Volume 4 - Annex 17

Document Number
162-20180903-WRI-01-03-EN
Parent Document Number
162-20180903-WRI-01-00-EN
Document File

INTERNATIONAL COURT OF JUSTICE
DISPUTE OVER THE STATUS AND USE OF THE
WATERS OF THE SILALA
(CHILE v. BOLIVIA)
COUNTER-MEMORIAL OF
THE PLURINATIONAL STATE OF BOLIVIA
ANNEX 17
VOLUME 4
3 SEPTEMBER 2018

LIST OF ANNEXES TO THE COUNTER-MEMORIAL OF THE
PLURINATIONAL STATE OF BOLIVIA
ANNEX N° TITLE PAGE N°
Technical Documents (Continued from Annex 17)
VOLUME 4
ANNEX 17
Danish Hydraulic Institute (DHI), Study of the Flows in
the Silala Wetlands and Springs System, 2018
Annex F: Hydrogeology
(Original in English)
Appendix a: Documentation of Wells and
Piezometers from the Field Investigation Program
Appendix b: Packer Test Analyses
Appendix c: Slug Test Analyses
Annex 17
111
423
431
515
537
Appendix d: Pumping Test Analyses
Appendix e: Water Quality Data for Silala Spring
System
1

1
Annex 17
Danish Hydraulic Institute (DHI), Study of the Flows in the
Silala Wetlands and Springs System, 2018
Annex F: Hydrogeology
(Original in English)
2
3
Contract CDP-I No 01/2018, Study of
the Flows in the Silala Wetlands and
Springs System
Product No. 2 - 2018 Final Report
Annex F : Hydrogeology
D~
Plurinational State of Bolivia, Ministry of Foreign Affairs, Diremar
July 16, 2018
DHI • Agern Alie 5 • • DK-2970 H0rsholm • Denmark
Telephone: +45 4516 9200 • Telefax: +45 4516 9292 • [email protected]www.dhigroup.com
4
5
CONTENTS
Glossary ...................................................................................................................................... 4
Executive Summary ...................................................................................................................... 8
Introduction ............................................................................................................... 10
2 Previous studies ........................................................................................................ 10
2.1 Geological studies... ....................... . ... 12
2.2 Geophysical studies ................................................................................................................ 15
2.3 Chilean hydrogeological investigation ........................................................................... 15
3 Hydrogeological characterisation program ............................................................. 20
3.1 Field investigation program scope and objectives.. ... ...... ..... .. ...... . ........ 20
3.2 Piezometer and test well drilling and construction ......... ........ . . 22
3.2.1 Piezometer development ..................... ...... .. .................. ....... .31
3.3 Water level monitoring .................. .... .... . ................. .... .......... 31
3.4 Hydraulic testing. .......... ........ ................ ....... .32
3.4.1 Slug testing .......... ...... ...... .. ...... ....... .............. ... ...... ..... ........ ..... ..... ......... . . ..... ..... ........ . ... 34
3.4.2 Packer testing . ................ ....... .. ...... . ............................................... 44
3.4.3 Aquifer pumping test .......... .47
3.4.4 Aquifer test analysis methods.. .51
3.5 Water quality sampling ..................... ... . ............................. 58
4 Hydrogeological conceptual model ......................................................................... 58
4.1 Geology of the Silala Near Field ...................................... .................... ..................................... 59
4.2 Hydrogeological units ............................................................................... ............. 59
4.2.1 Hydrostructural units (e.g. faults and fracture zones) ............... ...... .. . .......... 65
4.3 Hydrogeological framework model ........... 67
4.3.1 Data sources . 67
4.3.2 Model construction ... . ...... .. ..... ... ................ .... ...... ........ .. . ...... ..... ........ . ... 70
4.4 Hydraulic properties. .................... .. ..... 74
4.4.1 Hydraulic conductivity ........... 74
4.4.2 Aquifer storage .............................................................. .... .................. ...................... ............. 78
4.4.3 Anisotropy.... ..................... ....... ....................... . ............... ............. 80
4.4.4 Hydrologic boundaries ........................ . ............................. 81
4.5 Groundwater recharge ...................... ....................... .. . ...................... ........ 83
4.5.1 Groundwater discharge .... 83
4.6 Hydrochemistry.. . ................. ............................................................................... 85
4.6.1 Hydrochemistry results ............ ..... ... ...... ..... ........ .......... ... ..... .. ....... ..... .. ..... . ... 85
4.7 Groundwater flow ........................ . ...... 90
4.7.1 Horizontal hydraulic gradients .................. .... .......... 91
4.7.2 Vertical hydraulic gradients ..................... .... . ................. .... .......... 94
4.7.3 Groundwater- surface water interactions.. . ........ 94
4.7.4 Anthropogenic impacts to hydraulic gradients ...................... . ........ 97
4.8 Assumptions and limitations ..................................................................................................... 98
5 Summary and conclusions ....................................................................................... 98
6 References ............................................................................................................... 101
The expert in WATER ENVIRONMENTS
6
D~
FIGURES
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Geologic Map of the Silala Study Area (SERGEOMIN, 2003) . 14
Location of the 28 geophysical scans, Sil ala ......... 16
Comparison of the Silala catchment delineation by (Alcayaga, 2017) and OHi (Annex A) ........ 19
Location of the boreholes and piezometers constructed in the Silala Near Field ....................... 21
Drilling rig used for test well drilling and rock chip samples from DS-4P. . ... 22
Piezometer development ................... 31
Groundwater elevations in shallow piezometers near the Chilean border. ..................... 32
Locations of wells incorporated in the hydraulic testing program . 33
Solid slug used for piezometer slug tests. . 34
Hydrogeological Units - Geometric Mean for Measured Hydraulic Conductivity (K) from
Small Scale Hydraulic Tests. HU3 - Weathered lava flows, HGU5 - ignimbrite deposits
with a low degree of welding, HGU6 Lower - ignimbrite deposits with a high degree of
welding, HG6 Upper - ignimbrite deposits with a high degree of welding and HU? - Fault
zones. . .................................................................................... 44
Time-drawdown and pumping rates during the step-test at DS-4P . 48
Discharge rate variability during constant-rate pumping test. . 49
Time-drawdown data during constant-rate test in key wells and piezometers . 50
Time-drawdown data in observation piezometers during constant-rate test. .............................. 51
Residual drawdown in DS-4P after the step-test ........................................................................ 54
Distance-drawdown analysis (DS-3, 5S, 5P-1, 5P-II,6 and 9) .................................................... 56
Residual drawdown and recovery analysis at DS-4P after the constant-rate pumping test .. 57
Reported values from the Ministerio de Energias for a groundwater sample collected from
the Silala Near Field (Ministerio de Energias, 2017). .. . 58
Example of the range of hydraulic conductivity of luff from Nevada and New Mexico
(Smyth, 2006). . .... 60
A) Delineation of hydrogeological units (HGUs) in the Silala area. B) Silala site imagery
overlaid by delineated HGUs. . ... 63
Correlation between Sergeomin, 2017 ignimbrites and DHl's hydrogeological unit
groupings.
Conceptual scheme for fault related fluid flow (Caine and others, 1996)
Spring emanating from localised conduit type fracture
Drill hole log comparison between imported geologic logs and logs produced from the
geological model.
64
....... 66
.67
..... 68
Electrical resistivity tomography (ERT) scan 15 and 16 of 28 taken in the Silala Near Field
Model Construction (Below). Above, ERT scan overlays modelled geology of the Silala
Near Field in Geo Modeller .......................................................................................................... 69
Figure 26 Location of cross-sections 15 and 16 shown in Figure 27 .. . ........ 70
Figure 27 Hydrogeological Framework Model (HGFM) rendered in 3D. The Silala Fault (HGU7) is
highlighted in red. Remaining units are displayed with transparency for easier viewing of
modelled subsurface ....................... 71
Figure 28 Subsurface view of the HGFM facing the NW. Silala Chico's volcanic neck (HGU8) and
the fault zone (HGU7) both extend from the model surface to the bottom of the model
domain ......................................................................................................................................... 71
Figure 29 Location of geological profiles generated from the Hydrologic Framework Model (HGFM) ........... 72
Figure 30 Geological profile A. . 73
Figure 31 Geological profile B. . .... 73
Figure 32 Geological profile C ..... 74
Figure 33 Rose diagram of normal and reverse faults in the Silala ignimbrite (SERGEOMIN, 2017) ........ 80
Figure 34 Example of hydraulic conductivity with depth function for luff in a deep flow system (see
Tertiary Volcanics, Belcher, 2001) ....................................................................... 81
Figure 35 Drawdown versus time during the PW-UQN constant-rate pumping test at 20 I/s. Source:
Chilean Memorial, 2017.. . ........................................ 82
Figure 36 Conceptual cross-section of flow through the ignimbrite "window" at the Chilean border .......... 84
Figure 37 Stiff diagrams for Silala Near Field Springs, Canal and Groundwater. .. . ...... 87
2
7
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
TABLES
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
D~
14C in pMC with stiff diagrams - Silala water sampling locations. .... 89
Conceptual diagram illustrating the potential for enhanced groundwater flow through fault
zones relative to the surrounding ignimbrite aquifer- Silala Catchment.. ·······91
Silala Near Field water table map. .................................... 93
Conceptual schematics of a gaining river (USGS, 1998). .... 95
Mapping of flows and net inflows based on simultaneous mean canal flow measurements
(in I/s) (Annex C: "Surface water"). . ................................... 96
Conceptual drawing of a disconnected stream (USGS, 1998). . ...... 97
Evidence of blasted rock (precipitates on rock} to lower spring elevations and increase
spring discharge ..... ........ 97
Document summary and application for current study. . ............................. 11
Existing and newly installed wells (November 2016) in Chile associated with the Silala
Spring System. . ....... 18
Summary of piezometer completion information .................. ....•.................. ....••...................... 23
Summary of Slug Test Results ....................................................................... ........................... 35
Summary of Lefranc Test Results... . ...... 45
Lugeon Test Results... . ...... .47
Summary of hydraulic parameter estimates from the DS-4P constant-rate test. .... 55
Comparison between Pumping Test and Slug Test Results. . ... 57
Hydrogeological Units. . .. .. 61
lgnimbrite classification.. . ............................................................................. 62
Hydrogeological Units - Measured and Estimated Hydraulic Conductivity ................................. 76
Hydrogeological Units - Measured and Estimated Storage Properties .... 79
Parameters for a conservative Darcy estimate of trans border groundwater flow. . .... 85
Tritium and 14C results (Sergeotecmin, 2005 (Bolivian) and Arcadis, 2017 (Chilean)). ..88
Calculated vertical gradients at nested piezometers. . ...... 94
DOCUMENTATION OF THE STUDY
Main Report Containing the summary and conclusions
Technical Annexes:
Annex A.
Annex 8.
Annex C.
Annex D.
Annex E.
Annex F.
Annex G.
Annex H.
Annex I.
The Silala catchment
Climate analysis
Surface waters
Soil analyses
Water balances
Hydrogeology (this annex)
Integrated surface water - groundwater modelling
Natural flow scenarios
Questionnaire put by the Plurinational State of Bolivia to DHI
The expert in WATER ENVIRONMENTS 3
8
4
Glossary
Term
Aquifer
Austral summer
Basin
Catchment
Confined aquifer
Depression, terrain
depression or sink
Desert climate
Digital elevation model
(DEM)
Discharge
El Nino
Meaning/Definition
Geological formation capable of storing, transmitting and yielding
exploitable quantities of water.
Summer period in the Southern Hemisphere.
Area having a common outlet for its surface runoff.
The whole of the land and water surface contributing to the discharge at
particular stream cross section. This means that any cross section of a
stream will have a unique catchment of its own. (Wilson, 1978).
Confined aquifers are aquifers that are overlain by a confining layer,
often made up of clay or other geological formations with low
permeability.
A depression (or sink) is a low point in the terrain surrounded by higher
ground in all directions. If the soil is impervious, the depression collects
rain water from a local catchment. Surface water or groundwater inflows
will accumulate in the depression until:
- the water level reaches the nearest terrain threshold and runs off or
- the evaporation from the depression is equal to its combined surface
water groundwater inflows. However, a depression may also drain subsuperficially
to lower lying areas through pervious soils, geological
faults or groundwater aquifers.
Desert climate (in the Koppen climate classification BWh and BWk,
sometimes also BWn), also known as an arid climate, is a climate in
which precipitation is too low to sustain any vegetation at all, or at most
a very scanty shrub and does not meet the criteria to be classified as a
polar climate.
Data files holding terrain levels often organised in a quadratic grid with
a certain cell size (e.g. 30m by 30 m). They are very convenient tools
for and often used as standard tools in Geographic Information
Systems (GIS) for delineation of topographical catchment and for many
other purposes.
Volume of water flowing per unit time, for example through a river
cross-section or from a spring or a well.
El Nino is the warm phase of the El Nino Southern Oscillation
(commonly called ENSO) and is associated with a band of warm ocean
water that develops in the central and east-central equatorial Pacific
(between approximately the International Date Line and 120°W),
including off the Pacific coast of South America. El Nino Southern
Oscillation refers to the cycle of warm and cold temperatures, as
measured by sea surface temperature (SST) of the tropical central and
eastern Pacific Ocean. El Nino is accompanied by high air pressure in
the western Pacific and low air pressure in the eastern Pacific. The cool
phase of ENSO is called "La Nina" with SST in the eastern Pacific
below average and air pressures high in the eastern and low in western
Pacific. The ENSO cycle, both El Nino and La Nina, causes global
changes of both temperatures and rainfall.
9
Evapotranspiration
Food and Agriculture
Organization of the
United Nations (FAO)
Fossil Water
Geographic
Information System
(GIS)
Groundwater
Hydrogeological
Conceptual Model
(HCM)
Hydrogeological
Framework Model
(HGFM)
Hydrological
catchment
Combination of evaporation from free water and soil surfaces and
transpiration of water from plant surfaces to the atmosphere.
Specialized agency of the United Nations that leads international efforts
to defeat hunger. FAO is also a source of knowledge and information,
and helps developing countries in transition modernize and improve
agriculture, forestry and fisheries practices, ensuring good nutrition and
food security for all.
While all definitions of fossil water agrees that it is old water stored in
aquifers or glaciers for thousands or millions of years, they do not
strictly agree if the waters are non renewable (Definition 1) or if they
have "just" infiltrated many years ago (Definition 2). In this report,
definition 1 has been used.
Definition 1: Oxford living Dictionary
(https://en.oxforddictionaries.com/definition/fossil_water): Fossil water is
water that has been contained in an aquifer, glacier etc. for a very long
period of time (thousands or millions of years) and hence is not
renewable.
Definition 2: UNESCO defines fossil groundwater as water that
infiltrated usually millennia ago and often under climatic conditions
different from the present, and that has been stored underground since
that time.
A geographic information system (GIS) is a system designed to
capture, store, manipulate, analyse, manage, and present spatial or
geographic data.
Subsurface water occupying the saturated zone (i.e. where the pore
spaces (or open fractures) of a porous medium are full of water).
The conceptual understanding of the individual components in a
hydrologic system (i.e. groundwater, surface water, and recharge) and
the processes involved between each component.
A three-dimensional geologic model that defines the spatial extent of
stratigraphic and structural features. The development of the HGFM
incorporates topographic, geologic, geophysical, and hydrogeological
datasets.
The hydrological catchment is the total area contributing to the
discharge at a certain point. The hydrological catchment includes all the
surface water from rainfall runoff, snowmelt, and nearby streams that
run downslope towards a shared outlet, as well as the groundwater
underneath the earth's surface. Since groundwater may cross the
topographical divides a hydrological catchment to a point may be larger
than the corresponding topographical catchment as indicated in the
The expert in WATER ENVIRONMENTS 5
10
D~
6
Infiltration
Penman-Monteith
Recharge
Reference
evapotranspiration
(Eto)
Remote sensing
Satellite
Sensitivity analysis
Spatial variation
Spring
Princi le sketch below.
// topographical
water divide / ra in
I I colchmenl
A
surfa
rnn --=--- calchmenl
B
Hydrological catchment B
The movement of water from the surface of the land into the
subsurface.
Method for estimating reference evapotranspiration (EID) from
meteorological data. It is a method with strong likelihood of correctly
predicting Et0 in a wide range of locations and climates and has
provision for application in data-short situations.
Contribution of water to an aquifer by infiltration.
The evapotranspiration per area unit under local climate conditions from
a hypothetical grass reference crop with an assumed crop height of
0.12 m, a fixed surface resistance of 70 s m·1 and an albedo of 0.23.
The reference surface closely resembles an extensive surface of green,
well-watered grass of uniform height, actively growing and completely
shading the ground. A good approximation to the maximum
evapotranspiration that under a certain climate can evaporate from an
area unit covered by an ever-wet short green vegetation (e.g. a
wetland)
Acquisition of information about an object or phenomenon without
making physical contact with the object and thus in contrast to on-site
observation. In current usage, the term "remote sensing" generally
refers to the use of satellite- or aircraft-based sensor technologies to
detect and classify objects on Earth, including on the surface and in the
atmosphere and oceans, based on propagated signals (e.g.
electromagnetic radiation).
Artificial body placed in orbit round the earth or another planet in order
to collect information or for communication.
Sensitivity analysis is the study of how the uncertainty in the output of a
mathematical model or system (numerical or otherwise) can be
apportioned to different sources of uncertainty in its inputs.
When a quantity that is measured at different spatial locations exhibits
values that differ across the locations.
A spring is a place where groundwater emerges naturally from the rock
or soil. The forcing of the spring to the surface can be the result of a
confined aquifer in which the recharge area of the spring water table
rests at a higher elevation than that of the outlet. Spring water forced to
the surface by elevated sources are artesian wells. Non-artesian
springs may simply flow from a higher elevation through the earth to a
lower elevation and exit in the form of a spring, using the ground like a
11
Topographical
catchment
Weather station
Wetland
drainage pipe. Still other springs are the result of pressure from an
underground source in the earth, in the form of volcanic activity. The
result can be water at elevated temperature such as a hot spring.
A catchment delineated strictly by topographical divides of the terrain .
The topographical catchment includes all the surface water from rainfall
runoff, snowmelt, and nearby streams that run downslope towards a
shared outlet. This is the correct catchment if all discharge is surface
flow (i.e. no groundwater). The topographical catchment is often a good
approximation to the catchment, particularly for larger catchments.
A facility, either on land or sea , with instruments and equipment for
measuring atmospheric conditions to provide information for weather
forecasts and to study the weather and climate.
A wetland is a land area that is saturated with water, either permanently
or seasonally, such that it takes on the characteristics of a distinct
ecosystem. The primary factor that distinguishes wetlands from other
land forms or water bodies is the characteristic vegetation of aquatic
plants, adapted to the unique hydric soil. Wetlands play a number of
roles in the environment, principally water purification , flood control,
carbon sink and shoreline stability.
The expert in WATER ENVIRONMENTS 7
12
D~
8
Executive Summary
This annex to the final report of the study of the flows in the Silala Wetland and Spring System
documents the geologic and hydrogeological studies completed in the Silala catchment and the
development of a Hydrogeological Conceptual Model (HCM) of the Silala Wetlands and Spring
System.
An extensive field program has been performed to characterise the hydrology and hydrogeology
of the Silala Near Field (defined as the Silala Wetland and Springs system area in Annex A).
The purpose of the investigations was to provide insights into the hydrogeology of the site
including; hydraulic properties, horizontal and vertical groundwater flow patterns, groundwater
discharge rates, and groundwater-surface water interactions. These data, as well as existing
geological , hydrogeological, and hydrochemistry data have been used to develop a HCM for the
Silala Near Field. The HCM provides a detailed understanding of the hydrogeological processes
in the Silala Near Field area and forms the basis for the development of an integrated numerical
surface water-groundwater flow model to be used for assessing the effects of man-made
changes to the wetlands (Annex G and H).
The conclusions regarding the conceptual groundwater flow system of the Silala Near Field
include:
Groundwater discharge is the principal source of water to the Silala spring system.
Sources of groundwater to the springs include:
o Geological structures aligned in a north easterly direction include several large faults;
these fault zones are brecciated and have elevated hydraulic conductivity relative to the
surrounding materials. They are interpreted to be transmitting groundwater over large
distances (i.e. Silala Far Field (the upstream hydrological catchment) or beyond);
o A network of small aperture fractures aligned towards the northwest that act as conduits
transmitting groundwater along strike; and,
o Spatially extensive and ubiquitously fractured ignimbrite aquifers.
Hydraulic properties (storativity values and barometric efficiency) of the ignimbrites and
groundwater heads suggest that semi-confined conditions exist at depth and unconfined
conditions are found in shallow piezometers.
Pumping tests completed in the southern wetland indicate a transmissive ignimbrite aquifer
with large-scale hydraulic conductivity estimated to be about 18 mid and locally higher
conductivity within the Silala Fault Zone (up to 54 mid). These are considerably higher than
the 6.5 mid estimated from the pumping tests in Chile near the border.
Hydraulic test data indicate that the hydraulic conductivity increases with the scale of the
test, with larger scale pumping test data generally being about an order of magnitude
greater than small-scale slug and Lefranc tests. This suggests that the transmissive
fractures are well connected over a large scale, and that this larger scale (the
Representative Elementary Volume (REV)) controls the long-term hydraulic behaviour,
which approximates a porous media;
o The hydraulic behaviour of the ignimbrite aquifer during the pumping test included nonTheisan
behaviour related to fracture flow near the pumping well but at larger scales
behaved as an equivalent porous media (EPM). This indicates that at the scale of the
problem addressed by the numerical model, groundwater flow and spring discharge
should be appropriately captured using an EPM approximation.
13
Groundwater head measurements indicate that groundwater is discharging to the southern
and northern wetlands (gaining stream) but may be hydraulically disconnected from the
Silala canal at the Chilean-Bolivian border (disconnected losing stream).
The hydrochemistry of the groundwater discharging to the Northern Wetlands is
significantly different from that of the Southern Wetland.
o The Northern Wetland water samples date to younger ages and have lower
dissolved solids and bicarbonate concentrations and are interpreted as being
derived from a more localised flow regime.
o The Southern Wetland waters are older (i.e. lower 14C), have higher dissolved
solids and bicarbonate concentrations, and are interpreted as being derived
from flow within the Silala Fault Zone that is recharged from a sub-regional to
regional flow regime (i.e. the Silala Far Field), the limits of which are uncertain.
Analyses of surface water flow measurements (Annex C) and hydro-chemical mixing ratios
suggest that the bulk (60-70%) of the groundwater discharge to the system originates from
springs associated with a deeper regional groundwater flow regime. The remaining 30-40-
percent is interpreted to originate from more localised flow regimes closer to the Silala
Springs Near Field.
Hydrochemistry data suggest that Laguna Khara is not a significant contributor to the
groundwater discharge to the Silala Spring System. This however does not preclude a
different source of inter-basin groundwater flow.
The origins and groundwater age of the water feeding the springs associated with the Silala
Fault Zone remain poorly constrained. To improve the understanding of these aspects they
should be examined further using a basin scale model based on additional characterisation
activities in the Far Field. However, this is beyond the scope of this project.
Groundwater recharge-discharge relationships suggest that inter-basin flow into the Silala
catchment is likely and thus may represent a significant component of the discharge to the
Silala Spring System.
The measured hydraulic conductivity and understanding of the ignimbrite aquifer suggest
that there is significant trans-border groundwater flow, which is currently estimated to be
around 230 1/s. Hydraulic conductivity values representative of the pumping test near the
Chilean border would yield trans-border flows in excess of 600 1/s. However, the estimates
of trans-border groundwater are highly uncertain and further field investigations would be
required to provide more information on subsurface flows from the Silala catchment.
The expert in WATER ENVIRONMENTS 9
14
D~
1
2
10
Introduction
This annex to the final report of the study of the flows in the Silala Wetlands and Springs System
(Silala Spring System) documents the geologic and hydrogeological studies completed in the
Silala catchment and describes the development of a Hydrogeological Conceptual Model (HCM)
of the Silala Wetland and Spring system.
The surface water hydrology of the Silala Springs System is described in Annex C and water
balance of the basin and assessed recharge rates to the aquifers in Annex E.
The assessments and findings in this annex are based on information obtained from
DIREMAR's geological mapping and hydrological and hydrogeological field data collection
program executed September- December 2017.
The detailed HCM was developed using data from the Near Field hydrogeological
characterization program , analysis of hydrogeological data and the integration of available
geologic, geophysical and hydrogeological data. The HCM forms the backbone of the numerical
groundwater -surface water flow model that has been used for the integrated assessments of
the flows in the Silala Spring and Wetland System with and without the manmade canals.
This Annex is structured as follows:
Section 1 (this section): Provides an introduction to the overall study, the context of the
groundwater hydrology in the overall study and previous OHi reports;
Section 2: Provides a summary of previous work relevant to understanding the
hydrogeology of the Silala area;
Section 3: Contains hydrogeological data collected by DIREMAR and their contractors to
further characterise the groundwater flow system ;
Section 4: Presents the HCM; and,
Section 5: Provides a brief summary of the findings.
The Appendices include information from the hydrogeological characterisation program and
related analyses.
Previous studies
An extensive number of scientific studies have been completed within the Silala Spring system
to analyse the geology and hydrology of the area. This study relies upon information and data
collected as part of these studies (Table 1 ). The most important of these studies in the context of
the hydrogeology of the Near Field are presented in the subsequent sections.
15
Table 1 Document summary and application for current study.
Source Document Summary Document Application
A summary report produced by
SERGEOMIN detailing structural
Rock descriptions and photos from
and lithological mapping in the subthe
SERGEOMIN report were used
Mapeo Geol6gico Estructural
regional area surrounding the
in the determination of
del Area Circundante al
Silala Spring System. Local and
Hydrogeologic Units (HGUs).
Manantial del Silala
regional geologic histories were
Interpreted geologic history of the
provided in addition to site photos,
(SERGEOMIN, 2017)
detailed rock descriptions, and
site and structural data were
structural plots (rose diagrams) of
incorporated into the
joint and fracture data measured in
conceptualisation of the HCM.
the field.
Mapa No.1 Geologia, Geologic map of the sub-regional
The geologic map was used in
coordination with rock descriptions
hidrologia, y hidrogeologia de area surrounding the Silala Spring
from SERGEOMIN, 2017 report to
los manantiales del Silala System. Geologic map includes
delineate the surface expression of
Provincia Sur Lipez del volcanic and sedimentary units
Departamento de Potosi from the Late Miocene to the
designated HGUs. The HGU surface
map provided a basis to construct
(SERGEOMIN, 2003) Quaternary
the 3D geologic model.
Geologic cross section (NW-SE)
The geologic cross section provided
a subsurface conceptualisation of
Modelo Geol6gico Manantial
that presents a sub-surface view of
the geology at the border between
the geology extending between
Silala (SERGEOMIN , 2017)
Volcan lnacaliri and Volcan Silala
Bolivia and Chile. The section was
Grande.
used to construct and check the 3D
geologic model for accuracy.
Geologic map of the sub-regional
Multiple features from the geologic
map were incorporated into 30
Mapa de lnterpretaci6n area surrounding the Silala Spring
geologic model. The structures
Preliminar de Estructuras System. Geologic map includes
shown in the region also influenced
Regionales (SERGEOMIN, major structural features
2017) (lineaments and faults) that exist in
the hydrogeological
conceptualisation of the Silala Near
the area.
Field.
The COFADENA report details the
geophysical survey conducted in
Many of the twenty-eight ERT scans
the area surrounding the Silala
were incorporated into the
Proyecto Geofisico 28 Lineas
Bofedals and springs. Twenty-eight
construction of the 3D geologic
(28) Electrical resistivity
Tomografias (COFADENA,
tomography scans (ERT) were
model. Hand sample photos of
2017) various ignimbrites collected from
presented in the document with
the field were used in the
subsurface interpretations and
determination of HGUs.
hand sample photos of specific
igneous lithologies.
lnforme Tecnico: 2DA
Campana de Muestreo de Datasets including major ions and
Agua para el Analisis Technical report summarising the associated chemistry required for
Hidroqufmico e lsot6pico y sampling and analysis of Silala charge balance equations and stiff
Diagnostico de Canales en los waters. diagrams were used from this
Manantiales del Silala document.
(Viceministerio de Recursos
Hidricos v Rieao del Ministerio
The expert in WATER ENVIRONMENTS 11
16
Source Document Summary Document Application
de Medio Ambients y Agua,
2017)
Datasets including major ions and
Anillisis Ffsico Qufmico de Chemical analysis for four (4) associated chemistry required for
Aguas (Ministerio de Energias, groundwater samples collected charge balance equations and stiff
2017) from the Silala Near Field. diagrams were used from this
document.
