 4385 Falla 20 347 C 1 0 SR Plana 12 Seco Flujo de detritos R2 15-ago.
L1133 600636 7566129 4349 Falla 87 308 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago.
L1135 600630 7565970 4343 Falla 88 18 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago.
L1136 600630 7565970 4343 Falla 87 7 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago.
L1144 600503 7565662 4319 Falla 87 17 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago.
D123 604874 7575809 4709 Falla Dextral 83 150 D 1 0,2 a 2 Arena Plana-Rugosa 10 Seco Dacitas R3 15-ago. Desplazamiento 5 cm
L1137 600630 7565970 4343 Falla Dextral 85 210 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 50 cm
L1145 600503 7565662 4319 Falla Dextral 89 10 100 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 30 cm
L1146 600188 7565406 4327 Falla Dextral 78 233 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 100 cm
D122 604848 7575867 4674 Falla Inversa 58 297 C 1 SR Plana-Rugosa 12 Seco Dacitas R3 15-ago. Rechazo 5 cm
D129 607686 7571340 4700 Falla Inversa 33 95 D 1 1 a 5 SR Plana-Ondulada 8 Seco Ignimbritas R3 15-ago. Rechazo 3 cm
D129 607686 7571340 4700 Falla Inversa 46 273 C 1 1 SR Plana-Ondulada 8 Seco Ignimbritas R3 15-ago. Rechazo 2 cm
L1126 600532 7566425 4385 Falla Inversa 50 330 C 1 0 SR Plana 12 Seco Flujo de detritos R2 15-ago. Desplazamiento 5 cm
L1128 600532 7566425 4385 Falla Inversa 75 342 C 1 0 SR Plana 12 Seco Flujo de detritos R2 15-ago. Desplazamiento 3 cm
L1129 600532 7566425 4385 Falla Inversa 47 290 C 1 0 SR Plana 12 Seco Flujo de detritos R2 15-ago. Desplazamiento 7 cm
D127 605702 7575092 4716 Falla Normal 78 300 D 1 1 Arena Ondulada-Escalonada 14 Seco Dacitas R3 15-ago. Desplazamiento 10 cm
D128 606024 7574532 4686 Falla Normal 81 331 C 1 0,5 Arena Rugosa-Escalonada 14 Seco Dacitas R3 15-ago. Desplazamiento 2 cm
L1130 600677 7566311 4375 Falla Normal 89 310 C 1 0 SR Rugosa 12 Seco Flujo de detritos R2 15-ago. Desplazamiento 5 cm
L1131 600677 7566311 4375 Falla Normal 89 304 C 1 0 SR Rugosa 12 Seco Flujo de detritos R2 15-ago. Desplazamiento 2 cm
L1132 600636 7566129 4349 Falla Normal 83 10 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 15 cm
L1134 600636 7566129 4349 Falla Normal 87 20 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 10 cm
L1138 600630 7565970 4343 Falla Normal 88 29 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 5 cm
L1139 600630 7565970 4343 Falla Normal 85 26 C 1 1 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 10 cm
L1140 600630 7565970 4343 Falla Normal 87 30 C 1 1 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 5 cm
L1141 600587 7565829 4320 Falla Normal 89 11 C 1 1 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 20 cm
L1143 600587 7565829 4320 Falla Normal 90 335 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 10 cm
Página 46 Base de datos
! i
I: I f fl i
~
1 LlllJlilU+W®tttti++++tt-mH-tttttttmttttttnmnrrnm
; 1l!;J~ lill®U+W~++++++++Httt-ttttttttttttmtinnnrrnm
: I 2f I I lLUllm++w-tttttt+++m~ttttttmttttmmrmnn -,, L ~
!!; = ~
2
, ~~11w-1tiwu+-W++t+i++t+t++tt-tttrttttmttmtnmmmmn11 lie 2
~ ,l
d L
406
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
PTO. ESTE NORTE ELEV. TIPO Az Bz DipDir Pitch CONTINUIDAD PERSISTENCIA
(10m)
ABERTURA
(cm)
RELLENO FORMA JRC AGUA TIPO ROCA ALTERACION DUREZA FECHA OBSERVACIONES
L1147 600188 7565406 4327 Falla Normal 70 45 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 6 cm
L1148 600188 7565406 4327 Falla Normal 89 52 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 5 cm
L1149 600188 7565406 4327 Falla Normal 87 62 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 10 cm
L1150 600188 7565406 4327 Falla Normal 88 58 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 10 cm
L1142 600587 7565829 4320 Falla Sinestral 89 5 C 1 0 SR Plana 12 Seco Ignimbritas R3 15-ago. Desplazamiento 30 cm
D124 605207 7575500 4699 Pseudoestratificación 42 142 C Seco Dacitas R3 15-ago.
D125 605202 7575087 4710 Pseudoestratificación 65 238 C Seco Dacitas R3 15-ago.
Página 47 Base de datos
SERGE~ MIN
8l!1W'ICIO Gl!OI.Coiico IIIIINl!RO
II Pl'..i I
Annex XVI Appendix B
407
CONVENIO DE COOPERACIÓN INTERINSTITUCIONAL Y
CONTRATO DE CONSULTORIA DIREMAR - SERGEOMIN
ESTADÍSTICA CUANTITATIVA Y
CUALITATIVA DE
ESTRUCTURAS
-----
SERGE~ MIN
~~!Rl.~~D@ @[email protected]~@ liY.ilDl/:!l~!Rl.@
I =:::J
II
I
Calle Federico Suazo N° 1673 Esquina Reyes Ortiz- La Paz- Bolivia
Telf. (591 - 2) 2330981 - 2331236- Fax 2391725 - 2318295
www.sergeomin.gob.bo
408
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Anexo
Estadística cuantitativa y cualitativa del proyecto “Estudio Geológico-Estructural del área
Circundante al Manantial Silala”
ESTRUCTURAS CANTIDAD
Diaclasa 1955
Falla 179
Falla Dextral 23
Falla Inversa 87
Falla Normal 331
Falla Sinestral 12
Falla de Rumbo 6
Falla inversa 34
Pseudoestratificación 127
Total Estructuras 2754
0
200
400
600
800
1000
1200
1400
1600
1800
2000
1
Diaclasa 1955
Falla 179
Falla Dextral 23
Falla Inversa 87
Falla Normal 331
Falla Sinestral 12
Falla de Rumbo 6
Falla inversa 34
Pseudoestratificación 127
1955
179
23 87
331
12 6 34 127
ESTRUCTURAS GEOLOGICAS-PROYECTO SILALA