Government report detailing the
Estudio de Cuenca
geological, hydrological and Datasets including major ions and
Hidrogrilficas: Cuenca
hydrogeological evolution of the associated chemistry required for
manantiales del Silala
Silala area. Study focus was the charge balance equations and stiff
(SERGEOMIN, 2003)
formation and evolution of the diagrams were used from this
Silala drainage area and the document.
characterisation of Silala waters.
The Arcadis report summarises the
field work, data analysis, results ,
and conclusions of a
Borehole logs, hydrologic test
hydrogeological investigation of the
Deta iled Hydrogeological
Silala Canal in Chile. A review of
results, and geochemical analyses of
Study of the Silala Canal
existing data and literature was
groundwater and surface water
(Arcadis, 2017)
included in addition to the new field
samples were used to supplement
work and monitoring activities used
datasets provided by the client.
to fill the hydrogeological
knowledge data gaps.
2.1 Geological studies
12
SERGEOMIN conducted a detailed geologic characterisation of the Silala Near Field including
field mapping in 2003 (SERGEOMIN, 2003) and updated mapping rock descriptions, and a local
structural analysis in 2017 (SERGEOMIN, 2017). SERGEOMIN was contracted to detail the
geology and structural features in the Near Field that influence and control groundwater flow to
the Silala canal. Study objectives were as follows:
1. Geological and structural mapping of the local Silala canal;
2. Geologic sampling of rock units for petrographic analysis;
3. Generation of geologic maps at varying scales; and,
4. Production of structural data tables, plots, and diagrams.
Results of the investigation included a detailed characterisation of the local geologic units,
stratig raphy, morphology, geologic structu res, and a basic geologic history of the Silala Springs
System. Geologic mapping and descriptions were limited to surface observations, in thatno
17
subsurface investigations were included in the SERGEOMIN field campaign. SERGEOMIN
(2017) identified 18 separate geologic units. All units were divided into two basic categories;
volcanic deposits and quaternary deposits. Multiple volcanic morphologies exist within the
volcanic deposits: ignimbrites, volcanic luffs, extrusive lava flows, debris flows, stratovolcanoes,
composite volcanoes, and volcanic domes. Quaternary units include colluvium, alluvium , and
sparse glacial deposits. A detailed rock description was provided for each unit based on field
observations and petrographic analysis. In their investigation, SERGEOMIN identified
hydrogeological differences in the Silala ignimbrite. They determined that the lower portion of
the ignimbrite unit possessed a high primary porosity due to a lower degree of welding and
concluded that the lower part of the Silala ignimbrite is the most important hydrogeological unit
in the Near Field. However, SERGEOMIN indicated that field-testing of transmissivity and other
storage parameters was necessary to confirm their hypothesis.
SERGEOMIN also conducted a field campaign with a focus on geologic structures in the area.
Multiple faults and a series of secondary fractures related to brittle deformation were mapped in
the Near Field. Mapping of major structural features and related fractured areas was of
particular importance due to their high permeability relative to local geologic units and their
potential to act as conduits for groundwater flow. Structural maps and rose diagrams
(SERGEOMIN, 2017) of the mapped faults and fractures from the field analysis were produced
in order to display possible relationships between fracture series and general flows paths of
waters recharging the Silala Spring System.
Three major structural trends were identified from the SERGEOMIN field investigation: NE-SW
(33% of measurements), NW-SE (27%), and N-S (13%). The majority of mapped fractures were
near vertical ; however, fracture dips varied with some as shallow as 45°. Fracturing was more
prevalent in ignimbrite layers relative to other geologic units. Fracture planes and their
intersection in ignimbrite units were considered an important conduit for groundwater discharge
to springs. Multiple normal faults were identified in the ignimbrite layers outcropping along the
Silala Canal. Faults were typically high-angled (70-80°) and near vertical at depth. Trends in
fracture orientations were similar to trends observed in regional structures and lineaments.
Multiple regional structural features were identified in the local Near FieldThese features are
dominated by a series of NE-SW striking fractures, transverse to the dominant, regional NW-SE
trend seen in the Central Volcanic Zone of the central Andes and parallel to the flow of the Silala
Spring System
An additional geologic report was reviewed in order to supplement lithological data gaps in the
Silala Near Field (Layana & Aguilera, 2013). The study presents a detailed description of the
stratigraphy, geometry, distribution, and volume of three ignimbrites located in the Altiplano
Puna Volcanic Complex (APVC). The brief report provides thorough descriptions of Upper
Miocene ignimbrite deposits that were well preserved due to the high elevation and hyper-aridity
in the region. One of the three units, the ignimbrite that underlies the Silala lgnimbrite (Unnamed
lgnimbrite), is described in detail. The Unnamed lgnimbrite is characterised by two pyroclastic
flow units: A basal unit (Lower Unnamed lgnimbrite) and an upper unit (Upper Unnamed
lgnimbrite). Based on the rock description, it was postulated that the Upper Unnamed lgnimbrite
has a higher porosity and permeability relative to the basal portion
The expert in WATER ENVIRONMENTS 13
18
D~
PROYECTO DE INTEGRAClON REGIONAL
·~-•-__ .... ___. .. ,
--=Ai s. -:-~ " .._~a- f __ .Jpii~ - - ------- =1A:'· ·-
Figure 1 Geologic Map of the Silala Study Area (SERGEOMIN, 2003)
14
C
u
A
T
< ' . N
A . N I
0
I N.f. 0
C Q N• o
0 '
P ~-=---
I
I
fl
I
:-;
,\
-,
., -
MAPA No. I
GBOLOOIA, HIDROLOGIA E HIDRO
OE LOS MANANTIALES DEL:
PROVINCIA SUR LIPEZ DEL DEPARl
POTOSI
19
2.2 Geophysical studies
In July 2017, the Corporacion de las Fuerzas Armadas para el Desarollo Nacional
(COFADENA) completed an extensive geophysical survey in the Near Field Area using
electrical resistivity tomography (ERT) (COFADENA, 2017). COFADENA produced twenty-eight
(28) ERT scans in order to generate two dimensional models of the subsurface lithologies
(Figure 2). ERT scans provide a detailed view of subsurface conditions based on differences in
media electrical conductivity or resistivity.
2.3 Chilean hydrogeological investigation
Arcadis was contracted by the Direci6n Nacional de Fronteras y Limites del Estado (DIFROL) of
the Ministry of Foreign Affairs of Chile to improve the understanding of the hydrogeological
functioning of the Silala catchment. The main objective of the study was to understand the
hydrogeology of the Silala Spring System. Study objectives were as follows:
1. To improve the knowledge of the geometry of the aquifer system(s) which might feed the
Silala Spring System.
2. To quantify the fluctuations in underground water levels along the ravine. To determine the
hydraulic gradient and underground flow directions in the aquifer system(s).
3. To determine the different groundwater sources that feed the spring system, identifying
their origin from the various aquifers.
4. To analyse and conceptually model the hydrogeology of the Silala Near Field area,
estimating aquifer parameters.
Prior to the Arcadis field campaign (October 2016 to February 2017), a review of existing data
and literature was carried out as a basis for designing fieldwork and monitoring programs to fill
hydrogeological data gaps. During the hydrogeological characterisation program , Arcadis
collected a large amount of field data on the Chilean side of the border including borehole
stratigraphy, borehole pumping and recovery tests, geophysical data , and geochemical
sampling, among others. Data collected from the field campaign was organised , interpreted , and
used to assess different aspects of the hydrogeological conceptual model.
The expert in WATER ENVIRONMENTS 15
20
D ~
16
Escal:a:
1:11.268
Figure 2
UBICACION 28 TOMOGRAFiAS ZONA BOFEDALES DEL SILALA
800 ---====------Meters 200 40(]
Sistema: WGS 1984
Zona: 19 K
Location of the 28 geophysical scans, Silala
CORPORACION DE lAS FF _AA_ PARA EL DESARROLLO NACIONAL
Unid'ad de Explotacion de Re-cursos Hidricos
LA PAZ. - BOLIVIA
LEYENDA
l!Jne.as Tomoglifi~
Extension
80-28D m.
Exten:sion
400-520 m.
Exten:Sion
600-000 m.
Orie-ntacion
Tomogrifica
1 lnicio
1' Fin.al
21
A brief summary of all field investigations is presented below:
1. Well drilling campaign:
Purpose of drilling was to investigate subsurface depths of -80 to 120 meters below
ground surface (m below ground) and establish a better understanding of groundwater
occurrence and interaction with the surface waters in Silala. Eight (8) boreholes were
drilled in November 2016 Table 2.
2. Stratigraphic logging of borehole cuttings and cores:
- Borehole stratigraphy was interpreted from drillings and cuttings of seven (7)
boreholes and the detailed geologic log of a single cored borehole.
3. Flow during drilling:
- Water was identified in six (6) out of eight (8) boreholes. In most cases, a depth to
water bearing units was identified and discharge was measured.
4. Pumping and recovery tests:
Between November 23, 2016 and December 9, 2016, pumping and recovery tests
were conducted.
Pumping tests were designed to estimate transmissivity and storage coefficients at
each site.
5. Geophysics:
Gamma ray and Neutron Porosity geophysical logs were carried out in six (6) of the
eight (8) drilled boreholes.
An Electric resistivity tomography (ERT) survey was carried out across the Silala
canal. The survey was used to indicate the likelihood of significant groundwater
occurrence or lithological changes in the subsurface within the top 100 to 200 meters
of the subsurface.
6. Geomorphology:
- Field investigations identified four terraces found in the Silala canal.
7. High definition topography:
A high-resolution image survey was carried out using drones in parallel with surveyreferenced
points for accurate geo-referencing. A high-resolution digital surface model
and digital terrain model with a resolution of 5 cm (horizontally) and 2 cm (vertically)
were made covering a total surface area of 12 km2 .
8. Infiltration tests:
Infiltration tests were performed at ten (10) locations in the study area using doublering
infiltrometer and Guelph permeameter methods. Test results were used to
characterise permeability and infiltration capacity of various geologic units.
9. Springs survey:
A spring survey was performed in the last week of January 2017.
A total of 37 springs were identified and located in the Silala ravine and its tributaries.
All spring locations were surveyed. Temperature and conductivity were measured for
each spring.
10.Hydrochemical water sample collection with chemical and isotopic analysis:
Hydrochemical sampling campaign was carried out in December 2016 and JanuaryFebruary
2017 in order to characterise groundwater, surface water, and spring water in
the Silala canal area.
Geochemical analysis included major ions, deuterium-oxygen 18, enriched tritium, and
carbon-14.
11 .Borehole fluid logging:
In December 2016, borehole fluid logging was carried out in four (4) wells. Parameters
logged were temperature and electric conductivity.
The expert in WATER ENVIRONMENTS 17
22
D ~
18
Table 2
Well ID
MWBO
PWBO
CWBO
MWLUQN
PWUQN
MWSUQN
SPWDQN
PWDQN
MWDQN
EWPS
PWUQI
Existing and newly installed wells (November 2016) in Chile associated with th e Silala Spring
System
Elevation Top of Total
Easting Northing (m.a.s.l.) Class 1 Class 2 Casing (m Depth (m
asl) bgs)
600191 .6 7565287 4273.09 Monitoring New 0.76 10
600185.1 7565278 4272.62 Pumping New 0.76 80
600174.7 7565267 4272.6 Monitoring New 0.63 117
599352.9 7564072 4205.13 Monitoring New 0.72 60
599346.4 7564063 4204.59 Pumping New 0.53 80
599339.8 7564052 4204.14 Monitoring New 0.72 10
599091 .1 7563871 4189.8 Artesian Old 0 70
598838.7 7563780 4178.47 Pumping Old 0.32 54
598841.3 7563769 4179.38 Monitoring New 0.9 40
596388.2 7563833 4032.16 Exploration New 0.84 94
597103.3 7564812 4188.54 Exploration Old 0.67 182.5
As part of their analysis, (Alcayaga, 2017) delineated a surface water catchment for the Silala
Spring System of which the area in Bolivia is significantly smaller than the possible Bolivan Far
Field catchment delineated in Annex A (Figure 3). The Chilean catchment is strictly
topographical, i.e. it only incorporates areas where surface water runoff would run directly to
Silala. However, the catchment delineated by OHi incorporates the upstream topographical
catchments of local depressions such as the dry Laguna Diamante and is also referred to as the
hydrological catchment for the Silala Spring System.
Furthermore, DH l's analyses in Annex E show that the Alcayaga's catchment cannot in itself
sustain the Silala springs and groundwater discharges. As described in Annex A DH l's
delineation of the catchment area contributing to the Silala Spring System is different to the one
made by (Alcayaga, 2017) because DHl's interpretation of the following have been incorporated
into the catchment delineation:
a) No indications of recent superficial runoff have been identified in the Silala Far Field ;
b) The high infiltration capacities of the (sandy) top soils will lead to infiltration of the
precipitation falling outside the saturated wetlands;
c) The geological formations under the top soils have sufficient transmissivity to drain
recharging waters over large areas (i .e. groundwater flow); and,
d) The fractures zones, as identified by SERGEOMIN, cutting through the upstream boundary
of the Arcadis' catchment, suggest the upstream depression catchment to be hydrogeologically
connected with and draining through the Silala Springs system.
23
Figure 3 Comparison of the Silala catchment delineation by (Alcayaga, 2017) and DHI (Annex A).
Following the field investigations and literature review, (Arcadis, 2017) categorised the
hydrogeology of the Silala canal catchment into six hydrogeological units (HU): HU1 (Fluvial
deposits), HU2 (alluvial deposits), HU3 (ignimbrite), HU4 (pyroclastic fall deposits), HU5
(andesitic and dacitic volcanic rocks) and HU6 (weakly permeable rock). It should be noted that
the Arcadis field study was limited to the Chilean territory, and units outcropping in Bolivian
territory were not be visited.
Arcadis concluded that recharge of the Silala Spring System originates from precipitation in
highlands, occurs mostly during the summer time, and infiltrates into the surface rocks, soils and
deposits (HU1 , HU2, HU3, and HU5) with limited surface runoff and evaporation. The water that
infiltrates flows underground from higher elevation zones to lower elevation zones, flowing
through the various hydrogeological units. Water that infiltrates into the alluvial sediments (HU2)
flows down gradient and emerges as springs in the rock walls of the Silala canal. In some
instances, groundwater may travel down through alluvial/colluvial fan deposits, then through
fluvial deposits (HU 1 ), and ultimately discharge to the canal from springs close to or within the
canal bed.
The two ignimbrite units) that constitute HU3 were found to be of particular importance due to
their aquifer potential. Groundwater levels were obtained from multiple wells in the Chilean study
area and pumping tests indicated that the ignimbrite layers contain confined groundwater;
however, the data showed that transmissivity and storage characteristics of the ignimbrites vary
considerably both laterally and vertically. Hydraulic testing also concluded that groundwater
flows from northeast to soouthwest through HU3, similar to direction of surface flow in the Silala
canal. Geochemical data indicated that deep groundwater found in the ignimbrite aquifers was
not related to the Silala canal or spring discharges. Groundwater was classified as Calcium
(Ca)-Bicarbonate type with low conductivity whereas, river and spring water were classified as
Sodium (Na)-Bicarbonate type water with a lower electrical conductivity relative to groundwater.
Furthermore, environmental isotopes suggest that the origin of recharge for deep groundwater
(HU3), river water, and spring water differ significantly. Groundwater residence time appeared to
be highest in groundwater, shortest in spring water, and intermediate in water sampled from the
The expert in WATER ENVIRONMENTS 19
24
D~
3
Silala canal. The isotopic analysis suggests regional recharge for groundwater (HU3), local
recharge for springs, and possible mixing of groundwater and spring water recharge in the
Chilean part of the Silala Springs System.
Conceptualisation of regional geology and the evolution of the Silala canal catchment over
geologic time was based primarily on two previous reports; Hauser, 2004 and SERNAGEOMIN,
2017. Based on the previous studies and their own field investigation, Arcadis produced a brief
geologic history starting from the Miocene (- 6 Ma.). A geologic map, cross section profiles, a
graphic outline of the geological and morphological evolution of the Silala area, and a
generalised stratigraphic column for Silala were included in their geologic conceptualisation.
Finally, a basic 3-D geologic model was constructed for the Silala area.
Hydrogeological characterisation program
Hydrogeological field investigations of the Silala Near Field, commissioned by DIREMAR,
commenced in September 2017 and terminated on January 2, 2018. A total of thirty-five (35)
standpipe piezometers were installed in 29 boreholes to provide groundwater level monitoring
points and allow for the collection of water quality field data and samples for laboratory analysis.
In total, ninety-eight (98) in-situ permeability tests were carried out in thirty-five (35) standpipe
piezometers. Additionally, a step-rate and constant-rate test (3-day) were completed in the
Southern Wetland at DS-4P.
These data, in combination with previous data collection efforts on the geology, subsurface
characterization, water quality, spring and surface flow rates, and meteorological data analysis,
are used to support the development of the HCM of the Silala Near Field and to a lesser extent
the Silala Far Field areas
3.1 Field investigation program scope and objectives
20
The objective of the hydrogeological investigation is to collect additional data related to the
geology and hydrogeology of the Near Field. These data are used to develop the HCM, which
forms the foundation of the numerical groundwater flow model. The investigation has included
the collection and analysis of the following:
Drilling and construction of piezometers and test wells;
Borehole lithological logging;
Piezometer and well development;
Piezometer slug tests;
Packer testing (Lugeon and Lefranc);
Installation of water level monitoring equipment (pressure transducers - data loggers)
and manual water level monitoring;
Collection and analysis of groundwater samples for hydrochemistry;
Performance of aquifer pumping tests; and,
Development of a hydrogeological database and initial parameter values for the
numerical model.
25
,,,
',,
-... , ...
· ... , ...
Vi ·,
-1.-,
....
_ .....
_l;t$£1.~
Figure 4 Location of the boreholes and piezometers constructed in the Silala Near Field.
The expert in WATER ENVIRONMENTS
D~
~
::s-02
; &>
~ ....,...p'til DS.03
D$-05$
• $ $
D.S.::..09 DS..Q.Q.
DS-01 -11]$
DS-01-1
!<
0- --0.2=5 ==0.5 ------I km A Jlll4.
21
26
3.2 Piezometer and test well drilling and construction
22
The piezometers and test wells were drilled using both diamond drilling rigs operated and a
reverse circulation (RC) drilling rig (1992 Mobile B-80-22). Diamond drilling rigs were operated
by SERGEOMIN and Maldonado Drilling, while the RC rig was operated by Maldonado Drilling.
In general, holes were cored and 50-mm diameter Schedule-40 PVC piezometers (although
some are 37.5-mm PVC) were installed in 96-mm boreholes. Core and rock chips produced by
drilling were collected continuously and logged by a field hydrogeologist on-site (Appendix A
Documentation of wells and piezometers from the field investigation program).
After the screen and blank sections were installed , a gravel pack was em placed to a minimum
depth of 1 m above the screen. Bentonite chips were used to create a seal over the gravel pack.
The chips were poured into the borehole and the seal was allowed to rest and swell for
approximately one hour in order to seal the screened interval from the surface. Once sufficient
time was given for the bentonite seal to swell, a bentonite/cement grout mix was emplaced in
the annular space from the bentonite seal to the surface. Well completion diagrams are
presented in Appendix A (Documentation of wells and piezometers from the field investigation
program).
Figure 5 Dril ling rig used for test well drilling and rock ch ip samples from DS-4P.
Airlift testing was completed during drilling to evaluate the potential yields as the borehole was
advanced. The results of the airlift tests are included on the lithology logs for which such tests
are available.
27
Table 3 Summary of piezometer completion information.
Gravel Screen Interval Borehole Casing
ID 1 Pack
Depth Diameter
From(m) To(m) From (m) (m) (mm)
DS-
01-1 1 40 70.04 54.04 142 32
OS- I 110 1 137.9 1 117.92 1 142 1 32 01-11
DS-02 I 1 I 21 I 17 I 22 I 32
DS-03 I 1.5 20 16 21 50
The expert in WATER ENVIRONMENTS
Borehole Water
Diameter Level (m
(cm) bgs)
9.6 41.41
196 I 41.43
I 9.6 I 14.46
9.6 14.88
Screen
Interval
Lithology
Fractured
ignimbrite
high degree
of welding
----
Fractured
ignimbrite low
degree of
welding,
fractured.
----
Fractured
ignimbrite
high degree
of welding
Fractured
ignimbrite
high degree
of welding
D~
I Screen Interval
HGU I Screen Interval Photo
I HGU6 Upper
I HGU5
I HGU6 Upper
HGU6 Upper
23
28
D~
ID
DS-
04S
DS-
04P
DS-
05S
DS-
5P-I
DS-
5P-II
24
Gravel
Pack
4
5
3
83.8
34
Screen Interval
10 I 5.5
72.508 I 40.388
10 I 4
98 I 86
48 I 36
Borehole
Depth

11
80
11 .3
100
100
Casing
Diameter
mm
50
203.2
50
32
32
Borehole
Diameter
cm
9.6
30.5
9.6
9.6
9.6
3.881
3.963
4.226
4.99
4.96
Fractured
ignimbrite low
degree of
welding
Rubbilized
igneous
extrusives
Fractured
ignimbrite low
degree of
welding
Fractured
ignimbrite low
degree of
welding
Fractured
ignimbrite
high degree
of welding
Screen Interval
HGU
HGU5
HGU7
HGU5
HGU5
HGU6 Upper
Screen Interval Photo
~; J,: - --
1 ,.,.
'¾ .
• • '6 .,'..~:, :~~~:•,!-.~~'
29
ID
Gravel
Pack
DS-06 I 3
DS-07 I 1.3
DS-08 I 7
DS-09 I 4
DS-10 I 9
Screen Interval
10 4
5.3 2.3
14.8 8.7
10.1 4.6
15 11
The expert in WATER ENVIRONMENTS
Borehole
Depth

10
8.1
15.5
10.5
15
Casing
Diameter
mm
50
50
50
50
50
Borehole
Diameter
cm
9.6
9.6
9.6
9.6
9.6
3.6
1.943
0.53
1.13
10.17
Fractured
ignimbrite low
degree of
welding
Rubbilized
igneous
extrusives
Weathered
igneous rock
Weathered
igneous rock
Fractured
ignimbrite low
degree of
welding
Screen Interval
HGU
HGU5
HGU7
HGU3
HGU3
HGU5
D~
Screen Interval Photo
- -·--··---
___ _ __L . -----.... ,;;:;~
l
! - • ,.., ....
r t ~~-..-. , -r• b'•
r ~ ;:~·
i~
25
30
D~
ID
OS-
11-1
DS-
11-II
DS-12
DS-13
Gravel
Pack
41.8
3
DS-16 I 4
26
Borehole
Screen Interval Depth
(ml
60 44 60
10 6 60
12 9 12
8.5 4.5 9
15 9 15.5
Casing Borehole
Diameter Diameter
(mm) (cm)
32 9.6 3.82
32 9.6 3.79
50 9.6 9.2
32 9.6 2.12
50 9.6 -1 .24
Fractured
ignimbrite
moderate
degree of
welding
Weathered
igneous rock
Alluvium and
colluvium
Rubbilized
igneous
extrusives
Rubbilized
igneous
extrusives
Screen Interval
HGU
HGU5
HGU3
HGU1
HGU7
HGU7
Screen Interval Photo
31
ID
Gravel
Pack
DS-17 I 3
DS-18
DS-23
DS-
24P
DS-
24S
2
6.5
I Screen Interval
I 15.2 I 12.2
15 12
8.9 5.9
8.2 7.2
4 2
The expert in WATER ENVIRONMENTS
I 15.5 I 32 I 9.6 I 7.16
15 50 9.6 10.35
8.9 32 9.6 0.365
15.3 50 9.6 -0 .78
15.3 50 9.6 -0.46
Fractured
ignimbrite low
degree of
welding
Fractured
ignimbrite low
degree of
welding
Fractured
ignimbrite low
degree of
welding
Alluvium and
bofedal
deposit
Alluvium and
bofedal
deposit
Screen Interval
HGU
HGU5
HGU5
HGU5
HGU2
HGU2
D~
I Screen Interval Photo
i ,, ~.,-,f~r~u.1, t)\~ ---~ <Sj• •. ;~i' : ~
t~
;,,,_:-:-~~--- ~ !- . "II!: !
~ ~ .
·- /~ ·-· · -·.: ,.. --.I ~. - ,._ L.- r ·-; ..; · i · I · • I ~ --• .·"'_-,··-- ·... :
-·., ,--·~ , ", .. . ~ r ·:
• - - -,--- I I
·1 ~ I - t ~ _. .. ~ . ,( ' .. , · " . , ._- ·-- L -' . I •
1 - ,.. ~,--- --=-~- I· ' I
~ · · .......... , ,., ' -t :
27
32
D~
ID
DS-25
DS-
27-I
DS-
27-11
Gravel
Pack
40
20
I 3
DS-30 I 27.5
DS-31 I 1
28
Borehole Casing
Screen Interval Depth Diameter
(ml (mm)
52.7 44.7 53 32
29.82 21.82 30 32
I 17.04 1 9.04 I 30 I 32
I 45 I 33 I 50 I 32
I 8 I 5.o9 18 I 50
Borehole
Diameter
(cm
9.6 32.74
9.6 7.13
196 I 7.13
I 9.6 I 26.52
I 9.6 I 1.56
Fractured
ignimbrite low
degree of
weldingHGU5
Fractured
ignimbrite low
degree of
welding
Fractured
Screen Interval
HGU
HGU5
HGU5
I ignimbrite low I HGU degree of 5
welding
---
Fractured
I ignimbrite low I HGU5 degree of
welding
---
Fractured,
I pulverized I HGU7
igneous rock
Screen Interval Photo
,,fo>t~ .... ---~ t-.,.~ .';t+ •\, t·~ _:_, ..,. \; . ~~ ...
~ ~ .,. ,~~ ~~ :..: ....
\- C
. --- t ~- --~-I
i - '
> --~-
' - _..:.::) I • • ' ,'-
' o •• ~ 40 ~ ...
~ ----- -~
33
Gravel
ID
Pack
DS-32 I 0.5
DS-
35-I
DS-
35-II
DS-37
DS-
38S
59
2
3
1.5
I Screen Interval
I 4.35 I 1.44
78 62
26 14
10.15 7.15
4.15 2.15
The expert in WATER ENVIRONMENTS
Borehole Casing
Depth Diameter
'm mm
I 5 50
110 32
110 32
15 32
5.1 50
Borehole ••QLVI
Diameter
cm
9.6 0.81
9.6 17.275
9.6 17.145
9.6 0.865
9.6 0.2
....... ,vv,,
Rubbilized
igneous
extrusives
Fractured
ignimbrite low
degree of
welding
Fractured
ignimbrite low
degree of
welding
Rubbilized
igneous
extrusives
Rubbilized
igneous
extrusives
D~
I Screen Interval
HGU I Screen Interval Photo
I HGU7
HGU5
HGU5
-,. -•- • • ~• ,i)f.. I •
. ,. . ,·' l ,- • ' . l
.. rrM ...
HGU7
HGU7
29
34
D~
ID
DS-
39P
Gravel
Pack
7
Screen Interval
14.1 9.18
Note: bgs = below ground surface
30
Borehole
Depth

15
Casing
Diameter
mm
50
Borehole
Diameter
cm
9.6 0.185
Rubbilized
igneous
extrusives
Screen Interval
HGU
HGU7
Screen Interval Photo
.,.,l •
~it
w.....n. : ,' :;, .. ::f"~ . . . . ~ -◄,
35
3.2.1 Piezometer development
Piezometers were developed using compressed air to lift volumes of water out of the well in
order to clean fine pulverized rock out of the drilling area of influence and gravel pack. The air-lift
method of development involves inserting a rubber hose into the piezometer and then surging
by injecting compressed air supplied by an air compressor (Figure 6). The compressed air
forces water into the screen and out of the top of the piezometer. Water was evacuated from the
piezometers for 5 to 10 minutes; after which the compressor was shut off. The compressor
remained off for between 5 and 10 minutes to allow the water level in the well to recover and to
allow the compressor to cool. The rubber hose inserted in the piezometer was moved up and
down the length of the screen, so that all sections were developed. This development method
was considered sufficient because water was still forced in and out of the formation, cleaning the
gravel pack and hydraulic pathways.
Water quality parameters (i.e. pH, electrical conductivity, total dissolved solids, oxidationreduction
potential and temperature) were monitored with a handheld unit during development.
The piezometer development data are reported in Appendix A (Documentation of wells and
piezometers from the field investigation program).
Figure 6 Piezometer development
3.3 Water level monitoring
As piezometers were completed, water level monitoring was initiated in these holes by taking
manual measurements, typically on a daily basis. Shallow groundwater elevations range from
4,421 m above sea level at the up-gradient end of the southern wetland (DS-7) to 4,286 m
above sea level at DS-32 near the border with Chile (Figure 7). Groundwater elevations have
been relatively stable with an average temporal variation of less than 0.5 m.
The exceptions are DS-31 and DS-32, completed near the border on opposite sides of the
channelized section of the river (Figure 7). Groundwater elevations in these two piezometers
declined 2.9 to 3. 9 m over about a month. The depth to water in DS-31 and DS-32, 5.49 m
below ground surface and 3.93 m below ground surface respectively, indicates that groundwater
and surface water are not in direct hydraulic contact in this area. Therefore, this is interpreted as
a losing reach of the canal, with a limited degree of surface water-groundwater interaction. This
seems to be supported by the surface flow observations (Annex C) indicating only a slight
decrease in the canal flows over this reach. These monitoring data are used in the evaluation of
the hydraulic gradients in the Silala Near Field in Sections 4.7.1 and 4.7.2
The expert in WATER ENVIRONMENTS 31
36
4.294
~..4 .292
~290
C: •
0
~4.288
~
~.286
~
;4.284
"C
C:
54.282
l5
4.280
...• .......
• • • • • • •


• • •• • • • • • •
•••• • • • • • •
Figure 7 Groundwater elevations in shallow piezometers near the Chilean border.
3.4 Hydraulic testing
32
A hydraulic testing program was implemented to characterise the hydraulic properties of the
subsurface materials, with a focus on the ignimbrite aquifer. The testing includes several
localised test methods, slug-testing and packer testing (Lugeon and Lefranc) and several larger
scale pumping tests to hydraulically stress a larger volume rock.
37
N A
.4;,Ji
, .... / "'
·,, __
·,,,
f'ir. . j i,•,
',
' ·,, ... _
Figure 8
-'~-
-~~~ ~
■ Pumping Test
.•')
~
Hydraulic Tests
Slug, Lefranc, Lugeon
Locations of wells incorporated in the hydraulic testing program.
The expert in WATER ENVIRONMENTS
D~
~
~ Slug, Lefranc ~ Slug ---0=.25 ==0 .5 -----•1 km
33
38
D~
3.4.1 Slug testing
34
A solid slug testing program was implemented to quantify localised hydraulic properties. Slug
tests were conducted because they are easily implemented, require minimal equipment and are
typically short duration tests. Both falling head and rising heads were performed on each
piezometer regardless of whether the top of the well screen was above or below the static water
level, although only rising tests were analysed for unsubmerged well screen piezometers. A
solid slug was used to complete the tests and a Solinst Levelogger Edge transducer installed in
the piezometer measured water levels throughout the duration of test. The slug test data were
analysed using AQTESOLV® Pro 4.50 software (Duffield, 2007) and the Bouwer & Rice method
(1976), which assumes an unconfined behaviour of the test interval.
Figure 9 Solid slug used for piezometer slug tests.
Slug-testing results are presented in Table 4 and the slug test data and analyses are included in
Appendix C (Slug Test Analyses).
39
D~
Table 4 Summary of Slug Test Results.
Piezometer Borehole Water Field Test
K
Gravel Pack Screen Interval Diameter Diameter Level Lithology Test Analysis (m/day)
ID
Test (mm) (cm) (mbgs) Type Type
Number
From To From To
(mbgs) (mbgs) (mbgs) (mbgs)
OSlgnimbrite,
porous,
Falling Bouwer &
1 4 11 5.5 10 2 9.6 4.5 fractured, weak and 1.83E+01
4S
altered
Head Rice (1976)
lgnimbrite, porous,
DS-
1 3 11 4 9.8 2 9.6 4.2
moderately Rising Bouwer &
3.24E+01
5S fractured, Head Rice (1976)
moderately strong
1
Falling Bouwer &
2.07E+OO
Head Rice (1976)
lgnimbrite, porous,
DS-6 3 11 4 10 2 9.6 3.6
moderately
fractured ,
moderately strong
Fal ling Bouwer &
2
Head Rice (1976)
1.16E+OO
1
Fal ling Bouwer &
3.57E+OO
Very porous
Head Rice (1976)
DS-7 1.3 5.3 2.3 5.3 2 9.6 2.0 ignimbrite, low
sample recovery
Falling Bouwer &
2
Head Rice (1976)
3.48E+OO
The expert in WATER ENVIRONMENTS 35
40
D~
Gravel Pack Screen Interval
Piezometer Borehole Water Field Test
ID
Test
Diameter Diameter Level Lithology Test Analysis
K
Number (m/day)
From To From To (mm) (cm) (mbgs) Type Type
(mbgs) (mbgs) (mbgs) (mbgs)
lgnimbrite/tuffaceous
OS-8 2 7 14.5 9 14.5 2 9.6 0.4
sand, very porous, Falling Bouwer &
8.54E+00
fragmented, low Head Rice (1976)
sample recover
OS-9 1 4 10.1 4.5 10.1 2 9.6 1.0
lgnimbrite/tuffaceous Falling Bouwer &
2.00E+00
sand, very porous Head Rice (1976)
Fine grained sand
OS-
1 7 9.2 7.2 8.2 2 9.6 -0.8
with gravel and other Rising Bouwer &
1.02E+00
24P rock clasts, low Head Rice (1976)
sample recovery
OS-
1 1 4 2 4 2 9.6 -0.3
Gravelly sand, low Falling Bouwer &
1.93E+00
24S sample recovery Head Rice (1976)
1
Falling Bouwer &
4.30E+00
lgnimbrite, very
Head Rice (1976)
OS-
38S
1.5 4.15 2. 15 4.15 2 9.6 0.3 porous, fractured,
low sample recovery
Falling Bouwer &
2
Head Rice (1976)
4.13E+00
36
41
D~
Gravel Pack Screen Interval
Piezometer Borehole Water Field Test
ID
Test
Diameter Diameter Level Lithology Test Analysis
K
Number (m/day)
From To From To (mm) (cm) (mbgs) Type Type
(mbgs) (mbgs) (mbgs) (mbgs)
OSlgnimbrite,
very
Fal ling Bouwer &
39P
1 7 14.1 9.18 14 2 9.6 0.2 porous, fractured ,
Head Rice (1976)
1.81E+00
low sample recovery
2
Fal ling Bouwer &
1.67E+00
Head Rice (1976)
1 110 142.45 117.92 137.9 11 /4 9.6 41.893
Falling Butler High-K
1.56E+00
Head (2003)
OSlgnimbrite
01 -1
2 110 142.45 117.92 137.9 1 1/4 9.6 41.893
Rising Butler High-K
1.21E+00
Head (2003)
1 40 75 54.04 70.04 11 /4 9.6 41.874
Falling Bouwer &
3.29E+00
Head Rice (1976)
OSlgnimbrite
01-11
2 40 75 54.04 70.04 1 1/4 9.6 41.874
Rising Butler High-K
1.44E+00
Head (2003)
The expert in WATER ENVIRONMENTS 37
42
D~
Gravel Pack Screen Interval
Piezometer Borehole Water Field Test
ID
Test
Diameter Diameter Level Lithology Test Analysis
K
Number (m/day)
From To From To (mm) (cm) (mbgs) Type Type
(mbgs) (mbgs) (mbgs) (mbgs)
1 1 22 17 21 1 1/4 9.6 14.433
Falling Bouwer &
4.50E+00
Head Rice (1976)
OS-
02-1
lgnimbrite
2 1 22 17 21 1 1/4 9.6 14.433
Rising Bouwer &
2.66E+00
Head Rice (1976)
1 1.5 21 16 20 11/4 9.6 14.853
Fal ling Bouwer&
6.47E-02
Head Rice (1976)
OS-
03-1
lgnimbrite
2 1.5 21 16 20 11/4 9.6 14.853
Rising Bouwer &
1.05E-01
Head Rice (1976)
1 83.8 100 86 98 1 1/4 9.6 5.001
Fal ling Butler High-K
2.82E+00
Head (2003)
3 83.8 100 86 98 11/4 9.6 5.001
Falling Butler High-K
OS- 3.46E+00
lgnimbrite Head (2003)
05P-I
4 83.8 100 86 98 1 1/4 9.6 5.001
Rising Butler High-K
2.55E+00
Head (2003)
38
43
D~
5 83.8 100 86 98 1 1/4 9.6 5.001
Fal ling Butler High-K
5.02E+00
Head (2003)
6 83.8 100 86 98 11/4 9.6 5.001
Rising Butler High-K
2.41 E+00
Head (2003)
1 34 50 36 48 1 1/4 9.6 4.97
Falling Butler High-K
8.24E+00
Head (2003)
2 34 50 36 48 1 1/4 9.6 4.97
Rising Butler High-K
3.18E+00
Head (2003)
DSlgnimbrite
05P-I I Falling Butler High-K
3 34 50 36 48 1 1/4 9.6 4.97
Head (2003)
6.13E+00
4 34 50 36 48 1 1/4 9.6 4.97
Rising Butler High-K
3.62E+00
Head (2003)
1 9 15 11 15 1 1/4 9.6 10.165
Falling Bouwer &
1.10E+00
Head Rice (1976)
DSlgnimbrite
10-1
2 9 15 11 15 11/4 9.6 10.165
Rising Bouwer &
1.11 E+00
Head Rice (1976)
The expert in WATER ENVIRONMENTS 39
44
D~
Gravel Pack Screen Interval
Test
Piezometer Borehole Water Field Test
K
ID
Number
Diameter Diameter Level Lithology Test Analysis
(m/day)
From To From To (mm) (cm) (mbgs) Type Type
(mbgs) (mbgs) (mbgs) (mbgs)
1 41.8 60 44 60 1 1/4 9.6 3.69
Falling Butler High-K
6. 13E+OO
Head (2003)
2 41.8 60 44 60 1 1/4 9.6 3.69
Rising Butler High-K
6.02E+OO
Head (2003)
DS-
11 -1
Volcanics
3 41.8 60 44 60 1 1/4 9.6 3.69
Falling Butler High-K
4.26E+OO
Head (2003)
4 41 .8 60 44 60 1 1/4 9.6 3.69
Rising Butler High-K
6.66E+OO
Head (2003)
1 3 11 6 10 11 /4 9.6 3.67
Falling Bouwer&
1.50E+OO
Head Rice (1976)
DS-
11 -11
lgnimbrite
2 3 11 6 10 11/4 9.6 3.67
Rising Bouwer &
1.52E+OO
Head Rice (1976)
1 1 12 9 12 2 9.6 8.905
Falling Bouwer &
3.60E-01
Head Rice (1976)
DS-
12-1
lgnimbrite
2 1 12 9 12 2 9.6 8.905
Rising Bouwer &
4.35E-01
Head Rice (1976)
40
45
D~
Gravel Pack Screen Interval
Test
Piezometer Borehole Water Field Test
K
ID
Number
Diameter Diameter Level Lithology Test Analysis
(m/day)
From To From To (mm) (cm) (mbgs) Type Type
(mbgs) (mbgs) (mbgs) (mbgs)
1 1 9 4.5 8.5 2 9.6 1.82
Falling Bouwer &
1.36E+00 OS- Head Rice (1976)
13-1
lgnimbrite
2 1 9 4.5 8.5 2 9.6 1.82
Rising Bouwer &
1.35E+00
Head Rice (1976)
1 4 15.5 9 15 2 9.6 1.225
Falling Butler High-K
2.31E+01
Head (2003)
OS-
16-1
lgnimbrite
2 4 15.5 9 15 2 9.6 1.225
Rising Butler High-K
2. 12E+01
Head (2003)
1 3 15.5 12.2 15.2 2 9.6 7.92
Falling Bouwer &
5.77E-01
Head Rice (1976)
OS-
17-1
lgnimbrite
2 3 15.5 12.2 15.2 2 9.6 7.92
Rising Bouwer &
5.95E-01
Head Rice (1976)
1 1 15 12 15 2 9.6 10. 19
Falling Butler High-K
8.99E+01
Head (2003)
OS-
18-1
lgnimbrite
2 1 15 12 15 2 9.6 10. 19
Rising Butler High-K
8.81E+01
Head (2003)
The expert in WATER ENVIRONMENTS 41
46
D~
Gravel Pack Screen Interval
Piezometer Borehole Water Field Test
ID
Test
Diameter Diameter Level Lithology Test Analysis
K
Number (m/day)
From To From To (mm) (cm) (mbgs) Type Type
(mbgs) (mbgs) (mbgs) (mbgs)
1 2 9 5.9 8.9 2 9.6 1.11
Falling Bouwer&
7.53E+00
Head Rice (1976)
DSlgnimbrite
23-1
2 2 9 5.9 8.9 2 9.6 1.11
Rising Bouwer&
6.64E+00
Head Rice (1976)
OS-
1 40 53.7 44.7 52.7 2 9.6 32.767 lgnimbrite
Rising Butler High-K
2.18E+01
25-1 Head (2003)
1 20 30.8 21.82 29.82 1 1/4 9.6 7.52
Falling Butler High-K
2.83E+01
Head (2003)
OS-
27-1
lgnimbrite
2 20 30.8 21.82 29.82 1 1/4 9.6 7.52
Rising Butler High-K
1.57E+01
Head (2003)
OS-
1 3 18 904 17.04 1 1/4 9.6 7.507 lgnimbrite
Rising Butler High-K
9.07E+00
27-11 Head (2003)
1 27.5 45 33 45 1 1/4 9.6 27.245 Volcanic sands
Falling Bouwer&
4.31E+00
OS- Head Rice (1976)
30-1
2 27.5 45 33 45 11 /4 9.6 27.245 Volcanic sands
Rising Butler High-K
7.59E+00
Head (2003)
42
47
D~
Gravel Pack Screen Interval
Piezometer Borehole Water Field Test
ID
Test
Diameter Diameter Level Lithology Test Analysis
K
Number (m/day)
From To From To (mm) (cm) (mbgs) Type Type
(mbgs) (mbgs) (mbgs) (mbgs)
1 59 80 62 78 11/4 9.6 18.045
Falling Bouwer&
5.18E-02
Head Rice (1976)
DS-
35-1
lgnimbrite
2 59 80 62 78 11/4 9.6 18.045
Rising Bouwer &
6.16E-02
Head Rice (1976)
DS-
1 2 28 14 26 11/4 9.6 17.915 lgnimbrite
Rising Bouwer &
1.77E-01
35-11 Head Rice (1976)
1 3 15 7.15 10.15 2 9.6 1.554
Fal ling Bouwer &
5.81 E+01
Head Rice (1976)
DS-
37-1
lgnimbrite
2 3 15 7.15 10.15 2 9.6 1.554
Rising Bouwer&
5.55E+01
Head Rice (1976)
The expert in WATER ENVIRONMENTS 43
48
44
The slug tests were all completed in holes less than 15 m deep and are generally thought to be
indicative of the fractured ignimbrite. The arithmetic and geometric mean values for the slug
tests are 9.12 meters per day (m/d) and 3.12 m/d, respectively. DHI has derived a set of
hydrogeological units (HGU) as listed in section 4.2 . The geometric mean for all HGUs tested is
provided in Figure 10.
~
_§_
."C,':
E
.0,
('.)
~
Figure 10
n = 19
8.0
7.0
6.0
5.0
n = 31
4.0
n= 8
3.0
2.0 1.0 I
0.0
n=8 n= 6
■ ■ HGU3 HGU5 HGU6 Lov.er HGU6 Upper HGU?
Hydrogeological Units - Geometric Mean for Measured Hydraulic Conductivity (K) from
Small Scale Hydraulic Tests. HU3 - Weathered lava flows, HGU5 - ignimbrite deposits with a
low degree of welding, HGU6 Lower - ignimbrite deposits with a high degree of welding, HG6
Upper - ignimbrite deposits with a high degree of welding and HU7 - Fault zones.
3.4.2 Packer testing
The intent of the packer testing was to quantify localised hydraulic conductivity with depth and the
hydraulic conductivity within the near field area. Field hydrogeologists were on site to monitor all
packer testing activities. The packer equipment was operated by Maldonado.
A total of twenty-seven (27) packer tests were completed, all of which were done within the
ignimbrite units. All of the tests were conducted with single-type packer configurations, with a
typical test interval of 5 to 20 min length. Depending on field conditions, both Lugeon and Lefranc
tests were completed.
Table 5 provides a summary of the twenty-two (22) Lefranc tests conducted at site through
December 2017. The details of each packer test and related analysis are included as Appendix B
(Packer Test Analyses).
49
D~
Table 5 Summary of Lefranc Test Results.
Test Interval (m) Q Hydraulic Conductivity
Borehole Lithology
From To L/min m3/day m/day emfs mis
6.0 19.0 96 138.24 5.48E+00 6.34E-03 6.34E-05 Fractured ignimbrite
DS-5P 33.5 52.0 71 102.24 1.01E+00 1.17E-03 1.17E-05 Fractured ignimbrite
51.5 70.0 75 108.00 1.11E+00 1.29E-03 1.29E-05 Fractured ignimbrite
3.0 7.0 5.4 7.78 4.53E-01 5.24E-04 5.24E-06
Weathered volcanics
(gravels and silty sands)
6.0 10.0 3 4.32 2.50E-01 2.89E-04 2.89E-06
Weathered volcanics
(gravels and silty sands)
9.0 13.0 4.2 6.05 3.58E-01 4.15E-04 4.15E-06
Weathered volcanics
(gravels and silty sands)
12.0 16.0 6 8.64 5.02E-01 5.81E-04 5.81E-06
Weathered volcanics ( silty
sands)
DS-11
15.0 19.0 1.8 2.59 1.35E-01 1.57E-04 1.57E-06
Weathered volcanics ( silty
sands)
18.0 22.0 11.4 16.42 8.97E-01 1.04E-03 1.04E-05
Weathered volcanics ( silty
sands)
Weathered volcanics
18.0 28.0 5.4 7.78 2.01E-01 2.32E-04 2.32E-06 (gravels) and heavily
deformed ignimbrite
28.0 46.0 87 125.28 1.47E+00 1.70E-03 1.70E-05 Fractured ignimbrite
44.0 61.0 73 105.12 1.46E+00 1.68E-03 1.68E-05 Fractured ignimbrite
The expert in WATER ENVIRONMENTS 45
50
DS-01
DS-27
DS-35
DS-30
46
61.0 86.0 91 131.04 8.02E-01 9.28E-04 9.28E-06 Fractured ignimbrite
85.0 101.0 95 136.80 1.96E+00 2.27E-03 2.27E-05 Fractured ignimbrite
101 .0 119.0 99 142.56 1.22E+00 1.41 E-03 1.41 E-05 Fractured ignimbrite
11 9.0 142.0 90 129.60 1.88E-01 2.17E-04 2.17E-06 Fractured ignimbrite
19.0 30.0 32.0 46.08 5.33E-01 6.17E-04 6.17E-06 Fractured ignimbrite
26.0 50.0 99 142.56 3.28E-01 3.79E-04 3.79E-06 Fractured ignimbrite
50.0 75.0 100 144.00 3.25E-01 3.76E-04 3.76E-06 Fractured ignimbrite
75.0 101.0 10 14.40 3.15E-02 3.64E-05 3.64E-07 Fractured ignimbrite
15.0 31.0 100 144.00 3.53E-01 4.09E-04 4.09E-06 Volcanic sands
15.0 50.0 101 145.44 5.76E-01 6.67E-04 6.67E-06
Volcanic sands and
fractured ignimbrite
The results from the Lefranc tests yield arithmetic and geometric mean values of 1.11 mid and
0.065 mid, respectively (Table 5). However, many of the tests in DS-11 are within the
overburden deposits (Alluvial and Colluvial). When only the ignimbrite tests are considered for
DS-5 (33 to 52 m below ground surface and 51 to 70 m below ground surface) and DS-11 (28 to
46 m below ground surface and 44 to 61 m below ground surface) the values range from 1.01
mid to 1.47 mid with a geometric mean of 1.24 mid.
51
D~
Table 6 Lugeon Test Results.
Test Interval
Hydraulic Conductivity
(m) Length
Borehole of Test Lithology
To From
(m)
mid mis emfs
DS-5P 16.0 34.0 18 2.71E-01 3.14E-06 3.14E-04
Fractured ignimbrite
DS-5P 68.0 85.0 17 1.84E-01 2.13E-06 2.13E-04
Fractured ignimbrite
Fractured ignimbrite
DS-5P 82.5 100.0 17.5 1.67E-01 1.93E-06 1.93E-04
Fractured ignimbrite
DS-27 13.0 19.0 6 1.68E-01 1.94E-06 1.94E-04
Fractured ignimbrite
DS-35 10.0 25.0 15 1.40E-01 1.62E-06 1.62E-04
The Lugeon test results (Table 6) in DS-5P are significantly different from the slug test and
Lefranc test results for DS-5S and DS-5P, which have significantly higher conductivity values
ranging from 1.0 m/d to 32 m/d (DS-5S slug test). The discrepancy in these values suggests that
the packer testing may be providing low estimates, likely the result of insufficient backpressure
in the packer system (Appendix B), which limited the effectiveness of the Lugeon tests. As a
result, they were discontinued early in the program. The Lugeon testing did not indicate a
significant decrease in hydraulic conductivity with depth over the upper 100 m of ignimbrite,
however, given the limited test effectiveness this finding is uncertain.
3.4.3 Aquifer pumping test
This section describes the aquifer pumping test (pumping test) completed at DS-4P, and the
related data analysis methods and results. The 3-day constant-rate pumping test was completed
to estimate hydraulic properties at a larger scale relative to the slug and Lefranc tests. Ideally,
the scale of the test approximates a representative elementary volume (REV) of the ignimbrite
aquifer, allowing hydraulic properties to be estimated for a REV.
The test was implemented in the field by MALDONADO and they collected the data following
standard operating procedures provided by OHi and FloSolutions. FloSolutions provided direct
oversight of these activities with the exception of the water level recovery period of the test.
3.4.3.1 Pre-test monitoring
Pre-test water level monitoring was completed in DS-4P and DS-5P-II and barometric pressure
was monitored using a Barotroll installed at the DS-4P wellhead. The monitoring was completed
from December 19, 2017 to December 27, 2017 and resulted in water level responses of up to
2.5 cm. The barometric efficiency of the fractured rock aquifer in DS-4P and DS-5P-II was
estimated to be between 0. 79 and 0.84. This suggests semi-confined conditions in the fractured
ignimbrite aquifer screened in these wells.
The expert in WATER ENVIRONMENTS 47
52
D~
48
3.4.3.2 Step-test
Prior to the constant-rate test at DS-4P, a stepped rate test (step-test) was conducted to
determine the optimal pumping rate for the constant-rate test and estimate well efficiency. A
submersible pump was used to pump the well and initial static water level was measured at 4.78
m below ground surface.
The step-test commenced on December 29, 2017 with an initial flow rate of 4.8 I/s. Subsequent
test rates were 9.2I/s, 13.2 I/s and 17.3 I/s (Figure 11). The maximum flow rate of 17.3 I/s
generated only 5.7 m of drawdown and was stable throughout the step period length, indicating
the well could sustain flow rates at least that high.
0 50 or- I
Time (minutes)
100 150
f
l Q, = 4.82 r s,=0.79 m
l'--t-t,,.,s. ...- ---'""r- ---------- 0.80 m :W •s2=1 .25m
Q =9.24 Us
: ----------
S1= 0 .79 m
S2= S1 + S2 = 0 .79 rn+ 1.25 m = 2.04 m
S3= S2 + S3 = 2.04 m + 1.60 m= 3.64 m
S4= S2 + S3 = 3.64 m + 2.08 m= 5.72 m
Q3 =13.27 Lis
200
2.06 m
os3=1 .60 m
L
Q, =17.28
Us
os4=2.08 m
Figure 11 Time-drawdown and pumping rates during the step-test at DS-4P.
3.4.3.3 Constant-rate test
250
A constant-rate pumping test was conducted on DS-4P to estimate the hydraulic properties of
the bedrock aquifer in the Silala Fault Zone and to evaluate the possible effects of boundary
conditions on the flow system. A constant-rate test involves pumping a well at a constant rate for
an extended period of time while measuring drawdown in both the pumping and observation
wells. By measuring drawdown, and the subsequent well recovery, hydraulic properties of the
aquifer can be determined. Analysis of observation well data can provide a more reliable
estimate of hydraulic properties because the observation wells are significantly affected by
wellbore storage and small fluctuations in pumping rates. More importantly, the storage
coefficient can only be reliably determined from an observation well that is a known radius from
the pumping well. Longer-term pumping tests may also allow for a more accurate estimation of
storage properties for an unconfined aquifer and in addition may help identify the existence of
boundary conditions.
During the test, groundwater was discharged about 500 m down-stream of DS-4P into the
Southern Wetland. Discharge monitoring data are presented in Figure 12. The discharge rate
was reasonably well controlled during the test and varied from 13.0 I/s to 14.4 I/s and averaged
13.8 I/s. Flow rates were relatively constant for the first 90 minutes of the test but small
53
increases in rate are observed at 90 minutes and 500 minutes of the test. The static water level
prior to test initiation was 4.77 m below ground surface.
~
" f i5
15
14
13
12
0.1
Figure 12
Average Discharge Rate = 13.8 Us
10 100
Time (minutes))
Second increase in rate at
about 500 minutes
First increase in rate at
about 90 min
1000
Discharge rate variability during constant-rate pumping test.
10000
The maximum measured drawdown in DS-4P is 4.35 m, which is less than 5% of the saturated
thickness of the aquifer (estimated to be at least 95 m). The drawdown curve for DS-4P
stabilises quickly, after which it remains very stable (Figure 13). Observation piezometer
transducer data could not be corrected for barometric pressure variations due to a
malfunctioning Barologger during the test. However, most responses were significant enough
that this was not an issue.
The expert in WATER ENVIRONMENTS 49
54
D~
50
0.01
0 .1
10
0
Figure 13
Response in 1.67min
Piezometer DS-05S
Response in 0.33 min
Piezometer DS-0SP-1
Response in 0.33 min
Piezometer DS-0SP-11
Q = 13.78 Lis
Pumping Period
1000 2000
Recovery Period
3000 4000 5000 6000
Elapsed Time (min)
Time-drawdown data during constant-rate test in key wells and piezometers.
7000
The maximum measured drawdown in observation wells (about 31 cm) occurred in the deeper
DS-5 piezometers (DS-5P-I and 5P-II) located about 81 m from DS-4P. No measurable
drawdown was observed at DS-1 , the distal up-gradient well (2375 m from DS-4P) with a deeper
completion interval (117.9 m below ground surface to 137.9 m below ground surface), indicating
the radius of influence of the test was less than about 2375 m.
The other observation piezometers have shallow completions relative to the pumping well, and
thus may not be a good indicator of the true radius of influence at depth . However, measurable
responses were also observed at DS-3 (25 cm), DS-6 (21 cm), DS-8 (8 cm) and DS-9 (17 cm)
(Figure 14).
The test generally shows more drawdown up-gradient, as would be expected, and has a radius
of influence of about 450 m (as defined by the 20 cm drawdown contour). The greater drawdown
to the northeast may also reflect greater permeability along strike of the fault zone.
55
Figure 14
100
Elapsed Time (minutes)
Time-drawdown data in observation piezometers during constant-rate test.
3.4.4 Aquifer test analysis methods
D~
This section describes the methods used in the aquifer test analyses. Several independent
methods of data analysis were chosen because they are established, peer-reviewed , industrystandard,
and applicable to the known aquifer conditions at the time and location of the tests. In
addition, the use of independent methods and test types serves as a crosscheck on the results,
which improves the rigor of the analysis.
Data analysis and reporting
Aquifer test analysis and reporting was streamlined with AQTESOLV Version 4.50 Professional ,
advanced pumping and slug test software available from Duffield (2007). A least-squares
regression is used to fit aquifer test data in the automatic mode. The manual mode allows the
use of professional judgment and knowledge of local conditions when fitting aquifer test data.
Since the automatic mode does not guarantee the most appropriate match, the manual mode
was generally used to analyse aquifer test data.
Step-drawdown test analysis methods
Step-drawdown tests are typically single-well tests in which the well is pumped at several
sequentially increasing rates. Step durations are typically either fixed at specific times that are
equal for each step or are based on real-time evaluation of water level changes in the pumped
well, with each step continuing until the water level change with time becomes small. The
resulting data were used to evaluate the performance of the well, determine the rate for the
constant rate test and determine the maximum pumping capacity of the well. Analysis methods
are based on the work of Jacob (1947) whose drawdown equation accounts for linear and
nonlinear head losses in the pumped well:
Sw = BQ + CO2
where sw is drawdown in the well, B1 and B2 are the linear head loss coefficients related to the
aquifer and the well, respectively, C is the nonlinear (turbulent) well loss coefficient. B includes
head loss both in the aquifer and within the well and filter pack. C accounts for turbulent head
loss related to well construction or deterioration. The exponent in the nonlinear well loss term is
The expert in WATER ENVIRONMENTS 51
56
D ~
52
assumed to be 2, as proposed by Jacob (1947) but could vary between 1.5 and 3.5 Rorabaugh
(1953). The Band C variables were solved using the method of Hantush-Bierschenk as
described in (Kruseman and de Ridder 1994 ).