---
SERGE~MIN
~IE~'¥'11«:0<t» (lJIE<t»ll.000«:<t» IMIOll'illE~<t»
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
409
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Cerro Inacaliri
ESTRUCTURAS
Diaclasa 431
Falla 21
Falla Dextral 3
Falla Inversa 17
Falla Normal 47
Falla Sinestral 2
Falla de Rumbo 5
Pseudoestratificación 35
0
100
200
300
400
500
1
431
21 3 17 47
2 5 35
Estructuras
Cerro Inacaliri
Diaclasa Falla Falla Dextral Falla Inversa
Falla Normal Falla Sinestral Falla de Rumbo Pseudoestratificación
260
270
280
290
1
CONTINUIDAD
C 289
D 272
289
272
Continudad
,,
,,
;
/
,, /
,,
,, ,,
/
/
~
;
Ml
Iii



Iii Iii
Iii Iii
---
SERGE~MIN
~IE~'¥'11«:0<t» (lJIE<t»ll.000«:<t» IMIOll'illE~<t»
Iii
liil
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
410
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
100
200
1 2 3 4 5 6 7 8 9 10
Cantidad 170 95 115 56 37 24 4 12 1 12
170
95 115
56 37 24 4 12 1 12
Persistencia
0
200
400
2 4 6 8 10 12 14 16 18 20
Cantidad 391 60 36 11 17 2 1 4 0 2
391
60 36 11 17 2 1 4 0 2
Abertura
0
50
100
150
2 4 6 8 10 12 14 16 18
Cantidad 19 66 110 127 83 56 62 2 1
19
66
110 127
83
56 62
2 1
Rugosidad JRC