The well efficiency, Ew, represents the ratio of the head loss in the aquifer to the total head loss
in the well and is calculated from the equation (Kruseman and de Ridder 1994):
Ew = (B10) / [(B1 + B2)0 + CQP] = (theoretical drawdown/actual drawdown)-100%
Constant-rate test analysis methods
The constant-rate test was designed to estimate the transmissivity, horizontal hydraulic
conductivity, storativity and specific storage of the tested geologic media, as well as the vertical
connectivity of units screened within different HG Us or portions of the same HGUs. Discharge
remains constant during the pumping period and is stopped immediately prior to the recovery
period. The curvature of the drawdown and recovery hydrographs depends upon the physical
characteristics of the aquifer and the pumping rate. Drawdown is calculated as the difference
between the pumped and static water levels at a given time of pumping. Residual drawdown is
the difference between the recovering and static water levels at a given time of recovery.
Drawdown analyses use drawdown data from the pumping period plotted versus time.
Recovery analyses use residual drawdown data from the recovery period plotted versus
dimensionless recovery time. Dimensionless recovery time is the ratio of the time since pumping
started (t) to the time since pumping stopped (t'), or Vt'. Recovery-test measurements allow the
transmissivity of the aquifer to be calculated, thereby providing an independent check on the
results of the pumping test (Kruseman and de Ridder, 1991 ). Residual drawdown data are more
reliable than pumping test data because recovery occurs at a constant-rate whereas a constant
discharge during pumping is often difficult to achieve (Kruseman and de Ridder, 1991 ).
The horizontal hydraulic conductivity estimated in a constant-discharge pumping test is
averaged over the saturated thickness of the aquifer, is undefined but is at least 95 m, as
defined by the saturated interval of DS-5P-I , which was drilled to 100 m and had inflow zones at
the base of the well.
The Cooper-Jacob (1946), Theis (1935) and Moench (1997) methods were applied to the
constant-rate pumping test data. These analytical solutions were selected because they are
established , peer-reviewed methods appropriate for the conditions encountered at the site. In
general, the following conditions were assumed:
the aquifer is unconfined ;
the aquifer has a seemingly infinite areal extent;
the aquifer is homogeneous and of uniform thickness over the area influenced by the test;
prior to pumping, the potentiometric surface is horizontal over the area influenced by the
test;
the aquifer is pumped at a constant discharge rate; and
the pumping well penetrates the entire aquifer and thus receives water from the entire
saturated thickness of the aquifer.
Cooper-Jacob straight-line method
The Cooper-Jacob method is a simplified form of the Theis equation (Theis, 1935) developed for
analysing data from confined aquifers (Cooper and Jacob, 1946). Unconfined (water table)
conditions can be accommodated by adjusting the drawdown as described by Jacob (1963),
using the equation
s' = s - (s2 / 2b)
57
D~
wheres' is the adjusted drawdown, s is the measured drawdown, and bis the saturated
thickness of the aquifer. Drawdown or adjusted drawdown data are plotted on a semi-log graph
versus time, and a straight line is fit to the straight-line portion of the data. Transmissivity is
estimated from the slope of the fitted line and the discharge rate, and hydraulic conductivity is
calculated from transmissivity divided by aquifer saturated thickness.
The Cooper-Jacob method requires that sufficient time elapse during the test to ensure that the
parameter "u" is less than 0.01 (Kruseman and de Ridder, 1990). Therefore, the fitted line
frequently does not pass through the early-time data. The Cooper-Jacob method emphasises
the properties of material within the front of the cone of depression , unlike the Theis method,
which heavily weighs the local properties (Butler, 1990).
Theis method
Both Theis and Theis recovery methods were used simultaneously to fit the observation well
data. The Theis method (1935) was specifically developed as a solution for pumping tests
performed in confined aquifers but can be used when drawdown is a small percentage of the
aquifer thickness. Type curves are compared with drawdown data plotted on a logarithmic graph
versus time. The type curves are matched with the time-drawdown and residual drawdown data
in order to estimate transmissivity, hydraulic conductivity and storativity.
Moench method
Moench (1997) developed a method applicable to the same conditions as Neuman's method
above but extended its application to account for wellbore storage and delayed observation well
response. Delayed observation well response can be significant early in a test, when heads are
changing rapidly and can strongly affect estimation of storage properties.
Distance-drawdown
The Distance-Drawdown method was applied to simultaneous water-level observations of the
constant-discharge pumping test for the tests where multiple observation wells were available.
The drawdown data was plotted on a semi-log plot versus time. A straight line was subsequently
fit to the data at the end of the test (t = 3d). The slope of this line, discharge rate, and aquifer
saturated thickness were then used to estimate hydraulic conductivity.
Distance-drawdown methods provide an overall estimate of hydraulic conductivity on the scale
of the distance between the pumping well and all of the observation wells used in the pumping
test. This is in contrast to time-drawdown methods, which provide hydraulic conductivity
estimates on the scale of the distance between the pumping well and an individual observation
location. Ideally, both time-drawdown and distance drawdown methods should be used to
analyse pumping test data, for the purpose of checking estimated hydraulic conductivities at
varying measurement locations and scales (Kruseman and deRidder, 1990).
3.4.4.1 Pumping test results
The proceeding subsections present the results of step-drawdown and constant-rate tests,
respectively. The step-drawdown test results include the transmissivity, hydraulic conductivity,
specific capacity and estimates of the maximum yield for DS-4P. Specific capacity is the ratio of
the pumping rate to the water-level drawdown in the well at that pumping rate. Specific capacity
typically decreases as the pumping rate increases.
The constant-rate test results section presents estimates of transmissivity, horizontal hydraulic
conductivity, vertical anisotropy, specific yield and specific storage. Transmissivity and hydraulic
conductivity are measures of the capacity of the aquifer to transmit fluids. Storativity is a
measure of the specific yield of an unconfined aquifer plus the depth-integrated specific storage,
or just the latter in a confined aquifer. Together, these hydraulic properties govern the amount,
rate, and propagation of drawdown that result from pumping in the aquifer.
The detailed analyses from the analytical analysis software are presented in Appendix D.
The expert in WATER ENVIRONMENTS 53
58
D ~
54
Step-test results
The specific capacity of DS-4P changes with pumping rate and ranges from 3.02 I/s/m at a
discharge of 17.3 I/s to 6. 1 O I/s/m at a discharge of 4.8 I/s. The well efficiency is estimated to be
between 57% and 27% for flow rates between 4.8 I/s and 17.3 I/s. The low efficiency is likely
attributable to either the imperfect filter pack, insufficient well development, well skin
development during drilling or other reasons.
The recovery data were analysed using the method of Kresic, (2007) for varying pumping rate
recovery tests and resulted in an estimated hydraulic conductivity of 41.1 m/d (Figure 15).
1.0
0.9
0.8
:[ 0.7
;<=; 0 0. 6
"O ;;
!" 0.5 0
~ "O 0.4
-~
a::
0.3
0.2
0.1
0.0
Figure 15
T= o.1a3Q
m
T= o.1a3( 11 .2a t/s•B6.4J
o.o7m
T= 3903.1 m2/d
b=95 m
K = 41.1 mid
10 100
Ut'
Residual drawdown ln DS-4P after the step-test.
Constant-rate test results
1000 10000
Transmissivity estimates for deep piezometers ranged from 1405 to 10,470 m2/d and had a
geometric mean of 2611 m2/d. Hydraulic conductivity for deep piezometers estimates ranged
from 14.8 to 110.2 m/d and had an overall geometric mean of 27.5 mid. Storativity estimates
ranged from 1.9 x 10-3 to 0.11 .
59
D~
Table 7 Summary of hydraulic parameter estimates from the DS-4P constant-rate test.
Piezometer Method T, m2/d K, m/d s Ss, 1/m Sy, %
DS-3 Theis - Earlv 13,140.0 138.3 0.0042 4.46E-05
Moench* 4,079.3 42.9 0.0019 2.00E-05
CJ-Late 1,475.0 15.5 0.0061 6.41E-05
DS-4S Theis 1,474.7 15.5 0.1064 10.6
DS-5S Theis 1,778.4 18.7 0.0051
CJ-Late 1,323.7 13.9 0.0312 3.1
DS-5P-I Theis 2,336.3 24.6 0.0019 1.95E-05
CJ-Late 1,505.6 15.8 0.0101 1.07E-04
DS-5P-II Theis 2,254.7 23.7 0.0022 2.29E-05
CJ-Late 1,555.0 16.4 0.0094 9.85E-05
DS-6 Theis 3,359.4 35.4 0.0047
CJ-Late 1,405.6 14.8 0.0074 0.7
DS-8 Theis 6,016.5 63.3 0.0104
CJ-Late 3,747.5 39.4 0.0475 4.7
DS-9 Theis 10,470.0 110.2 0.0091
CJ-Late 1479 15.6 0.0136 1.4
DS-3,5P-
1,5P-
11 ,5S,6,8 9 Theis-Multiwell 3,365.0 35.4 0.0017
DS-3,5P-
1,5P-I I ,5S,6, Distance-
9 drawdown 1,696.8 17.9 0.0073
Geometric Mean 2,611.3 27.5 0.0071 4.15E-05 2.7
Note. Moench - reported for fractures, OS-4S not included 1n storage properties geometric mean
Estimated storage values are indicative of semi-confined conditions at depth (DS-5P-I and 5P-II)
and generally interpreted to have unconfined conditions in the shallow wells (DS-4S, DS-5S,
DS-6, DS-8 and DS-9), which are typically submerged but screened close to the water table.
The derivatives for the time-drawdown for these observation wells suggest either unconfined
conditions or a double-porosity type aquifer. Given the well logs, storage estimates and
observed head conditions, the shallow responses are interpreted to be indicative of unconfined
conditions.
In general, later-time storage estimates are favoured as initial responses in the observation
wells exhibit rapid Non-Theis responses indicative of fracture flow. However, the distal DS-3
(378 m from DS-4P) has a typical Theis response at early times, suggesting that at larger scales
(e.g. REV) that the aquifer behaves as an EPM.
The transmissivity and hydraulic conductivity estimates from the late-time pumping data are
consistently about 65% lower. The Theis analysis average hydraulic conductivity was 53.7 mid
versus 18.8 mid for the Cooper-Jacob method, which emphasises the properties of the more
distal materials. This suggests that boundaries in the flow regime exist, perhaps related to the
fault zone geometry or lower permeability of the ignimbrite outside of the fault zone. This
hypothesis is further supported by incomplete recovery in the observation wells.
However, the limited hydraulic stress exerted by the test (i.e. small drawdown) makes the
observation of boundaries difficult given that the fault zone is highly permeable. Considering that
the approximate well efficiency at 13 lis is about 32%, the maximum aquifer drawdown
immediately adjacent to DS-4P during the test is only about 1.4 m or <2% of the saturated
The expert in WATER ENVIRONMENTS 55
60
D ~
56
thickness. As a result, boundary condition responses in the data are more subtle than would be
exhibited under higher pumping rates.
The less than 0.1 m response of DS-4S relative to drawdown at DS-4P (they are immediately
adjacent to each other) is indicative of significant vertical anisotropy in the ignimbrite aquifer.
The Theis analysis of this well suggests that the Kv:Kh ratio is 0.05. Overall the Theis curves
were generally best fit using Kv:Kh ratios of between 0.05 and 0.1.
The Moench (1984) analysis of DS-3, which is specifically designed for the analysis of pumping
responses for fractured bedrock, yielded similar results to the Theis analysis. This was done to
confirm the appropriateness of using Theis for the other observation well analyses.
The distance-drawdown anal ys is at the end of the pumping period (i.e. t = 3 d) suggests that at
larger scales (e.g. close or at the REV) the longer-term bulk hydraulic conductivity is on the
order of 18 mid and storativity was 0.007 or right at the geometric mean of all estimates.
0.32
~ 0.24
1: ! a_
·"' 0.16 C
Well Name
D D5-3
□ DS -SP -1
0.0798 e---1 ~O ~
5
s----c5=p~_=ll--
o D5 -55
u D5-6
□ D5 -9
-3.0E-4 ~--~-~~~~~~~--~--~~~~~
10. 100. 1000.
Radial Dist.ance (m)
Figure 16 Distance-drawdown analysis (DS-3, 5S, 5P-1 , 5P-11 ,6 and 9).
The recovery data in the pumping well was also analysed (Figure 17) and yielded consistent
transmissivity and hydraulic conductivity estimates close to those calculated from the
observation well data. The values are closer to the later time analyses (Copper-Jacob), which is
consistent with what would be expected.
61
D~
I
cc
0 'C"l
~ 'Cl
<ii
::,
:'2
ill
0::
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
T= o.183Q
m
T = 0.183 ( 13.8 l/s• 86.4 )
0.07m
T= 2181 .9 m2/d
b = 95 m
K = 23.0 m/d
10 100 1000
Figure 17 Residual drawdown and recovery analysis at DS-4P after the constant-rate pumping test
Compared to the slug tests and Lefranc tests, the pumping test results are generally about an
order of magnitude greater with respect to hydraulic conductivity. This is likely a result of the
scale dependency of hydraulic conductivity (e.g. Rovery and Cherkauer, 1995), particularly in
heterogeneous fractured igneous bedrock where fractures are spaced between slabs of more
competent bedrock.
The general trend for hydraulic conductivity with scale is a convergence at large scale toward
the largest conductivity values measured at small scale (Table 8). This suggests that the
transmissive fractures are well connected over a large scale and thus control the long-term
hydraulic behaviour. Lower pumping test conductivity values for DS-4S and DS-5S, provide
further support for lower Kv relative to Kh, as they would have significant vertical flow
components.
Table 8 Comparison between Pumping Test and Slug Test Results.
Piezometer
Slug Test K, Pumping Test Pumping K /
(m/d) K(m/d) Slug K (%)
DS-4S 18.30 15.5 o.8·
DS-5S 32.40 18.7 0.6·
DS-5P-I 8.54 24.6 2.9
DS-5P-II 2.00 23.7 11.9
DS-6 1.55 35.4 22.8
DS-8 8.54 63.3 7.4
DS-9 2.00 110.2 55.1
Geometric
mean
5.96 32.90 12.6
Note: * denotes excluded from geometric mean due to substantial vertical flow
components. Pumping test data reflect Theis estimates based on earlier time data, as
that analysis is more representative of localised hydraulic properties.
The expert in WATER ENVIRONMENTS 57
62
3.5 Water quality sampling
4
58
As part of the current investigation, groundwater samples were collected by SERGEOMIN and
analysed by the Ministerio de Energias (Ministerio de Energias, 2017). Water samples were
analysed for all major ions in addition to other trace elements (Figure 18).
ANALISIS FISICO OUIMICO DE AGUAS
INTERESAOO : EDGAR QUINTANILLA MORODJAS
PROCEOENCIA : Dq,a,u,IMIIII) POTOSI,
N" SOUC1T\JO: 223A / 2/H7
FECtiA DE RECEPCION : 11 I Novitmlm, I 10,
Pn,..,;,,aa: SUD UPEZ, FECHA DE ENTREGA : IO/Dldotlbn/201
ZONA SJLALA
OESCRIPCl6N : MUESTRA DE AGUA : I , DS-UP
N-&...b. PARAMETRO R11ultldo Unldaa, M61Ddo
800-01/2017 Ttmperelll'a 13,9 •c Tenn6meto
800-02 /2017 pH 8,94 - Polanc:iomerr11
800-03 /2017 Con-.c!Eloctlco 10.,7 "Siem Con-
80().«/2017 0,ig,oo- 0.◄ 7 mg/L o.m. ...
800-05 /2017 O.ugono IJlouollo 102.8 % Sat °"""'"" 800-00 /2017 llQO 8,0 mg/L _,,,_
800-07 /2017 o.nu- 22.44 mgCaCO,/L - 800-0812017 S61do<disuelb; 118.45 mg/ L - 800-09 /2017 Cek>lo 8,85 mg/L -- 800-10 /2017 Magnesio 1,13 mg/L Ab&orci6ne'Omioe
800-11 /2017 Sodio 9,26 mg/ L Em--
800-12 /2017 Po- 1,38 mg/L Emili!n•-
800-13 /2017 Chun>< 4,60 mg/L Wi>do •oenbn•nco
800-14 /2017 - 13 ,◄ 7 mg/L Eapeci'Q,okJmott, UV-Vialble
800-15 /2017 Caboo .... 0,00 mg/L Vok.lme.-11
800-18 12!J17 - 42,09 mg/L \lok.lmetla
800-17 /2017 Nit- 1.71 mg/LNo,· -rf•lN·-
800-18 /2017 Sib 17,50 mg/L Etped,...,_netta IN-Vidlte
800-19 /2017 - ... ,cldoc 84,0 mg/L - 800-20 /2017 Hiem> 5.31 mg/L -- 800-21 /2017 Amonio 0.12 "'9/LNH.• ~•lN·-
800·22 /2017 Fool- 0,◄ 0 mg lLP'V,-> --lN·-
800-23 /2017 Bero 0.10 mg/L Eq,oc:lolo-lN-llil:illo
000,,,2--l 12017 ,.._...., o, ..... m y IL Gerl@!"~IJIIJD\lnllli
Figure 18 Reported values from the Ministerio de Energias for a groundwater sample collected from
the Silala Near Field (Ministerio de Energ ias, 2017).
Hydrogeological conceptual model
TheHCM is a critical component of the overall study as it provides the framework for
understanding the hydrogeology of the Silala Spring System, including the groundwater-surface
water interactions. It also provides the framework for understanding the broader sub-regional
groundwater flow regime. The physical processes described by the HCM will provide the basis
for water budgets and the numerical models (Section 7). As such, a comprehensive HCM is
essential for developing a reliable numerical model.
63
The t«::~ is dl!\lelcped from aw•.J!:(e dala mi:.u:li"t,j:
FiBC,j ~r.t1li,m,a. 8111:;J, ""3- jli1~l1.1r,e,s ruj ~•~ Ot.!«>-Ol)>i1
l3e«lilliJC m"'"11"(1 l~Gl!.O~m,i, 2(11 l');
iJtl~•~,:,al Sl.,ll"{ty <.lt1I~.
Ulhativ," klqlJ from b::ifeh::I~
H~l,JIQ ~ dnl'Ai ,:,;lmi;l~rl ~ p,?Jt ~ 1!111!. ,i;l\a,:2rl-
t,v.riiiulic lie!!"! dililili ron'lf)le'letl by ~fil. (Plltiidi~. 2017); Zllid,
'lt~r CfJilll) (!~ 1i"Qm s.prln9i. ~Qmlil1(11'$\. ,;;,nlj rl"'llr ~mpl(I!;
4 1 Geology of the Silara Near Field
DHI
IHI Sia"a fl88J fl{(d . lo<:aleil lil IJ"l8 ooul.hern block or lhtt W!18ltl111 Moi...~n Rs1~8 .aild i,J.1}11ft
ot :tt1:1 C8illi81 vercanii:: ZOiffl or lfl8 i!l.lld We&lht3t '"'{I, !I~ and iJ(lpus~ i)1oee:%tl8 ere
represenlfld b')' l.llc::OflSQlid~ Clulllei 11111 ~ and Rttcenl etliftmer.19 lfll co...er i18 parts. ot •18
111 ee. Th tnale~& dtl~ Rom·, gl&rillf, nu.,.io-glllciBI. oo uvi&l &flil IJJlu ... illt ,_.oem
CCMIJ"luted br '°"l,vE,nie ttocl<e -0r boul:Jers. da1:1t& -0r dilf 811( rooks arid 1:1il'es. and li11e
e0,;_iment9 ~ as 3J:l1--id and si~ reoia, ). Tectonisr!'I. meniftl31.ed -BB '8ul1ing end ioirv.ini> or ll10
eodiu$¼e v~canie r~ or l.h :!llloa rti:1 lh(«ro Sl'lil.lctur.ril ~&Lui a& (!MA .ri &trc,~ oomrol ()\'(If
ec;etiel <liSYibuUo~ arid fn>l!G'lfl~:Je ot te epring b::alions a:saocialeil wit, IM Silals W8<1eno!8
(~i:RGEOMIN. 2017].
The ~o;;iy is ~trongly 111 -uenc~ b)I the •IOlctmlD ac".mty !that re~ned m tt.e ml:111110 cenb!rs
end domes. af 1he lll'l!D.11\Gl Yi".:H IIUl181ed In the U~r iii,,DCeffl!. o,;pkl= YDICllnil:i en.pmm5
m..&Mll this pen:,d led to the d~tian cl a ~IV eltlrMNe ig:nunbrme depmii 1errned the
:S.Llil:l, ~nunlule. The lb11:a1I uml af ltci ti:rm.:.ta::in CJ:lfUlsl:i -ef tgrumbmes. of am:e51!Jc, itx.rtlc
ccmpo!mlln Clek!rmEIEN! 1D be between l!i.fi and 111 Ui!i (rrullon -,ar.:. 11go1. U!Ml.5 d and~l1io
l!.:locllXl cr,mp~r-..Dn, 11ndl oi porp'h~IO ileld:JlJ~ Ove.11B:,t lhlS u nr1 tnrm~ the- ..-olCBnlC dome af ltte
Si~ Chtoo h1I, ....Cuch run; .an .::.gc of lio.04 Ma.. 4Scw-0e: Millbn11.cian11I Am!lm:1.-l"MilL Jliro_iect~
t,e l.eetOrlce or I.he eri&a wec e de1ermr)(od l:YJ mttam• or a owuo1ur.l au~ or lhe r, ai::tu_i.efc and
r:air.1t8. ralo.....-€<1 lly 21Jo17~i.r 18 an~i>l, l'fOOl:!&E-ilil! and intemn,1111.ion oi 18Eclil '1al&, This. IM to
•~Piftil or~ n ain elnx.."1ures wn-. lo.•1ernlltk: <"''11PQ11011119 ar,(I Q;s.(iocialed 81Jess l'ielde, !M"IJ:I
we,e l.tt8n I ii,e,;I 'olrilh U t{l>i1'3tinil I eui0118JI lr)(<&111€1f11ll fSliiRQl;;;Or.' , 2017) Ill uei Iii. ui.e
rreclurt< n0two k is deli11ed b.,- tt.'3>J! o~mint1r« &1 ucl11ral 1181-.ds. 1t1 111 irlCipeJ rr.ic1ure 111i1lwork
I 81 E--S.W MO " - 70 •· Ml\d and inc~E< l.h8' U~'Urll-Klls8'18y.ani l&ull B~~-.. .A eeoolld
r,ecture nelwoik I a NW-5."ii: 4100 • - 140 ") ol1tloo-tlbf1 I.ha~ eoinckJM• -..;l.h I.he mt!ln 11ck:anie
ceotei& or the a,e&, ""' u "rd ~.al 1:)'&ltl1l'I ti11e .ri 6 lf(tnd (34lll . -10 j wtrcil le &J"rte<.1 wtt'l
eorne or lhe 'felcenk: oorteEt ilr1 1tie 811 0e_ (6EROEOMIN, 201n
B;i!lad CW1 lho bcK>'lomo ..ml ¥Dluirnc tf:71Df}' 4ooclllrig) a11h• 1grumti1110 ,md 1ic:id Ob!.ON\lblMlo!i t~
tho 1.iclur= 1n lhn "ilnr:nbru:a .ira 9anar.ill'f i:opcn, :3ERlGc£CIMIN (2017J w9g~too th.it Iha
l'r.iciun11g ~ pd:onli.ily :;.'IJll;ibla ·rbr1he lr.Jn!lporl nnd Cill'OJ'!a!:Iln al ·Hulds.. Llrthlllmlllnl, Iha
t119~t l'lmclurn dansltlD!. wam ITbD.1!'.-Urcd IA i!ha nrn;i d thn $11:):.11 Spngs.. In !IDk.lonic. .>:JUr'.O~
!lDCCnll.xy pc«:a!.oil)' l!l {!DfT.Cr.111)' mo:ra 11¥.Jnt lt'i."ln pa:nary pomcrty .md I!'. dB""VDd itrcm 1hn
l'r.iclure and Eoonlmurty n111:wc:ilk!l at lhn rc,:J,;!l, v.hch lhclrn~Mt!. l!'ci,pnnd c.i 1\-.imuw,
cnntmully, jl«""..Z:blne.A olilld mtil1119 (Sl:RC31:0MIN, 20iti7~
4 2 Hyclrogeological unrts
he hyl!l"og111o£1:ogc.il prapcrtllts. cl ~~br1lll" .-1 I~ .il'III lin:Mn ta 1141 halliiroganeDUS. In IY'!ura
ill'-.:I hyctrau e oondw:llv.ty r:J_ :SUOh mcks ,o.zrn '\' J}I 1Wer 1-4 Dn:IIH'Si ol magnluda.
64
D~
60
5
4
GI u
C: 3
~ :::,
u
u 2
0
Figure 19
lab_min
■ lab_max
■ well_mln
■ well_max
Hydraulic Conductivity (m/day)
Example of the range of hydraulic conductivity of tuft from Nevada and New Mexico (Smyth,
2006).
Further complicating the hydrogeological setting is that faults are thought to provide a conduit for
the discharge of regionally recharged groundwater at the Southern Wetland. The hydraulic
properties of the rocks in Silala suggest that faults and related fracture networks, or secondary
permeability, exert the greatest influence on groundwater flow, relative to flow through primary
permeability. However, extensive weathering and fracturing has resulted in a zone of highly
weathered ignimbrite into rubbilized rock fragments that appear to behave as an EPM.
Conceptually, the degree of welding in the ignimbrite is an important consideration as it
significantly affects the hydraulic behavior of the rock. The more welded the ignimbrite, the more
competent and brittle the rock, which lends itself to fracturing and generally a higher hydraulic
conductivity (Belcher, 2001 ). However, friable and weathered ignimbrite and luff, as observed in
many of the shallow boreholes of the Near Field, are also known to be highly conductive (e.g. 2
x 10-2 to 2 mid; Lewis, 1989). Furthermore, the storage characteristics of the welded versus
friable ignimbrite are expected to be quite different with much lower storativity in the welded
ignimbrite and much higher in the friable, weathered ignimbrite.
Based on the measured, and in other cases interpreted, hydrogeological characteristics of the
geologic units, DHI has grouped the geologic units into Hydrogeological Units (HGUs). Eight (8)
HGUs were developed (Table 9) and these units will serve as the parameter zones for the
hydrogeological framework model and groundwater flow modeling.
65
Table 9 Hydrogeological Units.
Hydrogeological Unit Basic Lithology Approximate Thickness (m)
HGU1 Colluvial and alluvial deposits 1 to 10 m
HGU2 Glacial deposits, sandy loams 1 to 10 m
HGU3 Weathered lava flows 1 to30 m
HGU4 Felsic volcanic sequences Up to 600 m
HGU6 Upper lgnimbrite deposits with a high degree of welding Up to 150 m
HGU5 lgnimbrite deposits with a low degree of welding 10 to 120 m
HGU6 Lower lgnimbrite deposits with a high degree of welding
Up to 300 m; assumed to be
300 m in the model
HGU7
Fault zones believed important for groundwater 50 to 100 m wide, depth to
fiow base of ignimbrite (assumed)
HGUB Volcanic neck of Silala Chico
650 to 760 m diameter;
depth to base of ignimbrite
Descriptions of the HG Us are provided below:
HGU1 -Colluvial, fluvial, and eluvial deposits (see Table 3, DS-12). Colluvial deposits are
characterised by clasts of variable shape and size ranging from rounded silts and sands to
angular boulders from nearby, dormant volcanoes. Eluvial deposits contain cobbles, gravels,
and sands (5 to 50 cm) with minor interstitial fines. The large majority of clasts correspond to
sub-angular to sub-rounded andesites (80-90%). Tabular ignimbrite clasts and a small
percentage of non-cohesive fines (<10%) account for the remaining clasts (Hauser, 2004). Other
forms of alluvial accumulation in the study area include alluvial fan deposits and alluvial plains
with paleosols developed on 7.8 million years old ignimbrites and on 1.7 million years old
andesitic-dacitic on lavas (SERGEOMIN, 2017).
HGU2 - Glacial moraine and wash deposits (12.000-40.000 years old). Glacial deposits are
poorly sorted, unconsolidated blocks, gravel, sand, silt, and clay and are probably low
permeability. Minor areas of sandy loam deposits with fine silt and clay sediments (see Table 3,
DS-24P) are also included in this group (Hauser, 2004 ). Three separate moraine groups were
identified near the field study by SERGEOMIN (2017); however, all moraine deposits were
located outside of the Silala Near Field Area.HGUJ - Chemically and mechanically weathered
lava flows (see Table 3, DS-09). Characterised by areas where lava extruded from the lnacaliri
volcano (-1.5 Ma) and other local volcanoes and remained exposed. HGU4 lava flows differ
from HGU3 in that they may have some secondary permeability but are unsaturated in the Silala
Near Field (SERGEOMIN, 2017).
HGU4 - Volcanic sequences from the Lower Pleistocene (ages range from 5.84 - 0.02 Ma),
mainly andesitic and dacitic volcanic rocks, made up of lavas, agglomerates and andesitic luffs.
The expert in WATER ENVIRONMENTS 61
66
D ~
62
Outcrops are typically dark grey to reddish pink colour, intermediate composition, and display a
banded or fluidal structure. Rock composition is characterised by a volcanic, chalky matrix and a
porphyritic texture with irregularly dispersed phenocrysts of feldspar, am phi bole, biotite ,
pyroxene and iron oxides up to 40 cm in diameter. These deposits are near the headwaters of
the Silala catchment and on the upper slopes of local volcanoes: lnacaliri, Silala, and Apagado.
Overall, HGU4 sequences are well compacted and exhibit a high resistance to physical and
chemical weathering. However, extensive fracturing was observed in many of these units
(SERGEOMIN, 2017).
Based on the information provided below (rock descriptions, rock parameters from core logs,
geophysics), hydrogeological units for ignimbrite deposits (see Table 10) are based on hydraulic
properties (see Figure 10) of the respective unit sections rather than their geologic groupings
(Figure 21 ).
Table 10 lgnimbrite classification.
HGU (In
stratigraphic
SERGEOMIN, 2017 order) Brief Description
Nts (Silala ignimbrite) HGU6 Upper lgnimbrite High Degree of Welding
Nis2 (Silala ignimbrite) HGU6 Upper lgnimbrite High Degree of Welding
Nis 1 (Silala ignimbrite) HGU5 lgnimbrite Low Degree of Welding
Uui (Upper unnamed ignimbrite at depth) HGU5 lgnimbrite Low Degree of Welding
Lui (Lower unnamed ignimbrite at depth) HGU6 Lower lgnimbrite High Degree of Welding
67
~
s
2
~
C')
co
~
~
s
2
vi
~
:)
(.')
I
~ "O
Q) ro
• Q)
l .!:
Q . ai "O
§ >,
2 .0
} "O ·ro
~
>
0
c'.' co Q)
Ol "'
s .s
2 $
I .iii
]"l'
iii
en
.,;
I!!
""'' ]l
iii
Q)
£
.!:
U)
:)
(.')
:E,
.l!l
·1:
:::,
<ii
·"c,
0
0
Q)
eOl I!!
"O z
>, Ill
.c :E
0 z
C: lil 0
~ >
Q) z
.!: Ill
ai a:
0 Ill
~ :~:
.!:
μ
0
N ai
Q.
I!! X
:::, Qi
<(
Ol Qi
U: .c
I68
D~
64
SERGEOMIN, 2017
Upper Sllala tgnlmbrtlll
(Nb)
High DegrM of Welding
Upper Sllala Jgnlmbrtlll
(Nl&2)
High Degree of Welding
Lower Silala lgnimbrite
(Nis1)
Low Degree of Welding
Upper Unnamed lgnlmbrite
(Uul)
Low Degree of Welding
Lower Unnamed lgnlmbrite
(Lui)
High DegrN of Welding
Hydrogeologic Unit (HGU)
HGU6Upper
HGUS
HGU6 Lower
Figure 21 Correlation between Sergeomin, 2017 ignimbrites and DHl's hydrogeological unit groupings.
The Silala ignimbrite (HGU5 and HGU6) is formed from a dense, pyroclastic flow with an
irregular distribution of partially welded magmatic fragments throughout a light pink to reddish
brown matrix (SERGEOMIN, 2017). SERGEOMIN (2017) grouped the Silala ignimbrite into
three different units: Silala ignimbrite (Nis1 ), Silala ignimbrite (Nis2), and Silala Tufts (Nts).
Subtle, lithological differences exist between the three ignimbrite units; however, HGU's were
determined using each unit's degree of welding. Typically, the Silala ignimbrite displays a finegrained,
massive structure with small (1 to 20 mm) felsic and mafic phenocrysts, pumice, and
other pyroclastic material dispersed in an aphanitic matrix without any preferred orientation.
Borehole data shows a thickness up to 120 m (well DS-1). Core logs describe significant
variability in rock quality with several high-density fracture zones and increased rock friability.
For this study, the Silala ignimbrite is divided into upper (Upper Silala) and lower (Lower Silala)
sections. The Upper Silala (HGU6 Upper) is characterised by a fining upward of grain textures
and sizes- sub-angular to sub-rounded clasts ( <10 cm) are observed near the base of the
section. Moreover, the Upper Silala has a higher degree of welding and silicification than the
Lower Silala (HGU5) (SERGEOMIN, 2017). The degree of welding and silicification in the Upper
Silala indicates a higher depositional temperature. Temperatures within pyroclastic flows
commonly reach between 800 and 1,000°C. For felsic and intermediate ignimbrites,
temperatures must reach at least 500 to 650°C for significant welding to occur. In these hightemperature
depositional environments, phenocrysts and lithic clasts will adhere to each other
while vesicular material, such as pumice, will compress (Schmincke, 2004). A higher degree of
welding and clast compression (i.e. decreased pore space and permeability) seen in the Upper
Silala (see Table 3, DS-01-I) is the result of a high temperature deposition relative to the Lower
Silala (see Table 3, DS-10). Despite mineralogical similarities between the two sections,
hydrologically significant differences in rock texture appear to exist between the Upper and
Lower Silala ignimbrite sections.
The unnamed ignimbrite units at depth, Upper Unnamed ignimbrite (Uui) and Lower Unnamed
ignimbrite (Lui), are mineralogically similar but differ in their degree of welding. Overall , the two
units are comprised of a light brown to yellow crystal-rich sequence with biotite and amphibole
69
D~
phenocrysts (see Table 3, DS-35-I). The units are constituted by pyroclastic flow and surge
deposits resulting in a poorly to moderately welded luff (Layana & Aguilera, 2013). For the
purposes of this study, the unnamed ignimbrite is divided two pyroclastic flow units: HGU5 and
HGU6 Lower. A thin (<10 cm) pyroclastic surge deposit exists between the two units. The thin
unit is clast supported, constituted by crystals (quartz, biotite and plagioclase; 60% vol.) and
pumice. For the purpose of this study, the pyroclastic surge deposit was grouped with HGU6
Lower. HGU6 Lower extends to the bottom of the model domain. The unit is crystal-rich (quartz,
biotite and plagioclase; 50% vol.) with fiamme textures (welding compaction in primary
pyroclastic facies), which increase to the base. The lower portion of HGU5 is ~50 m thick,
coarse-ash matrix supported with abundant pumice at top and decreasing crystal and pumice
contents with depth. Significant alteration of clasts was not observed in HGU5 (Layana &
Aguilera, 2013). The higher degree of welding and clast compression (i.e. decreased pore space
and permeability) observed in HGU6 Lower is attributed to a higher depositional temperature
relative to HGU5 (Schmincke, 2004).
Gamma ray logs from selected wells in the lower Silala provide additional evidence that
permeability in HGU6 Lower decreases with depth. The zone above the top of HGU5 is
characterised in wells PW-BO and PW-UQN by gamma-ray values around 40 American
Petroleum Institute units (API) (Arcadis, 2017). These values increase at the top of HGU6 Lower
to 60 to 70 API. The API increase is probably related to a lithological change, where HGU6
Lower contains a higher proportion of secondary clay content compared to the formation above
it (HGU5). The EW-PS gamma ray also suggests that secondary clay content increases with
depth within HGU6 Lower (EW-PS bore). Hydrothermal alteration of the minerals present in
HGU6 Lower (i.e. flow of groundwater at high temperature) is most likely responsible for the
secondary clay content in the unit.
HGU6 Upper, HGU5, and HGU6 Lower all consist of ignimbrite units. The relative differences in
hydraulic parameters between HGU5 and HGU6 are attributed to the amount of welding found in
the ignimbrite layers. Differences in the hydraulic parameters for HGU5 and HGU6 become less
apparent with alteration to the ignimbrite units from structural deformation. Several zones of
high-density fractures and friable rock were observed in all five ignimbrite units. The most
heavily deformed areas in the study area are located around the Silala Spring System.
HGU7 - Silala Fault Zone (see Section 5.2.1 ).
HGU8 - Intrusive igneous rock that forms Silala Chico's volcanic neck. Volcanic necks (also
known as volcanic pipes) are remnants of past magmatic pathways from underlying magma
chambers to the Earth's surface. When a volcano ceases to erupt, residual magma in the
volcanic neck will cool and crystallise (Monroe & Wicander, 2014). Due to longer cooling periods
and limited atmospheric exposure, volcanic necks are typically better preserved and more
resistant to weathering relative to lava flows extruded from a volcano. Low primary porosity and
permeability are typical for intrusive igneous bodies. Consequently, intrusive units are often
simulated as physical boundaries to flow (Anderson, et al., 2015). However, intrusive lithologies
may acquire appreciable secondary porosity and permeability in the form of faults, fractures, and
weathering. The fracture systems, described in the Silala Near Field, most likely extend into
HGU8. Still, considerable differences in hydraulic parameters likely exist between Silala Chico's
intrusive volcanic neck and Silala Chico's extrusive lava deposits regardless of structural
deformation. Although no subsurface data is available for HGU8, the unit is assumed to have
lower hydraulic conductivity and storage parameters relative to HGU4 (see Table 5.3 and Table
5.4) and would act as a flow barrier in the Silala Near Field Area.
4.2.1 Hydrostructural units (e.g. faults and fracture zones)
The study area is part of the western volcanic chain of Bolivia. Local and regional structures are
the result of the convergence between the Nazca and South America plates (SERGEOMIN,
2017). Structural features include thrust faults, normal faults, fault splays and shear zones and
fracturing related to lithostatic loading and crustal movement. The hydrogeologic behavior of
The expert in WATER ENVIRONMENTS 65
70
66
structures is dependent on a number of factors such as lithology, fault scale, fault type, fluid
chemistry, pressure-temperature history, and component conductivity and anisotropy (Caine,
Evans, & Forster, 1996). Volcanism in the area is typical of a geodynamic arc environment,
dominated regionally by compressive tectonics. Compressive tectonic environments give rise to
faults that serve as feeder channel for volcanic hotspots and the development of fracture sets
that serve as channels for fluid transport (SERGEOMIN, 2017)
The primary anticipated effects of structural features on the site hydrogeology is to act as
conduits for groundwater flow, enhancing groundwater flow through the ignimbrite. (Figure 22).
However, some structural features may also act as barriers to flow perpendicular to strike across
more conductive units where fault gouge inhibits flow. The evidence for the Silala Fault Zone
behaving as distributed conduits is substantial, and principally relates to many of the most
productive springs emanating from mapped fault zones, such as in the Southern Wetlands. The
geophysical surveys (COFADENA, 2017) also tend to support the interpretation of a fault zone
of highly brecciated rock rather than a narrow discrete feature. The drilling and hydraulic testing
also supports that the ignimbrite within the interpreted fault zone is highly brecciated over a fairly
broad zone (i.e. 10's meters) and thus is likely reasonably approximated as an EPM.
Distriblll«I
Conduit
low
~ Cnmbin«I
- btgb ~ Co,ub,il-Barrier
Accrctu->"
Prwn,
Di1t Valk.')'
Faull
Ptr111~abiUty Structures
In Fault Zones
San Gabri<!I
Cata:llM!e<
----- htgb
hl&h
i
"' l}llll,lJ:O
lo«
i
L«a/ktd
Barrier
Figure 22 Conceptual scheme for fault related fiuid fiow (Caine and others, 1996).
There is significant evidence in the outcrops along the spring system that small aperture
fractures have a tendency to remain open and behave as localised conduits for groundwater
(low damage and very little to any core recovery). Some minor calcite deposition can be
observed along fault scarps and carbonate precipitates within fracture zones at discharge
locations but in general, the fractures are open, near vertical, and many have springs emanating
near ground surface (Figure 23).
71
D~
Figure 23 Spring emanating from localised conduit type fracture.
4.3 Hydrogeological framework model
A three-dimensional geological model was developed using GeoModeller software (Intrepid
Geoscience, 2017) to provide the basis for defining geological characteristics and the extent of
each hydrogeological unit (HGU) and is referred to as the Hydrogeological Framework Model
(HGFM) in the following. The HGFM includes Near Field stratigraphic units and structural
features. HGUs were selected based on having unique and distinguishable hydraulic
parameters. The units are presented in Table 9 along with their relative unit thicknesses.
Geologic descriptions of each HGU are detailed in Section 4.2.
The information incorporated into the HGFM was obtained from various sources including: sitespecific
geologic field campaigns, geologic maps, cross sections, bore logs, geophysical data ,
and a digital terrain surface. The areal extent of model inputs is considerably larger than the
extent of the Near Field flow model in order to capture the sub-regional geologic and
hydrogeological trends. Regional geological deformation and structural trends are often
expressed at a local scale; however, multiple prominent geologic features extend past the Silala
Near Field. The larger HGFM domain was deemed necessary as these geologic features have a
significant impact on sub-regional and local groundwater flow.
4.3.1 Data sources
The HGFM was developed from various geologic and geophysical datasets. A summary of the
Silala geologic history and descriptions for HGUs incorporated in the HGFM are presented in
Sections 4.1 and 4.2.1, respectively. The surface terrain was developed from a local highresolution
digital elevation model (DEM) based on a drone survey of the Nearfield (IGM, 2016).
Initial geologic contacts were derived from maps and cross sections produced by SERGEOMIN
(SERGEOMIN, 2017) (SERGEOMIN, 2003). Although HGU groupings were designated using
detailed geologic descriptions from the 2017 SERGEOMIN report, the map and cross section
figures included in the 2003 SERGEOMIN report provided greater lithological and structural
detail (Figure 1 ). Geologic descriptions and figures from the two reports were comparable so the
more detailed datasets (2017 descriptions and 2003 figures) were collated and used to develop
the model. Due to the spatial limitations of the SERGEOMIN field campaigns and related
The expert in WATER ENVIRONMENTS 67
72
D~
68
geologic studies, geologic maps and cross sections produced by Arcadis were used to
supplement areas within the HGFM domain that extended into Chilean territory (Arcadis, 2017).
Borehole logs from piezometer and test well drilling were used to constrain subsurface geologic
contacts (Table 3). Borehole locations and stratigraphic logs were imported directly into the
GeoModeller software and provided approximate elevations of geologic contacts and relative
thicknesses of the various HG Us. The imported logs were incorporated into GeoModeller
computations and served as known reference points for manual, model calibration (see Figure
24).
"'""""""' -... Drillhole DS-35 at : X=600325 , Y=7565480 Drillhole DS-32 at: X=600313, Y=7565472
00
,2.5
75
,",".
,",".
20.0
,2.2.5
275 ,,.
J25
"" >15
"5
! :.~.. S75
600
625
65.0
675
ro .0
'25
"" n5
"" .8.2.5 875
900 ... 975
Mi sfit Geologicill Log vs Geological Model • 5.08% Misf« Geological Log vs Geological Model • 0.CI%
,oo, _______ ._,
Figure 24
I
Drill hole log comparison between imported geologic logs and logs produced from the
geological model.
In addition to borehole log data, ERT scans were integral in the development of subsurface
interpretations (COFADENA, 2017). The 28 ERT scans provided high-resolution, localised
imagery of the Silala Near Field geology (Figure 25). Subsurface datasets were used during
model development to increase model accuracy and after model development as calibration
points. Similarly, gamma ray logs and stratigraphic logging of borehole cuttings and cores from
the Arcadis study were also used in the development of the HGFM area in the Chilean territory.
73
DHI
!
~
:u
9.111/ NE
Nt:
n :.m: 25 E:ltcT~lll rulslt,ly lilll'IOjlr~ptr, IER'""I 1£>11115 .:.nd 1li d 28 ~ h UM, 81.:._.:i Ne.Ir Flt.Ii
od:I c:cr~..mon (Be~'). MQl.v:-. ERT ~t.m Q.left~,15 modelled ,;ie11qo' Ill 1l!e Slala r-.c~r r,nr. '"'(',rnlblf,'lfr
Scr;1iccl
15
74
70
HGU7
HGU3
HGUI
HGU•
HGU6_Upper
HGU5
'------' HGU6_Lower
*Geology modeled and rendered in GeoModeller
Figure 26 Location of cross-sections 15 and 16 shown in Figure 27
4.3.2 Model construction
The model domain was delineated based on the inclusion of local and sub-regional geologic
features relevant to hydrogeology in the Near Field. Domo Silala Chico and the Silala Fault were
of particular importance when developing the HGFM. The Silala Fault approximately underlies
the Silala canal system, which passes between Volcan lnacaliri and Domo Silala Chico. Both
landforms are the product of a series of volcanic events resulting in thick deposits of compact
crystalline rock that exhibit a higher resistance to physical and chemical weathering. Further,
intrusive sills, dykes, and the volcanic necks in which they emanated likely act as hydraulic
barriers for groundwater flow. Chemical analyses (see Figure 38 and Figure 39) of surface water
and groundwater from the field site suggest groundwater flow deviates from its expected, downgradient
flow path and travels around these intrusive features.
Multiple field reports and observations from site visits document significant faulting and
fracturing throughout the Near Field Area (Hauser, 2004) (SERGEOMIN, 2017) (SERGEOMIN,
2003). Faulting and associated fractures were also observed in bore logs (Appendix A) and ERT
profiles (COFADENA, 2017). Not all lineaments are modelled explicitly in the HGFM; however,
the Silala Fault Zone has a significant impact on the local hydrogeology (Section 4.1 ). The Silala
Fault Zone, represented in the model as HGU7, is a northeast trending, near vertical normal
fault that transects the entire Near Field model domain (Figure 27). Several smaller faults and
fracture systems within the study area parallel the Silala Fault, which itself, reflects structural
trends in the region (SERGEOMIN, 2017) (Tibaldi, et al., 2008) (Tibaldi, et al., 2017). The
fracturing and subsequent weathering of nearby bedrock resulted in wide zones of rubbilized
rock fragments that likely act as an EPM. A precise delineation of the Silala Fault was recorded
(SERGEOMIN, 2003), but the dip of the fault was not evaluated. For the purpose of the HGFM,
the Silala Fault Zone was assumed to be vertical and extends to the bottom of the model
domain (Figure 28). The Silala Fault Zone was explicitly simulated in HGFM (HGU7) and was
assigned an approximate width of 50m in order to account for the extensive fracturing and
physical weathering that occurs within this zone. Other mapped faults incorporated in the model
are included as faults rather than zones given that their nature is uncharacterised. For the
purposes of the model, the lower ignimbrite layer (HGU6 Lower) is extended to 4000 m above
sea level. While the thickness is currently undefined at the site, HGU6 Lower is thought be
75
D~
between 300 m and 500 m thick. Geological profiles from HGFM along the sides of the ravines
and through the wetlands (see locations in Figure 29) are presented in Figure 32.
Figure 27
Figure 28
Hydrogeological Framework Model (HGFM) rendered in 3D. The Silala Fault (HGU7) is
highlighted in red. Remaining units are displayed with transparency for easier viewing of
modelled subsurface.
Subsurface view of the HGFM facing the NW. Silala Chico's volcanic neck (HGUB) and the
fault zone (HGU7) both extend from the model surface to the bottom of the model domain .
The expert in WATER ENVIRONMENTS 71
76
D~
72
...... , -. ·, .
N A
-~--,
0 0.15
-. -,
'·-'·
0.3
·-,
' ·,,
··-', ... ,_
0.6
·-,
•. -,
' · .. , ..
o_g"•, •.
Miles
1.2
Figure 29 Location of geological profiles generated from the Hydrologic Framework Model (HGFM).
Main_Cana ls - HGU2
~ Profile_Piezos - HGU3
Profiles - HGU4
- HGU7 - HGUS
- HGU8 c:::: HGU6
- HGU1
77
HGU1 - elluvium
HGU6 Upper - lgnimbrite
HGU5 - lgnimbrite
HGU6 Lower - lgnimbrite
HGU7 - Fault Zone
Figure 30 Geological profile A.
I
HGU2 - Bofadel
HGU6 Upper- lgnimbrite l
HGUS - lgnimbrite S
_,.
,...,.,
Figure 31 Geological profile B.
The expert in WATER ENVIRONMENTS
!
!
0 -1Ml241N
... -·· 11111138H
1000
11>11132E
7111111109N
Profile A - Main Canal (South)
Profile B - Northern canal
...
,111_117IOE ·-.-.. ·
2000
IID27!l8E
7-7N
lJS.23
73
D~
... ..,,.,.. -
78
D~
I
- C·<:Ma-
!
I
~
!
!
' !
0 -·-
■ HGU5
□ HGU6 Uppo<
■ HGU1
290
900342E ,_ ,_,.
Figure 32 Geological profile C.
!IOI)
800498E
75el33H
4.4 Hydraulic properties
74
The hydraulic properties of the various HG Us have been estimated from hydraulic test results in
both Bolivia and Chile whenever possible. When data were not available, these parameters
were estimated from literature values and professional experience.
4.4.1 Hydraulic conductivity
The hydraulic conductivity estimates from the pumping tests are considered to be the most
reliable estimates at the scale of the Silala Spring System. The tests suggest subtle changes in
hydraulic conductivity between the Silala Fault Zone and other portions of the ignimbrite aquifer,
with the latter being about a third as conductive as the former.
The early-time pumping test responses have a geometric mean of 53 mid, which is appropriate
for the fault zone in the southern wetland. The surrounding ignimbrite at larger scales has a
conductivity of about 19 mid (geomean from late-time pumping test data). The pumping tests in
Chile suggest that the hydraulic conductivity of the fault zone in the border area (i.e. 6.5 mid) is
lower than in the Southern Wetland, and this may partly explain the steep hydraulic gradients
between the Northern Wetland and the border.
79
Small scale hydraulic testing did not indicate a larg permeability difference between two
ignimbrite HG Us (HGU5 and HGU6). It is not clear if this relationship holds over large areas far
from the Silala Fault Zone. However, it is reasonable to expect that the moderate to densely
welded ignimbrite exhibits higher conductivity than the partially welded ignimbrites. The
exception would be where the partially welded ignimbrites are highly weathered and brecciated,
as encountered in portions of the site.
The expert in WATER ENVIRONMENTS 75
80
D~
Table 11 Hydrogeolog ical Units - Measured and Estimated Hydraulic Conductivity.
Heade
Published Field Tested
rs on Basic Lithology
LowK High K
Source
LowK High K
Test Type Comments
HGU
(mid) (mid) (mid) (mid)
Lefranc tests from alluvial and colluvial materials in
HGU1
Colluvial and
(Heath, 1983)
Lefranc DS-11 had a geometric mean of 0.38 m/d. Consistent
alluvial deposits
1.0E-01 1.0E+01 0.14 0.90
Tests with range from surface infiltration tests (Arcadis,
2017) - 0.63 to 2.1 m/d.
Glacial deposits,
Only borehole within the furthest extent of glacial
HGU2
sandy loams
1.0E-03 1.0E+OO (Heath, 1983) NIA NIA NIA deposits is DS-1 . No core log, borehole log, or
hydraulic test results available.
Weathered lava
(Wood and No hydraulic tests were conducted that explici tly
HGU3
fiows
1.0E-09 1.0E-03 Fernandez, 1.35 12.70 Slug Test identified this unit. Utilized Colombia River Basalt as
1988) defined by Wood and Fernandex (1988 )
(Wood and
HGU4
Felsic volcan ic Fernandez, No hydraulic tests were conducted that explicitly
1.0E-08 1.0E+01
1988) (Heath,
NIA NIA NIA
sequences identified this unit.
1983)
Partially welded
lgnimbrite low
luff (Belcher et
Range provided is from slug tests and Lugeon tests
HGU5
degree of welding
2.0E-06 1.9E+01 a., 2001) - 0.36 138.3 Slug Tests
completed in ignimbrite (n=15).
Geomean of 0.4
m/d
Moderately to
densely welded
HGU6
ignimbrite high
2.0E-02 5.5E+01
luff (Belcher et
0.05 138.2 Slug Tests
lgnimbrite. Range provided is from slug tests and
degree of welding a., 2001) - Lugeon tests completed in ignimbrite (n=1 5).
Geomean of 2
m/d
76
81
D~
Heade
Published Field Tested
rs on Basic Lithology
LowK High K
Source
LowK High K
Test Type Comments
HGU
{mid) {mid) {mid) {mid)
Slug Tests/
It is reasonable to assume that the high values from
Fault and fracture pumping tests completed with the fault zone are
HGU7 zones important for 1.02 138.3
Pumping
reasonable estimates for the unit. Parameterization will
Tests/Lefra
groundwater flow
nc Tests
depend on the degree of refinement or lack thereof
defining this unit.
Unfractured
igneous and
HGU8 Intrusive volcanics 2.59E-09 1.73E-05
metamorphic
NIA NIA N/A
No hydraulic tests were conducted that explicitly
rock (Domenico identified this unit.
and Schwartz,
1990)
The expert in WATER ENVIRONMENTS 77
82
78
4.4.2 Aquifer storage
Site-specific information on aquifer storage properties including storativity, specific yield and
specific storage have been defined from pumping tests completed at DS-4P and pumping tests
in Chile (Arcadis, 2017).
During the Chilean pumping test, the ignimbrite aquifer behaved as a semi-confined aquifer,
suggesting that less fractured and lower permeable layers of ignimbrite can result in locally and
potentially sub-regionally confined conditions. Similar responses were observed in the DS-4P
test from piezometers completed at greater depths. Storage values computed from the Chilean
tests were within the range measured during the test from DS-4P.
The specific storage and specific yield estimates for the ignimbrite are considered reasonable
for the ignimbrite observed during site visits.
83
D~
Table 12 Hydrogeological Units - Measured and Estimated Storage Properties.
Published Field Tests
Hydrogeological
Basic Lithology Source
Unit (DHI)
Low High
Mean LowSs High Ss Low Sy(¾) High Sy(¾)
LowSs High Ss
Sy(¾) Sy(¾) (1/m) (1/m)
HGU1
Colluvial and
3.0 22.0 4.90E-05 1.00E-04
(Domenico, 1972)
N/A N/A N/A N/A
alluvial deposits (USGS, 1987)
HGU2
Glacial deposits,
3.0 19.0 9.20E-04 1.30E-03
(Domenico, 1972)
N/A N/A N/A N/A
sandy loams (USGS, 1987)
HGU3
Weathered lava
0.9 19.0 1.60E-06 2.00E-04
(USGS, 1987; Younger
N/A N/A N/A N/A
flows 1993) (Domenico, 1972)
HGU4
Felsic volcanic
0.1 2 3.30E-06 6.90E-05
(Belcher et al., 2001)
N/A N/A N/A N/A
sequences (Domenico, 1972)
Upper Silala
HGU5
ignimbrite and
0.1 20.0 3.0 3.30E-06 4.90E-05
(Belcher et al., 2001)
1.4 10.6 1.76E-5 1.07E-4
Lower Unnamed (Domenico, 1972)
ignimbrite
Lower Silala (Belcher et al., 2001;
HGU6
ignimbrite and
0.1 5.0* 3.0 3.30E-06 1.30E-04
*Professional
0.7 4.7 1.76E-5 1.07E-4
Upper Unnamed experience) (Domenico,
ignimbrite 1972)
HGU7 Silala Fault Zone 0.7 10.6 1.76E-5 1.07E-4
HGU8
Intrusive
0.1 2 3.30E-06 6.90E-05
(Belcher et al., 2001)
N/A N/A N/A N/A
Volcanics (Domenico, 1972)
The expert in WATER ENVIRONMENTS 79
84
D~
4.4.3 Anisotropy
80
Significant anisotropy exists in the primary ignimbrite aquifer (HGU5 and HGU7 and to a lesser
extent HGU6), as demonstrated by structural data collected by SERGEOMIN and field
observations by DHI. The primary fracture orientation observed to be discharging groundwater
at the springs in the northern wetland is the small aperture northwest trending fractures (Figure
33). In contrast, groundwater discharge in the southern wetland is associated with northeast
trending structures associated with the regionally significant Silala Fault Zone, which acts as a
conduit for large-scale groundwater flow. The permeability of the ignimbrite is expected to be
significantly higher in these directions as a result of these observations.