[■

-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
-j
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
411
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Silala Grande
Estructuras Cantidad
Diaclasa 303
Falla 26
Falla Dextral 1
Falla Inversa 6
Falla Normal 30
Falla Sinestral 1
Pseudoestratificación 28
0
50
100
150
200
250
300
350
Cantidad
303
26
1 6
30
1
28
Estructuras Silala Grande
Diaclasa Falla Falla Dextral Falla Inversa Falla Normal Falla Sinestral Pseudoestratificación
0
50
100
150
200
250
Continuidad
C 144
D 223
144
223
Continuidad
■ ■


/

/
/
/
~
/
/
/
/
/
■ ■
/
/ /
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
■ ■
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
412
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
50
100
150
200
250
1 2 4 6 8 10 12 14 16 18
Cantidad 233 81 44 7 1 0 0 1 0 0
233
81
44
7 1 0 0 1 0 0
Persistencia
Cantidad
0
50
100
150
200
250
300
5 10 15 20 25 30 35 40 45
Abertura 292 52 7 10 2 3 0 0 1
292
52
7 10 2 3 0 0 1
Abertura
Abertura
0
50
100
150
2 4 6 8 10 12 14 16 18
Cantidad 11 28 22 92 109 56 43 2 4
Rugosidad JRC
[■

-


~-----

-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
- - - i
i
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
413
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Estructuras Cantidad
Diaclasa 51
Falla 11
Falla Inversa 11
Falla Normal 16
Falla Sinestral 1
Pseudoestratificación 7
0
10
20
30
40
50
60
1
51
11 11
16
1
7
Estructuras Cerro Cahuana
Diaclasa Falla Falla Inversa Falla Normal Falla Sinestral Pseudoestratificación
0
10
20
30
40
50
60
1
C 52
D 38
52
38
Continuidad



■ ■ ■
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
■ ■
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
414
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
10
20
30
40
50
1 2 3 4 5 6 7 8
Cantidad 43 14 18 9 3 2 0 1
43
14 18
9
3 2 0 1
Persistencia
0
20
40
60
80
3 6 9 12 15 18 21 24 27 30
Cantidad 70 10 3 4 2 0 0 0 0 1
70
10 3 4 2 0 0 0 0 1
Abertura
0
10
20
30
40
2 4 6 8 10 12 14 16 18
Cantidad 0 12 1 12 33 24 8 0 0
0
12
1
12
33
24
8
0 0
Rugosidad JRC



i
/------/
/ - i
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
.,,,,,,,,
j
- -
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
415
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Pastos Grandes
Estructuras Cantidad
Diaclasa 154
Falla 1
Falla Dextral 4
Falla Inversa 33
Falla Normal 60
Pseudoestratificación 5
0
20
40
60
80
100
120
140
160
154
1 4
33
60
5
Estructuras Pastos Grandes
Diaclasa Falla Falla Dextral Falla Inversa Falla Normal Pseudoestratificación
0
100
200
1
C 198
D 54
198
54
Continuidad



■ ■ ■
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
■ ■
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
416
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
50
100
150
1 2 3 4 5 6 7 8 9 10
Cantidad 129 67 35 9 3 5 2 1 0 1
129
67
35
9 3 5 2 1 0 1
Persistencia
0
50
100
150
200
250
2 4 6 8 10 12 14
Cantidad 212 19 13 1 6 0 1
212
19 13 1 6 0 1
Abertura
0
20
40
60
2 4 6 8 10 12 14 16 18
Cantidad 3 59 21 58 48 46 15 1 1
3
59
21
58
48 46
15
1 1
Rugosidad JRC

■ t

-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
i
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
417
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Cerro Torito
Estructura Cantidad
Diaclasa 236
Falla 31
Falla Dextral 3
Falla Inversa 7
Falla Normal 17
Falla Sinestral 3
Pseudoestratificación 30
0
50
100
150
200
250
1
236
31
3 7 17 3
30
Estructuras Cerro Torito
Diaclasa Falla Falla Dextral Falla Inversa Falla Normal Falla Sinestral Pseudoestratificación
120
130
140
150
160
170
1
C 161
D 136
161
136
Continuidad
■ ■