The vertical anisotropy from the hydraulic response associated with the DS-4P pumping tests
indicated a horizontal to vertical hydraulic conductivity ratio (Kh:Kv) of between 50:1 and 10:1.
These values are consistent with the observed ignimbrite core and outcrops in which lithological
or textural changes result in variable fracture densities within different layers of the ignimbrite.
These Kh:Kv ratios are also consistent with the semi-confined aquifer response observed during
the pumping tests in Chile (Arcadis, 2017) and at depth in the Southern Wetland test (DS-4P).
Such responses suggest that lithological layering within the ignimbrite result in layers that are
less permeable than others resulting in locally semi-confined conditions. However, at larger
scales vertical fracturing in the ignimbrite may result in lower Kh:Kv ratios.
Figuras 13 . a) Representaci6n de rosa de fracturamiento fallas normales. ignimbritas Silala b) rosa de
fracturamiento de fa llas inversas. ignimbritas Silala.
Figure 33 Rose diagram of normal and reverse faults in the Silala ignimbrite (SERGEOMIN, 2017).
Permeability with depth in the ignimbrite aquifer is currently poorly constrained. The welded and
fractured but less weathered ignimbrite is likely to exhibit a general trend towards decreasing
hydraulic conductivity with depth. However, other lithological considerations are also important
such as bedding , lithologic heterogeneities, weathering , or structural influences such as faults or
fractures.
Hydraulic testing at site to-date has reached depths of 100 m and no measurable decrease in
hydraulic conductivity has been observed. Flow zones within DS-5P were encountered deep in
the borehole and existing evidence is that the aquifer extends to at least 100 m. This is
consistent with the pumping tests completed in Chile (Arcadis, 2017) where permeable material
was encountered at depths of more than 100 m. It is possible the permeability remains high for a
significant depth, although at some depth the expectation is the hydraulic conductivity will
decline.
85
D~
An example analysis of luffs of varying degrees of welding (Tertiary volcanics in Figure 34)
indicate that after about 500 m, hydraulic conductivity is approximately two orders of magnitude
lower. This drastically reduces the potential for significant groundwater flow unless faults or
large fractures are encountered. Some estimate of declining conductivity with depth, particularly
beyond several hundred meters, would be reasonable to implement in the numerical model and
perhaps analysed using a sensitivity analysis.
1.000.000000
100.000000
1i C 10.000000
~
"lli' 1.000000
t;
";;
~
0.100000
"t; 0.010000 i3
~
0
~ 0.001000
is >:c- 0.000100
0.000010
0.000001
0 500
. ,.• .J ':. • . 0 • .. .
1.000 1.500 2.000
0 .
.
2.500
. !:rJ:., .. =~'f...
■ Alluvlalc:ontlnln;unlt
.. UV.llowunl't
X Y-g« ~ Unit
and vok.aild•stic and
..,......,l.lry unll
z T..-tlaryvoka~
e Oldwvolcanlcunlt
-t- lnltu•lw confining unh
• s.dl....,,t.,-eonflnlng unlt
- uppwe;arbonate aqullor and
low«carDONt,a,quffor
o UPtMJ dutlc connning unit and
klwCilfctaltlc conrlnlngunlt
3.000 3.500
DEPTH TO MIDPOINT OF TESTED INTERVAL, IN METERS
Figure 4. Relation between hydraullc conductivity an<J depth Jor hydrogeofoglc units In the Death Vatley region.
Figure 34 Example of hydraulic conductivity with depth function for tuff in a deep flow system (see
Tertiary Volcanics, Belcher, 2001 ).
4.4.4 Hydrologic boundaries
Hydrogeological boundaries describe the conditions along the perimeter of an area in terms of
flows, groundwater heads, groundwater head gradients, etc., needed to account for any
exchange of flows with the surrounding or neighboring catchment.
4.000
The hydrogeologic boundaries of the Silala Near Field are difficult to describe due to limited
piezometric measurements and the absence of an aquifer pumping test during which the
hydrogeologic system is significantly stressed for a long period of time (e.g. 10 days or more).
The Chilean pumping tests were relatively short in duration (less than 24 hours) and the positive
boundary effects associated with the canal water were seen in the test data rather than any
negative boundary conditions. Increases in the rate of drawdown would suggest that the aquifer
is limited in its spatial and/or vertical extent. However, the asymptotic nature of the drawdown
(Figure 35) suggests that no boundary controls were encountered during the tests.
The decreasing rate of drawdown with time is indicative of leakage from overlying layers in
hydraulic connection with the canal water, suggesting the aquifer is reasonably well connected
vertically over the test interval (in this case 78 m in both the Silala lgnimbrite and underlying
lgnimbrite).
The expert in WATER ENVIRONMENTS 81
86
D~
82
Drawdown versus time CRPT PW -UQN w ell
r-- ••l- ln)
- CMP'll'W•IJ(lfi
Figure 2-4. Recording water /gve/s during the CRPT in well PW-UQN
Drawdown versus time CRPT MWL-UQN
Figure 2-5. Recording waler levels during the CRPTin observation well MWL-UQN
Figure 35 Drawdown versus time during the PW-UQN constant-rate pumping test at 20 1/s. Source:
Chilean Memorial, 2017.
The hydraulic stress did not induce a large amount of drawdown (approximately 7 m at CRPT) in
the pumping well and it may be that higher stresses would have highlighted such boundaries.
87
D~
As discussed in Section 3.4.4.1 Pumping test results, late-time pumping data and recovery data
from the DS-4P pumping test were indicative of a subtle boundary in the flow system with
hydraulic conductivity approximately one third of those in the immediate vicinity of the pumping
well.
There has been no drilling and hydraulic testing outside of zone immediately along the Silala
canal, in which faulting and fracturing are pervasive. As a result, the bulk hydraulic conductivity
of the ignimbrite away from the canal/wetlands is poorly constrained. However, it is probable
that outside of the principal fault zone associated with Silala , the ignimbrite is less weathered
and less fractured and more indicative of the lower end of measured ignimbrite permeability
from the field tests (e.g. less 10 m/d).
4.5 Groundwater recharge
Groundwater recharge in the Silala area is driven by short-term precipitation events scattered in
time and often separated by long dry periods. Correct reproduction of such desert recharge
requires long-term dynamic simulation of the infiltration and evaporation processes with a daily
or finer temporal resolution. Model results described in detail in Annex E estimate that the
average recharge for the period 1969-2017 was 24 mm/year, which corresponds to a mean
groundwater discharge to the Silala Near Field from the hydrological catchment of 176 I/s. The
estimated range of uncertainty due to input parameter and variable uncertainty was 151-232 I/s
(Annex E).
The uncertainty in these recharge estimates remains high, mainly due to the uncertain extent of
the contributing area (the Far Field) and while it is possible that recharge is able to sustain
surface flows of between 160 to 210 I/s, it is not clear that it also sustains the predicted transborder
groundwater flows. It is therefore probable that some amount of inter-basin flow into the
hydrological basin, as defined in Annex A, is occurring.
4.5.1 Groundwater discharge
Groundwater discharge from the Silala groundwater flow regime occurs through a number of
physical processes of varying importance. The most important components are groundwater
discharge to springs, groundwater - surface water interactions (net discharge to surface water)
and transboundary groundwater flow across the Chilean border. Smaller discharge or sink
components include evapotranspiration , open water evaporation and shallow water table
evaporation. The principal groundwater discharges are presented in detail in the following
sections.
Spring discharge
Spring discharge rates have been presented in Annex C on surface water flows but the
underlying mechanisms for the measured spatial distribution and their relationships to
groundwater processes are the focus of this report. The hydrogeochemistry data (Section 4.6)
provide strong evidence for different sources of water for springs associated with Silala Fault(s)
(generally in Southern Wetland) and those associated with northwest trending fracture networks
(generally Northern Wetland).
Conceptual level assessment of transboundary groundwater flow
There is abundant evidence to suggest that there is significant groundwater flow across the
international border. The Chilean pumping tests confirm that permeable ignimbrite exists at the
border (Geometric mean of test data is 6.5 mid) to a depth of 117 m below ground surface. The
variables that are less well constrained are the spatial variability in hydraulic conductivity away
from the vicinity of the Silala canal and the depth to which this high permeability ignimbrite
extends.
The expert in WATER ENVIRONMENTS 83
88
D~
84
Volcan Incaliri
Figure 36
Sutface Water Inflow
·( Ki= 0.5 m/d
- Groundwater
LJ Bofedel (Organic Matter)
LJ Channel Alluvium
LJ Alluvium / Colluvium
LJ Local Andesitic Volcanism
- Local Oacitic Volca nism
- Regional Ignlmbrlte
Welded and Fractured'¼.' 'II../.
Ignimbrite
Conceptual cross-section of flow through the ignimbrite "window" at the Chilean border.
While uncertainty remains around the exact value of cross-boundary groundwater flow into
Chile, the hydraulic gradients, ignimbrite aquifer thickness and hydraulic conductivity indicate
that the flux is substantial and combined with surface water flows larger than the recharge within
the hydrological catchment of 231.5 km2 (excluding the wetlands) as delineated in Annex A.
The hydrogeological information in the border zone is insufficient to provide exact estimates of
the cross-border groundwater flow in the whole Sil ala Valley. However, it is possible to make a
reasonable estimate of the cross-border flow through using a simple Darcy flux equation:
Q = - i*(K,A1+K2*A2)
With the parameters listed in Table 13, this results in a cross-border groundwater flow estimate
of 19,900 m3/d or 230 I/s. Of this discharge 15-72 I/s is estimated to flow through the fault zone
assuming a width of 100 m.
The estimate is considered to be on the low side as the permeable ignimbrite may extend
beyond a depth of 117m (although permeability is expected to decrease with depth).
Furthermore, the hydraulic conductivity outside the fault zone could be higher, and if equal to 6.5
mid, the resulting groundwater flux would be 600 I/s.
89
D~
Table 13 Parameters for a conservative Darcy estimate of trans border groundwater flow.
Parameter Description Estimate Explanation
I Horizontal hydraulic 0.041 mim Estimated from DS-7
gradient, (mim) and DS-32
K1 K is the hydraulic 6.5 mid Geometric mean of
conductivity, of the Chilean pumping tests
fault zone
K2 K is the hydraulic 0.5 mid low (i.e. conservative)
conductivity, of the
ignimbrite away from
the fault zone
A1 Area of fault zone 11 ,700 m2 100mx117m
A2 Area of ignimbrite 819,000 m2 7,000mx117m
outside fault zone
While uncertainty remains around the magnitude of transboundary groundwater flow into Chile,
the hydraulic gradients, ignimbrite aquifer thickness and hydraulic conductivity indicate that the
flux is substantial and combined with surface water flows larger than the recharge within the
hydrological catchment as assessed in Annex E. This would suggest that the hydrological
catchment may not constitute the full Far Field , but that it could receive transboundary inflow
from other higher parts of the Altiplano.
Studies of the nearby Chilean Turi basin, which is a 160 km2 area basin at elevations between
3,000 and 3,500 m above sea level about 30 km southwest of Silala, have also identified the
Altiplano as a possible source of significant trans-basin groundwater inflows (larger than the
local recharge) (J.Houston, 2007).
4 .6 Hydrochemistry
This section discusses the hydrochemistry results associated with water samples collected from
springs, wells and surface water in and around the Silala Spring System. Results from major ion
and isotope analyses were used in the conceptualisation of surface water and groundwater flow
in the Silala Near Field. These data have been compiled from multiple sources including
Sergeotecmin (2005), Arcadis (2017), Ministerio de Energias, 2017, and Sergeomin (2017).
These data are tabulated in Appendix E.
4.6.1 Hydrochemistry results
Previously collected water quality data from the Silala Spring System were post-processed into
graphical representations of water chemistry (Figure 37). Stiff diagrams display the major ion
composition in a polygonal shape with cations on the left and anions on the right both plotted as
milli equivalents per liter (mass concentration x ionic charge / molecular weight). These
diagrams are helpful for evaluating how water chemistry varies in space, such as the Southern
Wetland versus the Northern Wetland, or shallow versus deep piezometer chemistry.
The diagrams highlight an obvious contrast in water quality between the Northern and Southern
Wetlands. Both wetlands are calcium bicarbonate type water but the water chemistry is
significantly different. The spring and groundwater samples from the Southern Wetland has
The expert in WATER ENVIRONMENTS 85
90
D~
86
significantly higher bicarbonate, calcium, magnesium and chloride concentrations, and much
lower bicarbonate/magnesium ratios. While the spring and groundwater samples from the
Northern Wetland has significantly lower bicarbonate, calcium, magnesium and higher
bicarbonate /magnesium ratios.
All samples in Bolivia have uniformly high silica concentrations 22.5 mg/I (near or at saturation),
which is similar to what has been found by others in groundwater derived from tuffaceous rocks
(White and others, 1963) and aqueous concentrations are likely controlled by equilibrium with
silica gel in fractures of the ignimbrite. Most of the dissolved solids, represented principally by
sodium , bicarbonate, and silica , are derived from reaction with the ignimbrite aquifer, and in the
case of the bicarbonate potentially soil-derived CO2.
Mixing of water from the northern springs and southern springs in the ratio of their measured
percentages of the total Silala Spring System flows of 37% and 63% yields water with
bicarbonate, magnesium and other ions that are similar to the canal water quality near the
border. There is agreement between the approximate ratios from both physical and chemical
measurements for the two types (sources) of water.
The lower total dissolved solids, lower bicarbonate/magnesium rations, and difference in
chloride concentrations suggest different sources for the water discharging to the northern and
southern springs. It further suggests that the waters discharging at the northern springs have a
shorter groundwater flow path and are younger in age.
The Laguna Khara has been considered as a potential source of "old" groundwater to Silala via
the network of regional scale faults and the fractured ignimbrite aquifer. However, a water
quality sample from the lake collected by SERGEOTECMIN (2005) indicates that the Laguna
Khara water is not the source for the Silala deep groundwater discharge. The evidence includes
much higher chloride, 122.4 mg/I versus an average of 2.1 mg/I for deep groundwater sources
and calcium/magnesium ratios 0.60 versus 2.4. Sodium is also much higher in the Laguna
Khara (136 mg/I) than the southern wetland area springs (17.1 mg/I). The dissolved silica is also
significantly higher, 54 mg/I.
Therefore, the Laguna Khara water chemistry does not appear consistent with the southern
wetland spring water (Figure 37) and is not considered its likely place of origin. However, this
does not preclude other sources of inter-basin flow to the Silala Basin.
Similarly, the data from Chile suggest several different types for water present depending on the
location and depth of the sample. Consistently, the groundwater samples are higher in sodium
bicarbonate type water with higher total dissolved solids. The same observation for the springs
in Chile is made as is for the northern springs (with the exception of SP-Sl-27-17) in that
samples were significantly lower in mass concentrations for the various ions.
The results suggest that the wells in Chile extracted water from the same aquifer that feeds the
Southern Wetland during the pumping test. These waters are generally indicative of waters with
a longer residence time in the subsurface relative to the northern springs and springs within
Chile.
Tritium
Three (3) samples were collected for radiocarbon dating (14C) from the southern wetland,
northern wetland and an intermediate location by Sergeotecmin (2005) and nine (9) samples
were collected on the Chilean side of the system (Table 14 and Figure 37). The results were
used to estimate apparent groundwater ages for the Bolivian samples.
91
Na+K
ca
M, r:
'--... , ..
N
AA. o■=-o=.,2,,_••-•=•::·i1••-1 ~meters '
Figure 37 Stiff diagrams for Silala Near Field Springs, Canal and Groundwater.
The expert in WATER ENVIRONMENTS
·1
i
I ; ,_
D~
\ ..... \
\,
.\
·, __
87
[lj
Laguna Khara
~ -17kmtotheNW
-,_ Red Plots: Springs
Green Plots: Groundwater
Blue Plots: Silala Canal
92
Table 14 Tri tium and 14C results (Sergeotecmin, 2005 (Bolivian) and Arcadis, 2017 (Chilean)).
Date 3H (UT) 14C (pMC) Reported Apparent
Age (years)
Bolivian collected test results
Site 2: Southern Wetland Up- 0±0.13 25.67±0.26 10,950±80*
Gradient
Site 4: Intermediate Site 0±0.13 30.67±0.27 9,490±70*
Site 6: Northern Wetland 0±0.14 86.29±0.83 1,180±80
Chilean collected test results
R-S12-1 6 - River 26.66±0.13
SP-SI05-16 - Spring 0.05±0.19 76.86±0.35
PW-BO-B-16 - Groundwater <0.05±0.23 9.93±0.08
PW-UQN-B-16 - Groundwater 0.22±0.23 14.54±0.09
R-Sl-3-17 - River 45.97±0.27
SP-Sl-8-17 - Spring <0.05±0.19 78.39±0.24
SP-Sl-1 5-17 - Spring 0.31±0.29 32.41±0.1 5
SP-S l-10-17 - Spring <0.05±0.11 30.06±0.15
PW-DQN-B-16 - Groundwater <0.05±0.23
SP-Sl-2 1-16 0.16±0.22
SP-Sl-05-16 - Groundwater <0.05±0.19
Note: Apparent age deviates from standard 14C calibration curve estimates
88
93
Ca
MJ!
N A o 0.25 0.5 0.75
...........
\
1
Kt.meters
' ......
' .....
.......... ,,
Figure 38 14C in pMC with stiff diagrams - Silala water sampling locations.
The expert in WATER ENVIRONMENTS
,,
... , ..
')
i
! ; ,_
D~
\
' · ... \
\,
\\
89
J .;:. -I01
Laguna Khara
17 km to the NW
Red Plots: Springs
-- -·.. , JG reen Plots: Groundwater
Blue Plots: Sila1a River
Percent Modem cart>on
94
D~
While 14C data are useful, the interpretation of these data must be done carefully. For example,
the dissolution of carbonate within the unsaturated zone or filled fractures or carbonate along
the groundwater flow path, particularly in volcanic areas (Clark and Fritz, 1997, reference 2) can
result in lower 14C concentrations. Furthermore, the high bicarbonate concentrations in the
groundwater samples may be the product of the disassociation of soil-derived carbonic acid by
hydrolysis and of ion exchange involving the glass phase, which could also impact 14C
concentrations.
Evidence from studies of the Silala area in Chile (Arcadis, 2017, reference 1) found evidence of
i5 13C enrichment suggesting the dissolution of carbonate minerals along groundwater flow paths,
which would lower 14C concentrations, resulting in older apparent age measurements.
Furthermore, (J .Houston, 2007) noted that 3H is produced naturally in the ground where lithium
containing rocks are subject to a neutron flux from the spontaneous fission of uranium and
thorium, which given the abundance of lithium in the region cannot be discounted.
Therefore, while useful in a relative context, the apparent ages should not be viewed from the
perspective of a likely actual age. However, tritium sampling of the same locations indicates that
all of the sampled waters are more than 70 years old , at the time of sampling. The same waters
were determined to be sodium-bicarbonate type groundwater, suggesting the dissolution of
carbonate along the groundwater flow paths.
Conceptually, the radiocarbon dating completed to-date, which suggests a relatively old
apparent age in the southern wetland (<-11 ,000 years) and a significantly younger apparent
age in the northern wetland (-1 ,000), is consistent with the conceptualisation that localized
recharge occurs on the Volcan lnacaliri due to the high elevation, and as a result of the much
shorter flow paths has a lower apparent age. These data are consistent with the general
chemistry data, which also identify lower TDS water discharge in the Northern Wetland relative
to the Southern Wetland.
Hydrogeochemistry summary
The general chemistry, tritium and 14C relative ages all suggest that two main sources of water
exist in the groundwater flow system. A shallower, younger water associated with shorter
groundwater flow paths and likely associated with local recharge mechanisms, and an older
water, with longer and deeper groundwater flow paths, and longer residence times. This deeper
water is believed to be recharged further from Silala and associated with flow in the ignimbrite
along the Silala Fault Zone.
4.7 Groundwater flow
90
The geographic location of Silala is expected to provide a strong influence over the
hydrogeology of the study area. The steep terrain immediately surrounding the project area
would be expected to exert a significant influence over groundwater elevations, horizontal and
vertical groundwater flow, and local recharge and discharge mechanisms around the Silala
Spring System. In these mountainous settings, local-scale flow systems often develop between
elevated terrain and local drainages. In these situations, the shallow groundwater flow system is
largely controlled by surface topography. The higher elevations in the watershed (e.g. slopes of
the lnacaliri Volcano) is likely comprised of a local flow system that has its recharge area at
topographic highs and its discharge area at the topographic lows (Silala canal and springs).
Given that there is no surface discharge in the catchment, outside of the Silala springs, it is likely
that recharging water from distal portions of the catchment boundary enters an intermediate flow
system , with longer groundwater flow paths and deeper depths of penetration into the
groundwater flow system (Figure 39). However, groundwater flow within the groundwater
catchment is likely enhanced by structurally controlled fractures and faults that may provide
conduits for groundwater flow. The volcanic intrusives are hypothesised as lower permeability
95
D~
features in the subsurface resulting in groundwater flow being diverted around these features in
the more permeable ignimbrite. There is evidence for this around Volcan Chico, where
discharge occurs to the south in Quebrada Negra and in the Northern Wetland area.
The water balance and magnitude of discharge to the Silala canal and springs and
hydrochemistry suggest that there may be some amount of inter-basin groundwater flow
entering the Silala catchment. Inter-basin flow in the Altiplano region has been well documented
and found to be an important component of many catchment water balances (Montgomery,
2003; J.Houston, 2007).
Figure 39 Conceptual diagram illustrating the potential for enhanced groundwater flow through fault
zones relative to the surrounding ignimbrite aquifer- Silala Catchment.
4. 7 .1 Horizontal hydraulic gradients
The measured horizontal hydraulic gradients are confined to the relatively narrow zone that
comprises the Silala Near Field. A site water table map (Figure 42) was developed to help
conceptualise flow within the Silala Near Field. The water table map is interpolated using spring
shallow soil boreholes that intercepted groundwater, and groundwater level data from
piezometers. As a result of the lack of a robust survey, ground surface elevations were
estimated using the high-resolution DEM (IGM, 2016).
The gradients are lower through the Southern Wetland (0.021 m/m), which is consistent with the
flatter topography in the area and potentially more permeable bedrock associated with the Silala
Fault Zone. Hydraulic gradients are significantly steeper below the confluence of the southern
and northern canals (0.078 m/m), consistent with the steeper topography. Within the overall
Silala Near Field the horizontal hydraulic gradient is quite steep, averaging 0.04 m/m.
The contours reflect the interpretation of significant discharge to the Southern Wetlands from the
north and northeast areas of the catchment as well as from recharge on Volcan Silala Grande.
The contours around the Northern Wetland are consistent with the conceptualisation that these
waters are associated with recharge on the northern and eastern margins of Vol can lnacaliri and
perhaps groundwater following from the north-western sector of the Silala Basin that is
The expert in WATER ENVIRONMENTS 91
96
92
somewhat deflected in the subsurface by the lower permeability intrusive rocks of Volcan
lnacaliri.
The flow regime beneath Domo Silala Chico below the confluence is undefined but the southern
canal is interpreted to be gaining through this reach (Figure 42). The data from DS-31 and DS-
32 suggests the canal is losing reach at the Chilean border and contours reflect the
interpretation that canal loses through this section, but the magnitude of these losses thought to
be small based on surface flow measurements.
97
ci.
E"'
.£1
.0
2
'<"ll z
]"!'
ui
0 "" ~
:,
.Q>
LL
C') "'
~ z w
:i z
~ > z w
0,: w
!ii
-=~= μ
iii Q_
X
Q)
<ll
L
f98
D~
94
4.7.2 Vertical hydraulic gradients
The groundwater heads in nested shallow and deep well pairs were used to calculate vertical
gradients in various wetlands/areas of the Near Field ((Table 15). The available piezometer
nests are generally indicative of discharging groundwater - that is groundwater is flowing
vertically upwards. The limited data suggest that the vertical gradients are highest in the
Northern Wetland, which is consistent with the high observed spring discharges in this area.
DS-5 (intermediate and deep completions) and DS-11 are indicative of downward vertical
gradients of a small magnitude. These gradients are within the measurement error associated
with the water level measurements. However, they may suggest that the area of vertically
discharging water is spatially limited to the wetland extent.
Table 15 Calculated vertical gradients at nested piezometers.
Screen
Depth
Ground
Midooint water Vertical
Piezometer
to
Elevation Gradient Wetland
Nested Pair
ID
Date Water
(J.Houston, (m/m) Area
(mbgs) (m
2007) (m
bgs)
asl)
DS-5S 7.5 11 /29/17 5.120 4416.780 -0 .028
DS-5S /P-1 /
DS-5P-II 42 11 /29/17 4.963 4417.737 Southern
P-II
6.0 X 10-4
DS-5P-I 92 11 /29/17 4.995 4417.705
DS-11-I and DS-11-I 52 11 /29/17 3.827 4410.973 Margin
DS-11-11 7.4x 10-4 of
Southern
DS-11-II 8 11 /29/17 3.793 4411 .007
DS-24S 3.0 11 /29/17 0.655 4369.345
DS-24S and
-0 .107
DS-24P Northern
DS-24P 7.7 11 /29/17 0.150 4369.850
DS-38S 3.15 11 /29/17 1.150 4415.550
DS-38S and
-0.0124 Southern
DS-39P
DS-39P 23.28 11 /29/17 0.900 4415.800
12/20/17 4.573 4417.197
DS-04S and DS-04S 7.75 -1.92EDS-
4P 04 Southern
12/20/17 4.563 4416.927
DS-4P 61 .5
Note: Negative value indicates an upward vertical gradient; m btoc = meters below top of casing.
4.7.3 Groundwater- surface water interactions
In the upper portions of the Silala Spring System in the Southern Wetlands, a part of the
groundwater is believed to be discharging through structurally controlled groundwater conduits
and fracture zones. lgnimbrite bedrock is extensively fractured and brecciated Figure 42 and in
places infilled with fine sand. The hydraulic gradients indicate that this is gaining reach of river
(upward vertical gradients), as groundwater is discharging to surface water.
99
D ~
As noted in Annex C the canal and springs flow measurements indicate that the Silala canal
system receives considerable lateral or vertical diffuse inflows, which are not accounted for by
the spring flow measurements. The springs occur at seepage faces (Figure 41 ), but there is
additional discharge to the system in the river and wetlands themselves, likely associated with
discharge from the fault zones that create a conduit for discharge from the deeper groundwater
low regime. The stream gauging work demonstrated that the southern canal southeast of the
Northern Wetland was a strongly gaining reach (Figure 42) due to the significantly lower ground
surface elevations relative to spring elevations.
A GAINING STRCAM
B _.,_
W.W_!_.~~-~.-----,o
,o-- __ ,.
Figure 8. Gaining streams recetve water from the
grotmd-water S)'Stem (A). Ihis con be determined from
water-table contour maps because the contour lines
point in the upstream direction whers they cross the
stream {B).
\,,.
-O..e·ctio-rnof
MOUNTAIN
VALLO'
.~ .... , ......
}~~/ ,I
___ ,,, ~
'--::::_O.i.r.e.c ,ti_ono f
Figure 11. In motmtainous terrain, ground watu can
discharge or the base of steep slopes (left stde of
valley), at the edges of flood platns (rtghr .side of
valley), and to the srream.
Figure 41 Conceptual schematics of a gaining river (USGS, 1998).
The expert in WATER ENVIRONMENTS 95
100
D~
167 Vs, 108%
162I/s, 105%
157I/s, 102%
Legend
0 Continuous Flow Stations
• Simultaneous Flow Stations
--WbalZones
COORDENADAS_DJDS_AGUAS
l:;I Canal Inflow
~
G9
r::-::::1
311,s v
24 %
Figure 42 Mapping of flows and net inflows based on simultaneous mean canal flow measurements (in 1/s) (Annex C: "Surface water").
96
18 %
101
D~
In the lower portions of the Silala canal near the Chilean border, the data from DS-31 and DS-
32, indicate that the surface water and groundwater systems may be hydraulically disconnected
(Figure 43).
DISCONNECTED STREAM
Flow direction
___ ., ___________ _
Figure 10. Disconnected sh·eams are separated from
the ground-n--ater sys tem by an unsaturated zone.
Figure 43 Conceptual drawing of a disconnected stream (USGS, 1998).