■ ■ ■
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
■ ■
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
418
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
50
100
150
1 2 3 4 5 6 7
Cantidad 112 92 46 23 12 11 1
112
92
46
23 12 11 1
Persistencia
0
100
200
300
3 6 9 12 15 18 21 24 27 30
Cantidad 215 39 12 21 3 0 1 0 3 3
215
39 12 21 3 0 1 0 3 3
Abertura
0
20
40
60
80
100
2 4 6 8 10 12 14 16 18
Cantidad 1 22 8 85 48 41 65 21 6
1
22
8
85
48 41
65
21
6
Rugosidad JRC


[■
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
/=========================
,,
-----
- - -
i
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
419
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Cerro Negro
Estructuras Cantidad
Diaclasa 82
Falla 10
Falla Dextral 1
Falla Normal 9
Pseudoestratificación 1
0
10
20
30
40
50
60
70
80
90
1
82
10
1
9
1
Estructuras Cerro Negro
Diaclasa Falla Falla Dextral Falla Normal Pseudoestratificación
0
20
40
60
80
1
C 63
D 40
63
40
Continuidad
/ /
/ /
/ /
r /
/ /

; '
/
f: I

;
;
/
;
;
/
;
■ ■
;
/
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)

Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
420
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
20
40
1 2 3 4 5 6 7 8
Cantidad 22 16 32 24 3 2 2 1
22
16
32
24
3 2 2 1
Persistencia
0
50
100
4 8 12 16 20 24 28 32 36 40
Cantidad 81 10 7 0 2 0 1 0 0 1
81
10 7 0 2 0 1 0 0 1
Abertura
0 Cantidad
10
20
30
40
2 4 6 8 10 12 14 16 18
Cantidad 0 35 21 30 16 0 0 0 0
0
35
21
30
16
0 0 0 0
Rugosidad JRC




/_
/
/'
/
,,,.-:

1/-
t
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
..,,
-j
- - - -r t t
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
421
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Silala Chico
Estructuras Continuidad
Diaclasa 167
Falla 13
Falla Inversa 8
Falla Normal 23
Pseudoestratificación 8
0
50
100
150
200 167
13 8
23
8
Estructuras Silala Chico
Diaclasa Falla Falla Inversa Falla Normal Pseudoestratificación
0
50
100
150
1
C 67
D 144
67
144
Continuidad
,,



■ ■ ■
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)

Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
422
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
50
100
1 2 3 4 5 6 7 8 9 10
Cantidad 100 39 21 21 10 4 3 9 0 4
100
39
21 21 10 4 3 9 0 4
Persistencia
0
50
100
150
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Cantidad 125 23 27 5 13 7 0 1 0 4 1 0 1 0 4
125
23 27
5 13 7 0 1 0 4 1 0 1 0 4
Abertura
0
20
40
60
80
100
2 4 6 8 10 12 14 16 18
Cantidad 9 17 32 99 36 11 4 3 0
9 17
32
99
36
11 4 3 0
Rugosidad JRC


✓----------

-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
..,,,
j
-j
-
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
423
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Ignimbritas Silala
ESTRUCTURAS Cantidad
Diaclasa 450
Falla 63
Falla Dextral 8
Falla Inversa 19
Falla Normal 85
Falla Sinestral 3
Falla de Rumbo 1
Falla Inversa 6
Pseudoestratificación 6
0
100
200
300
400
500 450
63
8 19
85
3 1 6 6
Estructuras Ignimbritas Silala
Diaclasa Falla Falla Dextral
Falla Inversa Falla Normal Falla Sinestral
Falla de Rumbo Falla Inversa Pseudoestratificación
0
200
400
600
1
C 436
D 199
Continuidad








-----



SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
424
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
100
200
300
400
500
2 4 6 8 10 12 14 16
Cantidad 441 138 42 8 2 2 1 1
441
138
42 8 2 2 1 1
Persistencia
0
200
400
600
5 10 15 20 25 30 35
Cantidad 577 37 10 6 1 3 1
577
37 10 6 1 3 1
Abertura
0
50
100
150
2 4 6 8 10 12 14 16 18
Cantidad 4 17 126 99 104 117 103 26 39
4 17
126
99 104 117
103
26 39
Rugosidad JRC
[■


-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
425
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Estructuras Cantidad
Diaclasa 35
Falla 1
Falla Inversa 14
Falla Normal 35
Falla Sinestral 1
Pseudoestratificación 6
0
5
10
15
20
25
30
35
1
35
1
14
35
1
6
Estructuras Cerro El Meson
Diaclasa Falla Falla Inversa Falla Normal Falla Sinestral Pseudoestratificación
0
10
20
30
40
50
60
1
C 59
D 27
59
27
Continuidad



■ ■ ■
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
■ ■
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
426
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
20
40
60
1 2 3 4 5
Cantidad 54 17 5 6 4
54
17
5 6 4
Persistencia
0
10
20
30
40
50
60
70
80
5 10 15 20 25 30 35 40 45
Cantidad 77 5 3 0 0 0 0 0 1
77
5 3 0 0 0 0 0 1
Abertura
0 Cantidad
10
20
30
40
2 4 6 8 10 12 14 16 18
Cantidad 0 4 0 34 17 26 5 0 0
0 4 0
34
17
26
5
0 0
Rugosidad JRC
[■
■ f
/======.

-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
-
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
427
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Cerro Chascón
ESTRUCTURAS Cantidad
Diaclasa 19
Falla 1
Falla Dextral 3
Falla Sinestral 1
0 2
4 6 8
10
12
14
16
18
20
1
19
1
3
1
Estructuras Cerro Chascon
Diaclasa Falla Falla Dextral Falla Sinestral
0
5
10
15
20
25
1
C 22
D 2
22
2
Continuidad


■ ■ ■
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)

Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
428
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0 2 4 6 8
10
1 2 3 4 5 6 7
Cantidad 5 0 1 1 10 5 2
5
0 1 1
10
5
2
Persistencia
0
5
10
1 2 3 4 5 6 7 8 9 10
Cantidad 10 4 1 4 2 1 0 0 0 2
10
4
1
4
2 1 0 0 0
2
Abertura
0
5
10
15
20
25
5 6 7 8 9 10
Cantidad 0 0 0 24 0 0
0 0 0
24
0 0
Rugosidad JRC
..,,,...,,
■ i

/ ,,.
/
,,.
/
/
/
~/,..,,,...,, ,..,,,...,,
■ f
,..,,,...,,
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
,..,,,...,, ,..,,,...,,
i
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
Annex XVI Appendix B
429
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
Cerro Capina
ESTRUCTURAS Cantidad
Diaclasa 9
Falla 1
Falla Normal 1
0
2
4
6
8
10
1
9
1 1
Estructuras Cerro Capina
Diaclasa Falla Falla Normal
4,4
4,6
4,8
5
5,2
5,4
5,6
5,8
6
1
C 5
D 6
5
6
Continuidad
■ ■ ■
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo
430
Annex XVI Appendix B
DIRECCIÓN TÉCNICA DE PROSPECCIÓN Y EXPLORACIÓN
“ESTUDIO GEOLOGICO-ESTRUCTURAL DEL AREA
CIRCUNDANTE DEL MANANTIAL DEL SILALA”
0
1
2
3
2 4 6 8 10 12 14
Cantidad 3 1 2 2 0 0 3
3
1
2 2
0 0
3
Persistencia
0
2
4
6
1 2 3 4 5 6 7 8 9 10
Cantidad 5 1 1 1 1 0 1 0 0 1
5
1 1 1 1
0
1
0 0
1
Abertura
0
2
4
6
8
2 4 6 8 10 12 14 16 18
Cantidad 0 0 0 7 0 2 2 0 0
0 0 0
7
0
2 2
0 0
Rugosidad JRC


,, - - -
[■
-----
SERGE(\§)MIN
~IE~'¥'11<CD«» ClillE(O)IL.OOD<C(O) IMIDIMIE~(O)
,,,_,
- - - i i
- -l
Calle Federico Zuazo N° 1673 Esquina Reyes Ortiz - La Paz - Bolivia
Telf. (591 - 2) 2330981 - 2331236 - Fax 2391725 - 2318295
www.sergeomin.gob.bo

Document Long Title

Volume 2 - Annexes

Links