The stream is a losing stream at the DS-31 /32 piezometer nest but is also separated from the
shallow water table by partially saturated materials. Substantial groundwater can still be present
at depth and flowing through the ignimbrite. The canalization and bedrock lining of this section of
the river, may be partially responsible for this phenomenon as seepage to the groundwater table
would be reduced under such conditions, which would reduce groundwater heads through time.
4.7.4 Anthropogenic impacts to hydraulic gradients
Based on the rock blasting in the area of the many of the springs, the current hydraulic gradients
may have been altered from natural conditions. The lowering of the spring discharge point
affects the head distribution and as a result can increase spring flows but lower heads in the
system (i.e. drawdown).
Figure 44 Evidence of blasted rock (precipitates on rock) to lower spring elevations and increase spring
discharge.
The expert in WATER ENVIRONMENTS 97
102
Spring excavation via blasting (Figure 44) and the canalization through wetlands conveys water
more efficiently through the system and reduces the resistance that would otherwise be in the
system due to the presence of bofedals, areas of wetland vegetation that may have underlying
peat layers, which slow the discharge of water and raise groundwater elevations in the system.
Conceptually, the result is drawdown resulting from a higher flux out of the shallow groundwatersurface
system. The degree to which drawdown has evolved in the system due to these
modifications is difficult to quantify but will be greatest near the source of the head change and
less significant at greater distances. However, bofedals survive only in areas with shallow
groundwater and once the depth-to-groundwater is beyond the plant extinction depth , they die.
As a result, relatively small changes in the depth-to-groundwater can result in plant mortality,
particularly if these changes occur over short periods.
4.8 Assumptions and limitations
5
98
The findings in this report are based on limited data and additional characterisation activities
would reduce uncertainty in the hydrogeological conceptualisation and hydraulic parameter
estimates. The greatest gaps in understanding are related to the hydraulic properties of the
ignimbrite aquifer at greater distances from the Silala Fault Zone. Additional hydrochemistry
data from piezometer water samples (general chemistry, stable isotopes and 14C) would also be
beneficial for confirming that the current conceptualisation is correct. Improved understanding of
the catchment scale water balance and Far Field hydrogeology would allow greater
understanding of inter-basin flow processes and their potential role in providing water to the
Silala Spring System.
Summary and conclusions
The findings on the hydrogeology of the Silala Spring Systems have been compiled and
presented in this annex. This includes an extensive hydrogeological characterisation program
completed in the Silala Near Field that has provided substantial insights into the groundwater
hydrology of the site including hydraulic properties, horizontal and vertical groundwater flow
patterns, groundwater discharge rates and groundwater-surface water interactions.
The conclusions on the hydrogeological conceptual groundwater flow system of the Silala Near
Field include:
Groundwater discharge is the principal source of water to the Silala Spring System. The
sources of groundwater to the springs include:
o Geological structures aligned in a north easterly direction include several
large faults; these fault zones are brecciated and have elevated hydraulic
conductivity relative to the surrounding materials. They are interpreted to
be transmitting groundwater over large distances (i.e. Silala Far Field (the
upstream hydrological catchment) or beyond);
o A network of small aperture fractures aligned towards the northwest that
act as conduits transmitting groundwater along strike; and ,
o Spatially extensive and ubiquitously fractured ignimbrite aquifers.
Hydraulic properties (storativity values and barometric efficiency) of the ignimbrites and
groundwater heads suggest that semi-confined conditions exist at depth and unconfined
conditions persist in shallow portions of the ignimbrite aquifer;
Pumping tests completed in the Southern Wetland indicate a transmissive ignimbrite
aquifer with large-scale hydraulic conductivity estimated to be about 18 mid and locally
103
D~
higher conductivity within the Silala Fault Zone (54 mid). These are higher than the 6.5 mid
estimated from the pumping tests in Chile near the border.
The general trend for hydraulic conductivity with scale is a convergence at large scale
toward the largest conductivity values measured at small scale (Table 7). This suggests
that the transmissive fractures are well connected over a large scale and at the scale of the
REV appear control the long-term hydraulic behaviour, which approximates a porous
media.
The hydraulic behaviour of the ignimbrite aquifer during the pumping test included nonTheisan
behaviour related to fracture flow near the pumping well but at larger scales
behaved as EPM.
o This indicates that at the scale of the problem addressed by the numerical
model, that groundwater flow and spring discharge should be appropriately
captured using an EPM approximation.
Groundwater head measurements indicate that groundwater is discharging to the Southern
and Northern Wetlands (gaining stream) but may be hydraulically disconnected from the
Silala canal at the Chilean-Bolivian border (disconnected losing stream);
Hydrochemistry of the groundwater discharging to the Northern Wetlands is significantly
different from that of the Southern Wetland;
o The Northern Wetland water samples date to lower ages and have lower
dissolved solids and bicarbonate concentrations and are interpreted as being
derived from a more localised flow regime;
o The Southern Wetland waters date to older ages (i.e. lower 14C), have higher
dissolved solids and bicarbonate concentrations, and are interpreted as being
derived from flow within the Silala Fault Zone that is recharged from a subregional
to regional flow regime (i.e. the Silala Far Field), the limits of which are
still uncertain;
Surface water flow measurements (Annex C) and hydrogeochemical mixing ratios suggest
that the bulk (60-70%) of the groundwater discharge to the system originates from springs
associated with a deeper regional groundwater flow regime. The remaining 30-40-percent
is interpreted to originate from more localised flow regimes closer to the Silala Near Field;
Hydrochemistry data suggest that Laguna Khara is not a significant contributor to the
groundwater discharge to the Silala Spring System. This does not preclude a different
source of inter-basin groundwater flow being an important component of the spring
discharge.
The radiocarbon dating completed up to the editing of this reports suggest a relatively old
age in the southern wetland (up to -11 ,000 years) and a significantly younger age in the
northern wetland (up to -1 ,000 years),
The origins and groundwater age of the water feeding the springs associated with the Silala
Fault Zone remain poorly constrained. To improve the understanding of these aspects they
should be examined further using a basin scale model based on additional characterisation
activities in the Far Field , which however, is beyond the scope of this project;
o Groundwater recharge-discharge relationships suggest that inter-basin flow into
the Silala catchment is likely and thus may represent a component of the
discharge to the Silala Spring System.
The measured hydraulic conductivity and understanding of the ignimbrite aquifer suggest
that there is significant trans-border groundwater flow, which is roughly estimated to be on
the order of 230 lis. Values more representative of the pumping test near the Chilean
border would yield trans-border flows in excess of 600 lis.
The expert in WATER ENVIRONMENTS 99
104
D~
100
The 3-D hydrogeological model has formed the basis for the groundwater component of the
integrated groundwater-surface water flow model used for assessing the impacts of the
canals on surface and groundwater flow (Annex G and Annex H).
105
6 References
Anderson, M., Woessner, W. & Hunt, R., 2015. Applied Groundwater Modeling: Simulation of
Flow and Advective Transport: Second Edition. s.l.:Academic Press.
Anon. , u.d. s.l.:s.n.
Arcadis, 2017. Detailed hydrogeological study of the Silala Canal. Volume 4, Annex II to the
Expert Reports, International Court of Justice, Dispute over the states and use of the waters of
the Silala (Chile v. Bolivia), Memorial of the Republic of Chile.
Arcadis, 2017. Detailed Hydrogeological Study of the Silala River, s.l.: s.n.
Arcadis, 2017. International Court of Justice Dispute over the status and use of the waters of
Silala (Chile vs.Bolivia), Memorial of the Republic of Chile, Volume 4, Annex 2. Detailed
Hydrogeological Study of the Silala Canal.
Belcher, W. E. P.a. A.G., 2001. Hydraulic-property estimates for use with a transient groundwater
flow model of the Death Valley regional ground-water flow system , Nevada and California,
Carson City: USGS.
Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of
unconfined aquifers with completely or partially penetrating wells, Water Resources Research,
vol. 12, no. 3, pp. 423-428.
Caine, J.S., Evans, J.P., and C.B.Forster, 1996. Fault zone architecture and permeability
structure. Journal of Geology, v. 24; no. 11; p. 1025-1028.
Chong, G. L. L. J. J. a. H., 2015. Groundwater flow in a closed basin with a saline shallow lake
in a volcanic area: Laguna Tuyajto, northern Chile. Science of the Total Environment, pp. 303-
318.
Clark and Fritz, 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York.
COFADENA, 2017. Proyecto Geofisico 28 Lineas Tomograficas Zona Silala, La Paz, Bolivia:
Corporacion de las Fuerzas Armadas para el Desarrollo Nacional (COFADENA).
DHI Feb 2017: Contract CDP-I No 01/2017 Study of the Flows in the Silala Wetlands and
Springs System, Phase I: Product no. 1, Inception Brief.
DHI Feb 2017: Contract CDP-I No 01/2017 Study of the Flows in the Silala Wetlands and
Springs System, Phase II Product 1 Final Field Survey Specifications
DHI July 2017: Contract CDP-I No 15/2017, Study of the Flows in the Silala Wetlands and
Springs System - Second Part Product No. 1: Provisional Report 1, Surface Flows
DHI Nov. 2017: Contract CDP-I No 15/20 17, Study of the Flows in the Silala Wetlands and
Springs System - Second Part Product No. 3: Water balance of the basin and groundwater
aquifer and update of measured surface water flow
DHI, 2012, MIKE SHE User Manual Volume 2: Reference Guide, MIKE by DHI
IGM, 2016: "Silala Report.pdf', Quality report of the local high resolution DEM/DTM of the
nearfield created by drone survey.
Duffield, G, 2007. AOTESOLV Version 4.5 Users Guide. HydroSOLVE, lnc.Reston, VA
Espinoza, C., 2017. Evolution of the spings, La Paz: Submitted to Diremar.
The expert in WATER ENVIRONMENTS 101
106
D~
102
Hauser, A. Y., 2004. Morphological, Geological, Tectonic, Hydrogeological, and Hydro-Chemical
Context: Morphogenesis, Evolution, and Modalities of the Exploitation of the Shared ChileanBolivian
Silala River System, s.l.: Government of Chile National Geology and Mining Services.
Houston J, Hartley AJ. 2003. The central Andean west-slope rainshadow and its potential
contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of
Climatology 23: 1453-1464.
Houston J. 2002. Groundwater recharge through an alluvial fan in the Atacama Desert, northern
Chile: mechanisms, magnitudes and causes. Hydrological Processes 16: 3019-3035.
Houston J. 2005. The great Atacama Flood of 2001 and its implications for Andean hydrology.
Hydrological Processes 20: 591-610.
Houston J. 2006a. Variability of precipitation in the Atacama Desert: its causes and hydrological
impact. International Journal of Climatology 26: 2181-2189.
Houston J. 2006b. Evaporation in the Atacama Desert: an empirical study of spatio-temporal
variations and their causes. Journal of Hydrology 330: 402-412.
Houston J. 2007. Recharge to groundwater in the Turi Basin, northern Chile: an evaluation
based on tritium and chloride mass balance techniques. Journal of Hydrology 334: 534-544.
Intrepid Geoscience, 2017. Geomodeller, Melbourne, AU: s.n.
J.Houston, 2007. Recharge to groundwater in the Turi Basin, northern Chile: an evaluation
based on tritium and chloride mass balance techniques. Journal of Hydrology, pp. 534-544.
Jacob, C.E., 1947. Drawdown test to determine effective radius of artesian well, Trans. Amer.
Soc. of Civil Engrs. , vol.112, paper 2321 , pp.1047-1064.
Kresic N (2007) Hydrogeology and Groundwater Modeling. 2nd ed. , CRC Press, Boca Raton ,
FL.
Layana, Susana, Aguilera, Felipe, 2013: Stratigraphy of three new ignimbrites from Altiplano
Puna Volcanic Complex, northern Chile. GeoSur 2013, Vina del Mar, Chile.
Lewis, MA. 1989. 'Water' in Earth Science Mapping for planning , development and
conservation. MCCALL, J AND MARKER, B; GRAHAM AND TROTMAN (editors).
Ministerio de Energias, 2017. Analisis Fisico Quimico de Aguas, La Paz, Bolivia: INSTITUTO
BOLIVIANO DE CIENCIA Y TECNOLOGIA NUCLEAR CENTRO DE INVESTIGACIONES Y
APLICACIONES NUCLEARES UNIDAD DE ANALISIS Y CALIDAD AMBIENTAL.
Moench, A.F., 1984. Double-porosity models for a fissured groundwater reservoir with fracture
skin , Water Resources Research, vol. 20, no. 7, pp. 831-846.
Monroe, J. S. & Wicander, R. , 2014. The Changing Earth: Exploring Geology and Evolution ; 7th
edition. s.l.:Brooks Cole.
Montgomery, E. R. M. C. S. K. B. B. P., 2003. lnterbasin underflow between closed Altiplano
basins in Chile. Groundwater, pp. v.41, 523-531.
R.C. Smyth and J.M. Sharp, 2006. The hydrology of luffs in Heiken, G. ed. , Tuffs - Their
properties, uses, hydrology and resources Geological Society of America Special Paper 408,
p.91-111 .
Rorabaugh, M.J., 1953. Graphical and theoretical analysis of step-drawdown test of artesian
well, Proc. Amer. Soc. Civil Engrs., vol. 79, separate no. 362, 23 pp.
107
D ~
Rovey 11, C.W. and D.S. Cherkauer, 1995. Scale dependency of hydraulic conductivity
measurements. Ground Water, Vol. 33, No. 5, p. 769-779
Schmincke, H.-U., 2004. Volcanism. New York: Springer.
SERGEOMIN, 2003. Estudio de Cuenca Hidrograficas: Cuenca manantiales del Silala , La Paz,
Bolivia: SERGEOMIN Servicio Nacional de Geologia y Mineria Bolivia.
SERGEOMIN, 2003. Mapa No. 1 Geologia, hidrologia, y hidrogeologia de los manatiales del
Silala Provincia Sur Lipez del Departamento de Potosi. s.l.:s.n.
SERGEOMIN, 2003: Geological map of the Silalal Area Provided by Diremar
SERGEOMIN, 2017: Mapeo Geologico Estructural del Area Circundante al Manatial del Silala,
La Paz, Bolivia : s.n.
SERGEOTECMIN, 2005. lnvestigaciones en los Manantiales del Silala - Presentacion Silala
FISICO-QUIMICO ISOTOPOS, La Paz: Internal investigation report.
SERNAGEOMIN 2017;Geology of the Silala Canal Basin. Volume 5, Annex VI to the Expert
Reports, International Court of Justice, Dispute over the states and use of the waters of the
Silala (Chile v. Bolivia), Memorial of the Republic of Chile.
Streltsova, T.D. , 1988. Well Testing in Heterogeneous Formations, John Wiley & Sons, New
York, 413p.
Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and
duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans. , vol. 16,
pp. 519-524.
Tibaldi, A. et al., 2008. Influence of substrate tectonic heritage on the evolution of composite
volcanoes: Predicting sites of flank eruption, lateral collapse, and erosion .. Global and Planetary
Changes, pp. 151-174.
Tibaldi, A., Bonali, F. L. & Corazzato, C., 2017. Structural control on volcanoes and magma
paths from local- to orogen-scale: The central Andes case. Tectonophyscis, pp. 16-41 .
USGS, 1987. Ground WaterandSurface Water: A Single Resource; U.S. Geological Survey
Circular 1139. Denver, Colorado. p.87.
Viceministerio de Recursos Hidricos y Riego del Ministerio de Medio Ambiente y Agua, 2017.
lnforme Tecnico: 2DA Campana de Muestreo de Agua para el Analisis Hidroquimico e lsotopico
y Diagnostico de Canales en los Manantiales del Silala, Bolivia: s.n.
W. R. Belcher, P.E. Elliott, and A.L. Geldon, 2001. Hydraulic-Property Estimates for Use With a
Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System,
Nevada and California. U.S. Geological Survey Water-Resources Investigations Report 01-
4210. Carson City, Nevada.
White, D. E., Hem, J. D. , and Waring, G. A., 1963, Chemical composition of subsurface waters:
U.S. Geol. Survey Prof. Paper 440-F, p. F1-F66.
The expert in WATER ENVIRONMENTS 103
108
109
APPENDICES
110
111
Danish Hydraulic Institute (DHI), Study of the Flows in the
Silala Wetlands and Springs System, 2018
Annex F: Hydrogeology
Appendix a: Documentation of Wells and Piezometers from
the Field Investigation Program
112
113
APPENDIX a
Documentation of wells and piezometers from the field
investigation program
114
115
Geological record and piezometer installation design
DS-01
116
117
PIEZCMETRO
DS-01
0 Profundidad (m)
10
20
30
40
50
PVC Ciego
60 Schedule 80
70
80
90
100
110
117.92
120
PVC
Ranurado Slot
130 40 (1.00 mm)
137.92
140
fill Concreto □ Relleno □
~ Bentonita
Diametro Perforaci6n HQ: 96 mm
Diametro Piez6metro: 1 1/4"
II
54.04
70.04
PVC Ciego
Schedule 80
------
PVC
Ranurado Slot
40 (1.00 mm)
------
Leyenda lnsta laci6n de Piez6metros
32
40
75
80
92
97
110
Relleno
Bentonita
Filtro (paquete de
grava)
Bentonita
Filtro (paquete de
grava)
Bentonita
Derrumbe
Filtro (paquete de
grava)
Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
PVC Ciego V Tapa inferior D Grout
118
10 20 30 "" so 60 70 90 100
Centimetres
10 20 30 "" so 60 70 80 90 100
Centimetres
119
10 20 JO 40 50 60 70 80 90 100
Centimetros
10 20 30 40 50 60 70 80 90 100
Centimetros
120
10 20 30 "' so "' 70 80 100
Centimetros
10 20 30 "' so "' 70 80 90 100
Centfmetros
121
10 20 30 40 50 60 70 80 90 100
Centimetros
10 20 30 40 50 60 70 80 90 100
Centfme tros
122
10 20 30 40 so 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centimetros
123
10 20 30 "° so 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centfmetros
124
10 20 30 "° so 60 70 80 90 100
Centimetros
10 20 30 "° so 60 70 80 90 100
Centimetros
125
10 2!J 30 40 so 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centimetros
126
10 20 30 40 so 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centimetres
127
10 20 30 40 50 60 70 80 100
Centimetros
10 20 30 40 so 60 70 80 100
Centimetros
128
10 20 30 40 so 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centfmetros
129
20 30 40 so 60 70 80 90 100
Centimetros
20 30 40 50 60 70 80 90 100
Centimetros
130
10 20 30 40 so 60 70 80 90 100
Centfmetros
10 20 30 40 so 60 70 80 90 100
Centimetres
131
10 20 30 40 so 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centimetros
132
10 20 30 40 so 60 70 80 90 100
Centimetres
133
Geological record and piezometer installation design
DS-02
134
135
PIEZOMETRO
0
2
4
6
8
10
12
14
16
18
20
22
DS-02
Profundidad
(m)
PVC Ciego
Schedule 80
17
PVC
Ranurado
Slot 40
(1.00mm)
21
Diametro Perforaci6n HO: 96 mm
Diametro Piez6metro: 1 1 /4
22
Leyenda lnstalaci6n de Piez6metros
Relleno de bentonita y
grava intercalada
Filtro (paquete de grava)
Concreto D Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
Relleno D PVC Ciego V Tapa inferior D Grout
~ Bentonita
136
Client:
ProjectNumbef:1175601 Drilling and Piezomeler Installation
Waler Level {mbgs) K (cm/s)
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16 16
17 17 17
18 18 18
19 19 19
20 20 20
21 21 21
22 22 22
Logged by: C. Espinoza
Draw by· J.Flores
Lithology
la Deposito cua1emario [:;J lgnimbri1a
Reviewed by RalilOrtiz
PIEZOMETER
DESIGN
10 10
11 11
12 12
13 13
14 14
15 15
16 16
11 17
18 18
19 19
20 20
21 21
22 22
Piezometer
[ill Concreto 0 Fillro3 -5mm
!ill Grava 0 PVCCiego
B0REHOLEN°
DS-02
SHEET N°: 1 Of 1
Piezometer
Design
0.00
1.00
17.00
21.00
22.00
V Tapa inferior
~ Derrumbe
Relleno l~I PVC Ranurado O Grout
~ Bentonila
137
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Drille rs Helpers (Day/Night):
Field Responsible (Day/Nlghl) J. Choque
E.cIE:El·~l§lili::, l \lrlEaIc? i(t~J] Jgg
Weathering Index I Degree of alteration
w2 s,g,,,1ywco1""'e<1
W3 MWW..,olh<.>C<I
A-l NOAlt ... "'1(!"'"n)
A -2 Sl.:lhtly&Uer6<1
A . J Mooe<atelyAIW6<1
A•4 Ve<yAno,ec,
A-5 com,,...1@1yAII"'"''
i I i
l
Vory:.0"
Client:
North{m): 7566112
East(m) 603531
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I -· , -~ I F ;~::! o)(- l5l:!'§o)(ll=5l:iC § :.ES
~ , I, I, I I, I, I, I ,I
,-..,._
1------,,
RockSlren~thlndex
RJ M,odlumSkDOQ
o·~ o ,:i:
,:~~~
;:i:
~
I ,
r<
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofeadal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
0.00-0.90m Cobc<1urac:oluvlo - al~vlal,noselogra
rncupera,mue~HaenlaperforaclOn
Rocaa1tamen1emeteorizada
';,9~~= :;'!~mcr>ln mc tcorl,ada r,agmcntada. no
lgnlmbrltadacrtlca
1.90-7.00m lgllmbrlla daclllca, ffactumada a muy ffa!urada
::~::::: ;!~~a~ oxl<IM <le rlefrc,. pre=lnan
Discontinuity Types I Discon1inuily Width (mm)
ROCK CORE
LOGGING FORM
BOREHOLE W
DS-02
of
Bit Type · Broca Agua Start Date: 27 novicmbrc de 2017
casing Depth (m) O.O Finish Date: 28 noviembre de 2017
Tolal Dcplh(m)· 22 WalerTable{mbs): 1:14.46 Logged by: C. Espinoza
96.0 I Diameter PVC (mm) 1.1/4
!
·ij
~
\t
0"' $?: >'.?RI '5
,.,
1.95
,.oo
, 1,1, 1
5.4o _b
.'",
0
Discontinuity Data
g
0
!
I
i!
{
0
J
,'"".
!
!
Oz,.,F e
"
i
I
K (cm/s)
j 1~~ m~~
. cc
cc
Additional
comments
E
;; I Well details ,! (Piezometers)
~II
Types of infilling !Amount of infilling I Surface Shape I Surface Roughness Spaclng{mm) Geol~ Desl~n Plezometet" •ai.5L. "·--•···~ ' :<::o.<,.:;.._, _ . w [= ,.,,_.,,,..,,,,_.,
~....i. :..,....., C i=::::::J •-•~ __ _,_, ~"
-~":,+,:"",.;.~".:!...,)
~=-· D• ><P•-•oooc,,.-.01
Q c;,,,.,. ~~E138
fl~ solutions ~:;.,---=c
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Exploraciones
Drillers(Day/Night)·
Drillers Helpers {Day/Night) :
Field Responsible (Day/Nlghl) J. Choque
111111;111111;1;
Weathefing lndex I Degree of alteration
W2 Sigt>HyWc<>H>e<<XI
W3 Mv<.iW..,o lh<.•N
A-l No"'""""' (!f<>~n)
A-2 Sl5':lh!ly&ll<><6<1
A.J Mooe<ot<>lyAl""6<1
A •4 Ve<yAne•e<l
A-S Compl<l1<>1yAu ...... ,
i I i
l
VorySo<1
~:; "°"
Client:
North{m): 7566112
East(m) 603531
Elevation(m) 4433.00
Projection UTM WGS 84 . Zona 18S
Rock Parameters
j .§ I = • 1-~ ~~ o:!-.llil:!'§o:!l.l=lil:iC § I F:.ES
,1,1 1, 1,1 ,1
1.,
[
,~':
-1,· </' .
....... > .-- :,·-· '·,,
-
RockStre~thlndex
RJ M<,d,umSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofeadal Sur
Drilling Rig Versadrill
Drilling Method: OOH
Description
lgnlmbrlla riolitlca
7.00·22.00mlgnlmt>rltarlo!lllcaclefracturadoapoco
1racutrnda. "'"~" de intrusl6noe xenoliloseo laroca
ROCK CORE
LOGGING FORM
Bit Type· Broca
casing Depth (m) o.o
Total Dcplh(m)· 22 Waler Table {mbs):
96.0 I Diameter PVC (mm)
-~
! ~ 0"' $? >'.? RI '5
, 1,1 ,1
t~ IJ
6.10
6.18
6.23
6.28
7.52 ,.w
10.64
10.71
10.78
~
""
.".
"0
n
"'
,",
"
Discontinuity Data
g
0
!
I
i!
""'
{
0
J
~
r 'i
!
"'"
VN Sp I '° Sp Fe
VN Sp Fe.Cl
VN Sp Fe
Sp Fe
Sp Fe
"Sp Fe
Sp Fe
"
,,
~e s~:e
BOREHOLE W
DS-02
of
Agua Start Date: 27 novicmbrc de 2017
Finish Date: 28 noviembre de 2017
Logged by: C. Espinoza
1.1/4
i K (cm/s) E
I
j 1~~m~~ Additional
comments
;; I Well detai ls ! (Piezometers)
C
,c
C
Discontinuity Types I Discon1inuity Width (mm) [ Types of infilling !Amount of infilling j Surface Shape I Surface Roughness Spacing{mm) Geoi~ Deslin Plezometet"
·a,;.:5;. "•--<••'~
:~.:.,.:;.._, _ . " 1= <"<•-·--······-· Ml C = -•~
~..:..--,_ ,__.. ~c
-=--":,+;::"",:.~".:!..,.)
~=-· Q .. po-•o<IOc,,.-.ol
Q G<OV< ~~E139
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Drille rs Helpers (Day/Night):
Field Responsible (Day/Nlghl) J. Choque
E.cIE:El·~l§lili::, l \lrlEaIc? i(t~J] Jgg
Weathering Index I Degree of alteration
W2 Sigt>HyWco,_C<I
W3 MWW..,olh<.>C<I
A-l NOAH ... ""1(!r<,>,n)
A -2 SU,:ihtly&U8<6<1
A .J Mooe<atelyAIW6<1
A•4 Ve<yAno,e<:1
A-5 com.,..,1@1yAU"'"''
i I i
l
VorySo'1
Client:
North{m): 7566112
East(m) 603531
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I -· , -~ I F ~;::! - l=i .E o)(l5l:!'§o)(l5l:C§ :S
,1,1 1, 1, 1,1
1----1
1----1
RockSlren~thlndex
RJ Mt,d,umSkDOQ
-,
DIREMAR
Silala - Bolivia
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofeadal Sur
Drilling Rig Versad rill
Drilling Method: OOH
j Description
Discontinuity Types I Discon1inuily Width (mm)
ROCK CORE
LOGGING FORM
BOREHOLE W
DS-02
of
Bit Type · Broca Agua Start Date: 27 novicmbrc de 2017
casing Depth (m) O.O Finish Date: 28 noviembre de 2017
Tolal Dcplh(m)· 22 WalerTable{mbs): 1:14.46 Logged by: C. Espinoza
96.0 I Diameter PVC (mm) 1.1/4
!
·ij
~
\t
0"' $?: >'.?RI '5
11.18
11 .27
116<1
11 .77
11 .83
13.18
13.26
13.37
13.40
, 1,1, 1
"" n
"'"'
" 0
""
"" ""
Discontinuity Data
g
0
!
I
i!
""
"" M""W
{
0
J
!
!
~ I Fe~
1
CI
~
"
Fec.,C l
Cl . Fe
Fe.Cl
Fe.Cl
,, I,, Sp Fe
Su Fe.Cl I ,,
Fl Cl.SI, W
Oz. Fe
"'
i
I
"" '"
K (cm/s)
j 1~~ m~~ Additional
comments
E
;; I Well details ,! (Piezometers)
Types of infilling !Amount of infilling I Surface Shape I Surface Roughness Spaclng{mm) Geol~ Desl~n Plezometet" •ai.5L. "·--,--,~ ' :<::o,<,.:;.._, _ . w 1= ,.,,_.,,,,.,,,,_.,
...i C i=::::::J •-•~
~..:..,.....,_ ,_,.._ ~c
-~":,+,:"",.;.~".:!...,)
~=-· □ ~ ><P•-•o,..c,,.-.01
Q G<OV< ~~E140
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. ChOQUC
IIIIE IBl¾IIlll II a~~~~ifsol ~~ ,_ &S&~cr~
Weattwringlndex I Degreeofalterntion
£':::.r:::J
A.1 NoAl!.,.-.,...(tr.,>h)
A·2 Sl'IJhlly a~&,&d
, . YA"• ,.,..,,.,,,,..., .. ..,,."..,....,
i
j
Client:
North(m) : 75661 12
East(m) 603531
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I .§ I =N I _,., I f
~.3 - - ..8 0 :(lS!:c-!~o~ S!~§ 5
1l 1l l1 !1l 1l1
RockStre!2th lndex
1>3 Me<i•umSt<ong
... "'"''".J
~ ::?;
,,._'--;
:::. · -~..: >/ .i;
,'-'--;_·
:..,:.,...__,;_,-_, .,.. .
;\t ..:..._,;_-_,
°:'-~I.'.
fui
f;} ~t
~
'.·:;..·.' _,',..>_.,.·, ",,-_,,,
-~>-/
I•.':,;
\{)
DIREMAR
Silala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofeadal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
Discontinuity Types I Discon1inuity Width (mm)
Vt; V<Ky N,,«ow ( < 1,3mm)
N NoHow(1 .3-2 .5mm)
MW ,_,.,,,,y
W1<J,;p.s , 2., ...... 1
w w•~•(1'7•50.o""'l
Bit Type
ROCK CORE
LOGGING FORM
Broca Agua
Cr1sing Depth {m)· O.O OTW: 29 noviembre de 2017
Total Depth(m)· 22 Wa1erTable{mbs) I: 14.46
96.0 Diameler PVC (mm) 1.114
Discontinui!_y Data
DS-02
of
Start Date: 27 11ovlembre de 2017
Finish Date: 28 noviembre de 2017
Logged by C. Espinoza
g K (cm/s)
!
o• • ••I
0
~
I
I
~
~
0 i
r ;;
~
f 1~~~i~~~I Additional
comments ~ I Well details
~ (Piezorneters)
l1 l1l1l1 111111111111111
V
: lc1.~11
. Fcl
_li!?!soflnfi ll ln Amount of Infill ing I Surface Shape I. ....S..u..r.fa..c.e. .R...o..u _ghn_ess_ Spaclng(mm) Geol~ De~n Plezometer , ·~?-~~l ·=,~:~~::·I.S :=::-----·
"2:i "---=.. ............,
□ ~- ~gf~.;~
141
Centimetres
142
Centlmetros
143
Centimetros
144
145
Geological record and piezometer installation design
DS-03
146
147
PIEZOMETRO
0
2
4
6
8
10
12
14
16
18
20
DS-03
Profundidad
(m)
PVC Ciego
Schedule 80
16
PVC
Ranurado
Slot 40
(1.00mm)
20
Concreto
Relleno
Bentonita
Diametro Perforaci6n HO: 96 mm
Diametro Piez6metro: 2"
1.5
21
Relleno de bentonita y
grava intercalada
Filtro (paquete de grava)
Leyenda lnstalaci6n de Piez6metros


Filtro (paquete de grava)
PVC Ciego
I I PVC Ranurado
V Tapa inferior
Derrumbe
Grout
148
149
10 20 30 40 so 60 70 80 90 100
Centfmetros
10 20 30 40 50 60 70 80 90 100
Centlmetros
150
10 20 30 40 50 60 70 80 90 100
Centfmetros
10 20 30 40 50 60 70 80 90 100
Cent/metros
151
10 20 30 40 so 60 70 80 90 100
Centfmetros
10 20 30 40 so 60 70 80 90 100
Centfmetros
152
153
Geological record and piezometer installation design
DS-04S
154
155
PIEZOMETRO
0
2
3
4
5
6
7
8
9
10
11
DS-04S
Profundidad
(m)
PVC Ciego
PVC
Ranurado
D Concreto
[] Relleno
~ Bentonita
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
3.881 y
2
4
5.5
10
11
Relleno
Bentonita
Filtro (paquete de
grava)
Leyenda lnstala ci0n de Piezometros
D Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
156
Client:
Project Number: 1175601
Recovery{%) ROD(%)
10
11
Logged by: A.Hilkens
Draw by: J.Flores
Reviewed by: RaUIOrtiz
10
11
Drilling and Piezometer Installation
[Fracture/ 30 cm]
0 5 10 15 20
Water Level {mbgs)
]: Water Recovery (%) S
l o 25 50 75 ,oo i
... 3.88
10 10
11 11
Lithology
G] SP [;] Jgnimbrita
K (cm/s)
PIEZOMETER
DESIGN
10
11
Piezometer
[ill Concrelo 0 Filtro3-5mm
11 Grava □ PVC Ciego
BOREHOLE N'
DS-04S
SHEET N": 1 of 1
Piezomeler
Design
2.00
11 .00
V Tapa inferior
~ Derrumbe
[] Relleno l~I PVC Ranurado D Grout
~ Benlonita
157
fl~ solutions
Project Number: 1175601 {FS)
~
D IREMAR
CONTRACTOR INFORMATION
Dril ling Company: Sergeomin
Drillers(Oay/Night):
DritlcrsHclpcrs(Day/Nlgh1)
Field Respoosible (Day/Night)
m1~1i11111 1,1,1
Client:
Nor1h(m) 7565924
Eas1 (m) 603291
Eleva1ion(m) 4421 .00
Projec tion UTM WGS 84 - Zona 185
Rock Parameters
.!
i I J ~ u:
~
0 ~ §IO~~ §I ~
1, 1,1 ,1,1
~
u Weatherlnglr.dex l Degreeora11era1ion Hardness RoekSlfe~ thln clex
A-1 NoAJ:6'e<l(l<&Sh)
A-l S"""tlyi,tl<s c'<.I
A •J Mo<l<:falelyAOO.-O<I
A-< v~,. All~,<Kl
A -5 Comc>l<,l~lyAtt.,.-0(!
1<3 w.- s ~oog
R4 St,ong
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzlmuVOip 0 I -90
Loca11on Bofedal Sur
Drilling Rig· lngetrol640
DrillingMcthod: Diamcln!inc1
Description
SP, Arena pobremente graduada, con poca grava
ypocosflnos, seco, suelto, gravaangulosaa
subangulosa, arena 80%, grava 10%, nnos 10%,
matcrlald<!origcnduvlal.
Oe0.90a2.30m.Fract...-assupe<ficillle,;rellenos<leo,,:ido
00hlerro cn rocagnimb<l:ic8
IGNIMBRITA, marr6nrojlza,detextura
lnequlgranular, presen1annos crls1ales de roca
igneade hasta1cmdediametro, laroc.ase
encuentrameteorlzadayfracturada, lasfracturas
cstanrnll<!nasporllmosyalgunasconcrlstal<!s
decuanocr1stallnoyoxldos de hlerro, roca
porosaypermeable
Oe2.30a3.57m. Zonarr..,ylractuadayDrecnoS11,
l!l'll""cga'll<laporo,lclosyan:lla sOOooloraciOnarnarlllcnla
ROCK CORE
LOGGING FORM
Bil Type Broca
BOREHOLE N°
Agua
DS-04S
of
Start oa1e: 24 oclubre de 2017
Casing Depth {m)· o.o OTW· 27 octubre de 2017 Finish Date: 24 octubre de 2017
TolalDep!h (m):
COJeOiameter
.=l I ·,.~,.· j
,,.,2::?
',r"o
,ro
,oo
',o"o
,oo
,''r""o
,00
rn
"rn'
,1,1,1
11
96.0
"ro
00
ro
,0
ro
00
00
ro
"00
00
ro
~
00
,0
,0
"
WatcrTablo{mbs)
Oiameler PVC {mm)·
Discontinuity Data
~
0
!
I
~
"
"" "
"" "
MW
MW
MW
MW
f
~
""
"",,
""
'"
"
""
Fas,
""
SI Fc
SIFe
Slfe
SIFe
"
S"lf e
3.881
50.80
Logged by· A.Hilkens
R~ ·
K (emfs)
i ~~~~~~;
C
""''
Additional
comments ';; I Well details 8 (Piezometers)
80%de,etomo I ~ t•
c~ ocg,ts pa,00. I ,.o •.
0% dcrctorno,
zona frac1urada
PreslOnde
avance: 1000
PSl yPresiOnde
rotaclon: 1500
PSI.
Retornodeagua
70%, colorpardo
rojtzo
Discontinuity Typesj Discontinuity Width (mm) ! Type$ of Infilling !Amount of Infilling I SUrface Shape I Surface Roughness Spaclng(mm) "'°""' DesI1nPlezometer
VI< ,,,,. ....... ..,(, 1 3 """)
.. - •=11 3-2.Smm)
MW 0,,0<lc<O,oly
W" ... (2 .S-J2 7 mn,.)
W \Mdo (11 7-S0.8mm)
•·.:::----1· :::: .. :., ""
;:;------.. <,; 0,,.,.,( .. 2;""'1 ) ··=:=-::::;r-:5 ~ ;';'::;:(~>-:::;)
"'""!!!.~-~-~-~'!"',,..:
E,il :; . ..... . ;=:::-., .. ,
VT•""""'"""
158
flctsolutions
Project NlJmber: 1175601 (FS)
~
DIREMAR
Client:
CONTRACTOR INFORMATION
Dri lling Company: Sergeomin North (m): 7565924
Drillers (Day/Night) East (m) 603291
Drillers Helpers (Day/Nlgh1) Elevatlon(m): 4421 00
Field Responsible (Day/Night) P, ojccloon· UTM WGS 84 - Zona 18S
Rock Parameters
!1!1111
1
1
~~~ii1J1 11!g1~~
j r I
i >; I ~•
$ a § I
§I =" I·-·· I"' .2 - ~ ~ ~ o~~:,:§o:,::s;:)!2§ 3
,l,l ,1, 11, l,l,l ,I
-----.
r-t-r-+-+--+---+---+-+---+--+---+-+--< IWeatherlnglndeM
I Degreeofalterat ion
A. , NoAlte<e d (!,eSh)
Slk,nlly""'"~-.1
Modorn!clyA1t0<cd
1\-4 v.,,yAII"'"'-'
A -~ Complct,oly Al!.,.-cd
Hardness RockStre~thlndex
"" ......,......,s,"""'
R• S t<ong
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzlmutlDip 0 I -90
Location Bofedal Sur
Dril ling Rig: lngetrol 64D
Drilling Method: Diamcmtina
Description
Oc S.SOa6.BO m Scol:,:s,,r,,,.unn0<1zoo1cdca,cnas
-~~
Oc6.80a 11.00m. Rocalgr>lmb<Jlk;afrAgily suavc,sc lava
duranl,olapcrforac1¢n.scobHcr.cpoca rcc upcraclOoclc
muesua, larocapasa <legrlsrojlzaagr~violacea
DiscontlnultyTypesl Olscontlnulty Wldlh (mm)
\IN ll••yN·•,...- (• llmm)
N t· ,ow(1 3 -2.Smm)
MW .!:~:•i~2 7 mm.)
W Wldo(127-W.8mm)
ROCK CORE
LOGGING FORM
BOREHOLE N"
DS-04S
of
Bit Type: Broca Agua Start Date 24 oclubrn de 2017
Casing Deplh (m)· o.o OTW: 27 oclubre de 2017 Finish Date: 24 octubre de 2017
Total Depth (m) 11 WatorTablo(mbs): 3.881 Logged by A.Hilkens
Core Diameter 96.0 Oiame1er PVC (mm)· 50.80 Rev
Discontinuity Data
= I »~,,,. I i o~:cm~~
"0%'
, 1,1, 1
"w
%
w
:: I ~~
.~~ I E~
1!, ~
~ .
Types of Infilling I Amount of infilling
{
'I"
e'
~
0
!
,,,,
P>1 SI
Pa S1
Pa SI
Pa St
surface s~
f~ l j;;> I ~ ~ ~
~
Surface Roughness
K (emfs) I 1~~~ ~~~:
C
,c
w
C
Ill
Spaclng (mm)
Addition al
comments
Retorno de 80%.
color pardo
roj1zo, escasa
recuperacl6n de
mueslrn
Retorno 80%,
color pardo
rojizo. Presi0n
de avance: 2000
PSI y Presi6n de
rotacl0n 1500
PSI.
Retornode agua
30%, colorpardo
rojizo, la
mueslra se lava
Retorno de agua
50%, COIOf pardo
roj lzo. la
mues1ra se lava.
Geo~ .. .,,,._.,,..,,,=.,,,.-1"' ,_.~, .. ,~
• • .....:.....,., - •__,..-,_ W W<lo(•i.>mcrnj
. ...,'°'- "- """'0
""' C Ck,,.,(6·2;<:ml ) ~-----•""'~d"'.' ;:'° ..,_,,.,=({2-,.cm)
"" ""':?"_~-'~~-~ ........ :
Ei,il e; ..... .,.
;e; I Well details 8 (Piezometers)
De.!!9_nPlezometer ;=:;_,, . ,
V ,,. .. . ~ .• -.
159
SERGE~ MIN
8ELWICIO ~ ~IElRO
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-04 S
--0
2
3
4
5
6
7
8
9
10
11
Eluvi6n: material suelto de diferente
granulometrfa y composici6n con
pobre desarrollo de suelo (limo
arenosoS/MWH)
lgnimbrita: Toba soldada de
composoci6n acida con clastos liticos
de diferente composici6n,
fracturamientovariable,conrelleno
limoso y ocacionalmente con
oxidacionesferrosas, variablegrado
demeteorizaci6n hidrica, dandolugar
atramoslixiviados
0
• o • 0 • O
'o • ~Iv , · ·
0. 0.
o· • .. o . . o
Fractures/30 cm
1111
1111
REFERENCIAS
Elv 0
■ lgm
160
z i
- !!l :E l 0 s
w~
t:, ~
DI: 8
eWn ~I
r, I,
~ DDH (DL\_\1E~"Tl:'<A)
,.... FOR..\JATO DE RF.GJSTRO GEOL6GICO DE ITSTIGO DE ROCA J Pozodeperforaci6nNo.: 0-!i - o4.j
-olRF.~4.\R ~--~- 1_1ar;.~~' --.- .-.. -- Tc-1;,- .. -.,--===---_-_--_-_-.----.-______ HojaNo.: / de -3
,c,.'.FOR.'\JACI NDELCO~TRAlO D,FOR)l\CI6:,;i,oaRIELl-'OZODl:P£RFORACJ6:-.:: --------- - -~---, 2::fi~:~~::s .,~7- ~;;d{::~31~~ ~~~~ _--~ ~;~;.;~~~=~§~~~~/$ !f~=:,~_-_·---~-_,=f;"'.="=""·"~'~"=':~·"-"~ '-~.,,.:~~L_ __
l'!>01'ol:lu11CMIJ)O~<b'rlos:!le):A ll.t._f'!__;,,_ J>roy,,,.'Ci,j,;: v+,-1 .,l}~~- ,..B_•{ J<l.:,/.\t~od.:l~~tfoneion:_n_o ►1 j!?i-_ d<l, .. ~~'-"~__l__~s(J,o>lf.i.u) /}
I11~1~11 i t[b ~ :1r:-·:T 1,-~ n,=cio, ) fl 1/rlrrn~r:=.,.1 -i-~;~1-l-1+ 1.,--.--l -c---.-..- "'""""--rh' -.:::-='
J J,._i~·•1i~~j.. •1 1J}~;i11 ·•11-
Q' 1:;;~::,-ol~ e h,-,1,d ~rs~,., M 1,1111-l 1.,,.,e, ~-
01~ I I:~ "''''~,)
/ ~,o to• r '/tJ ""a .sl l' £·'I CY
tote.. 1.5,.,,..,b,;-\c.. Jc tofot' .. ,,on ,.,c;,,.,.. "·•• ,=,,. t,-r (;4f
I j I YOj•lr, to.-,i ., .. o-4-.. d, -'ob« Ju,,;.. eo ) :,~ ~ v,; ,::, ,.,., r 1" ,:.•, f;'jl r ; • •• f# ;,,.. ,,:,, , • ., -
ij; 1 ~ D O w Af../ -J Ql r-J o - 'f r~as,.,.,,.,-t~.:> v 1,ra:, d,.. .-.~.? ;-'5" 2 ·;".::i J" vtJI Pi ST 1 ... ,...""' '=-~
~ '<'i I I \o oo. ;,..: ,'p_;.,s.,!.1t'""".>• •,..,J.oJ ~.-~r,J ::: 2 J ,v,J 1'> ST 1, ,-41f,-
:i 0111,,c l~.S '40 r ~..,
6 ~ ) .,i • ,,,,.,, •:~ 3 Vμ ~~ •t ;: ~--,~• ~~
l - - "· - _c ' I"" ,. r- ,,, c•.., ..E.L
~~ I L ~ g O t, lP3 At.I c-3 t~ fJ.
0
b ';,7;,~;"~1'"1•.J,,~" i 7 ,YtJ ~ ;;;; z,; c.-~, E)(
6 o <::::1;~:~. ·;:-:,·,7;,.,~:. >,;,'/~•;~~:l:-::., i T MvJ Pi r., ;;, -:: ,-, . o: :o~,~~ t0
''~ ;:J•;:,i6 ;:,~
1
:
0 ~~:."umc J μv.i ?, Jr 1.r t-t../ Cx
3 C";i ).. I \~ ~ <:) "c:-J ·~ ti. o c,",:1i~:<,, ,,ll,.,1, po, /,,.,r;;. ",;,i,r;1~ .~,ft 1
('")f? - ~ - - ~ WJ,. • () h4 ,-fr, 1o~ J.SD J.,.., .. ,t-,,4.._ c~•"r'"cl4
"M'"W'j ~-':1."_"'J1.5 T)I/<· <iI( ll
O, _ (o,-,4 n""' le, ,.,,_; ,<Joh 2,, co,71 p,; cf._
..,0 -2,31>
~.,.,,.,,,, F, •• r.,..,..,
. t(:0-.).
,r<le,,, ... !(' / ~. .
!~ "
0' o, "' .,,.1/, -./ ~~ ,v,J~r:r.rJ 11 ..,., / I
;,r, .. J,80 1/, ,Ir
~,.,,,,,,,,,.)~ 0 I JI / /
Cl-t" •r-lor.,o
1
• // , 1
/1 I /
/1 /
I I I '
0~ 3,,/4~!.,S'rf / ,/,,
• ..,,f',.41",._,4_ 1 1 ./
.. f,~ .,.~•~'- I I /
14,~: IJ .: ,., n ·,"'··•I
I 'rrp1 , ,._ n" ~
:: , IMoJjP.j0 1"Jo,J<-sJi:;,
0 O -J,4J;<i lo,:,,_ L!.40 ~ ~,J.J fcu, t>tucl,, r--+--t~rl--1 i--rr - 1,., I',,.,,,;, ''"io ,(, ,., " 1 MW ? l:=r~';' . '.-• "· ~ "•J,;<v. Mui ,_ '--!:l. f'it
I t I I I ...,..,__.__,_~,_.___,~ -I - I [;"::·: "', " J, i°11,11 O)
1@ff ~ :;it= ~t= tj§ 1;i"ff fi ~~ [~~~-~i:
161
z Ii!
- !!I
I! I
~ s wi
~ ~ a.: ~ wi
U, I
lj FO .. R.,JATO DE REGISTRO GEOL◊GIC. 0 DE .TESTIGO DE ROCA l Pozo. dt pt'rfomc! 6o ~o.: 0 S - ot.16
~ _ _ DDII (DIA.~EYTIN.A_J __________ ---1,
--=======-,--! ~6~d~~~= -- r.'IJo:iii~~-so-,u-a.PozO D! PC:;;;JU-«-o,----- - ~~~~- _l.._ ~-----
(m). ~5t--qP,4 - =-- 0--a,p: fo:ii,ade~T:-~
~
~R
e,:j~~~~~~~~~~~~-!.!~~-"'~~-~~~-..j:tt: ... t"--'-,""~"''.11."~qj~__:_- =-=- \)lW fed».&~ J'I ·-I?.. - tc_- .... (,,,.\_ 1,/4-1:l_ ... TabbS-,Wa(ll:bo,~. It· o~por: A 1,f_J/1',·μ
vf_M w6.S 9t1_ _.,"""""°c..··=-"""-s....,.==-' ...,.c...''-+------~-
: ilH d ji 1· h ~~,_1 n,~,0, 1~nl!~fj?1T1 n '1 it I c ....... ,.._.., ;:.;..:::.::;
i V . .-!:~. •li 1P11,~Ji·•!
I
, -:, ,,_•, m1: o - < "' '<I F <1 P• - ~ ~ ~ !I _.:._ ~ ~ : ~ ... J ~ (.. 3 \.-'- f1 - b ~- 10 1 J • j t>,i>l ___£_ 'f .H. l_c._~ I f',r
o t-,..:m&. I.J', po .. o.:t~ pot OH••·• r.,('I,.,"'
-;;: e,..; rOJ•l.''-- PIC, 'Sr Cf,df, #o•1 ~ A
D "'lc...-1'11,"I lfJ.
l~
0
~ ;..,.,dc.~-soat,90,p.,(!,.~ ... ~, f ~ ~ '.l. c.._,... -'1 ' f\, G3 c~ ~· C) ') torf p,.,,1:,"'bt,,..,,.,;c: poJ<-. po, ,,,,
\ .., ~ '-1 (;) - c ~ ~ n._,,,'1 ()~,,,o.so ~ •,,.
H f---1 -
1'"1j.;li 1~;1~1~
I "! , o 1-1,:i,,.,~ ,i,, 1.,,,,,.,b,,.1..._ n,R~ p0ro:~ ,.
_ po, "''"P•• '1 ~'·'-'"-, a~ ... r.,"1"" J/ (•"~.J 7;•..1
~- ,..., , 1to,, 1 ,, , . D,~ • -;:~ ., /!,,11,.:, p,·, • ;,
1·-1'~ IL1 \nl•- t,mc,,
., -
"' ,:::,' G"!' .:.- ,,, E. -I
l'l.l"' p~ - ,, M ,.,__ '" f-"
.;
H-+ f-
~ I- ,-..,.J,•1'- 9, po1..:,J.:• p,tJto,-4e-. n """'''"
141..f,,c.,. 0 ,~ "'ftt!. 4f 10 A 't, '-S
j ~~ 1 r1 I ]2JJI ~I~¥ ~2
- r \2,:- rnv'1 po, oSf.\. .:: ,,, Je, ~,- ~-1 s~
~Q:l!Llob t;,,,.~,,,< 'I f.t-i• 1,x • . t,, v,,..
°rft..tt~,ui ) ,l',,1e.1 ()01 t ,~,(I.I
••
111" 11 !"""' ~T p, le. 1;:-
c!!.. ... IJ.-lc. '1 1-u ..
,.00 - '.:>,JJ ,.,
rH""t, J.J"I r-'/.
yu
SJV - 8•
;,,
Pl.>'J-11.,",,Pj.}O
1,. SO · 8 JO
:1.~,,,. {D , .. '{IA.
(.c,,,, p1, r ,0.:..111
9.'JJ - q 9,1
3 tt· / ,o,, .Ii:.,
' . . 'I rf-10-.J.:>
[',
I=--:.
;
I
I
,,
~~ :}§
j''=--
-~~ .-.1-...-• A,Jl.--•- 1.J __ .. _ ,....,_,_ ... .,,c-,-.,
o--•
-"111.-1
c-,)..,.__ ..
c-1:..-.-.. r~=-
~ ~~-"',.,.,''·
i~~ ~it=~ i~ !~~ fig~ ~~i~f ~~!t
9 '
162
z i
- !!l :E l 0 s
w~
t:, ~
DI: 8
eWn ~I
., .. . . FOR.\JATO DE REGJSTRO GEOL◊GICO DE TESTIGO DE ROCA Pozo de pcrfornci6u !1-o.: Vs - oii..S
~ DDH (DIA)IE1',r,A) ___ _________ ~
DI Rf.~i.\R . ·1_r~~ .. ;o,, ---. --_Y,H••: ------- -- Iloja/\'o.: 3 de ,3
1
__ cfFOR.'\tACf :SD t:-:FOIOL\CJ6:XS~-Blt£llPOZODEPERFORAC16.._ -----~- _
Co:nplllliadep«foraci6n: - ---i==----'-c=>' O:ientac,~llldi11ad6u:- q .,_-<;=;,,::c::::.:.,.._21- fedi.:l&acii>: I/ - V -JT
..:'~~s(dialnOC~): 9-1. ·-- l.J1>icaeiOII s ,FC,!;~--- - -- ftt!i.,.decu!:.Wioa. :l4- IO -tL_
~ Ir,,~. di>.~:bc _1___ . -· -'lic;uillide~--i®k.l'~' Rrvist.odab<>oad.ipo,. A '"'• Jk ta S il i~1•K'•1171~. .r- -1 -Vt,-1 w fi_S_jj•/ , q 5 "''"""'"'',~"'"'' il_l/H_ ""
l[B q H h "-• DESCRJPCI6S I i
£ ' ;(. ~ c:1 ' J:
c_,.;o, a&ioca.\t• ~~:r·
0 • ~1:l• bl~ l~l~;f.,,1f ~,1H~+1::
t-1 ,:> m1... ii' -~:, ,,.o --1, d<-
rlwr,!,::, p,,,c:,, t,:,,,fJc-.-.i,. 9",.-~.r-Jn...,)
4,.,,,,,.,,--: •1 ci ne,, , f:"rV1V J(.Y ~ d•
t """ (p.,,,,,.~~ ). -l . -1p~-i.;, ,,.;J ._
rtH--Li __ ~ q 90- 11 o\.) 1ti, :1
3,....,, I, ,ti,
.,.r+o,,1,:;, Gi> 1
r1e1 ✓ 10.-, ,o~i .1 V
o. :. -"·
., .. ~ ; ·, .. , } ' .
l=,1,1 Jr 'Po 7D 11,()1)""
~~ :~~·
""' -=:''
"""'~"""" '•-- ;..i :i.11 ...... ,,,...,) ~-Hl,y,=•,.
.1;:L~--• - e.u .. ,.
;...)1,1.,<...i-""""• C-lO.-.•"'"""°"' t1S:t::, - f~..=: ...
i,,t,«••hf-_,.., .,,,.. r,",... -:- i,_ .. .,_.,_,,,.""_ -:,..,"..;,.,,,, ~i.--1o,.:-
i~~~- l!I~=: ~~ ;~ H~ijf ~:~
-~.:..f _ ___ i..._.,w ..... - ~(cat
gf; ::~~~::;~::::-· 0~ ... ~-:-
i•:::·.::::.:-:-:...=::..-:.:;:i.~~ ~::::;::,';!..":...
.. ,OMD...,..J (C-, n.- .. ,-q,-; ___ .__,.,r.,,,.., .. ~~;!'.';
163
Centimetros
10 20 30 40 so 60 70 80 90 100
Centimetros
164
Centimetros
165
Geological record and piezometer installation design
DS-04P
166
167
Pozo de bombeo
0
10
20
30
40
50
60
70
80
DS-4P
Profundidad (m)
PVC Ciego
Schedule 80
------
PVC
Ranurado Slot
40 (1.00 mm)
40.388
72.508
-~P~v=c~c=i-eg_o_ _
Schedule 80 75.428
\ Punta de lapiz / 75.928
Diametro Perforaci6n: 12"
Diametro Pozo: 8"
3...5. 9 5
80
Leyenda lnstalaci6n de Piez6metros
Bentonita
Filtro (paquete de
grava)
Concreto D Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
[] Relleno D PVC Ciego V Tapa inferior D Grout
~ Bentonita
168
flrP I t' DIREMAR
'i) ~SL~ .. !,9no?. f-----S-ila_la_- B_o_livia __ __,
::::-:~~:- PERFORACION
DS-4P
DIREMAR
Proyecto N°: 1175601
INFORMACION DEL CONTRATISTA INFORMACION DEL SONDAJE
Contratista: MaldonadoExploraciones Norte(m):
Perforisla (dla/noche): Este(m):
7565924
603291
Ubicaci6n·
MetO<JodeperforaclOn:
BoledalSur
RC
Ayudantes(dfalnoche):
Responsable de campo: J. Choque
Tipo de maquina: UDR-600
Allitud {msnm): 4421
Azimul ("):
Profundidad de perforaciOn {mbst): 100
Profundidad de casing (mbst):
4420
10-
4410
20-
4400
JO -
4390
Columna I~
Litol6gica ~
~
lnclinacl6n ("): -90 Dltimetro de perforacl6n (mm):
Descripci6n Geol6gica
COBERTURA COLUVIO ALUVIAL, malerial suelto conformado
por arena, grava y calcedonia en la superflcle.
CONGLOMERAOO VOLCANICO, compuesto por clastos de
dlferenle lamano de coloracion variable desde rojlzo hasta un
marron oscuro en la base y poca recuperacion en la
perforacion, de poco a moderadamente fracturado.
5.70 - 7.00m. Tramo tracturado
7.00-10.00m. Roca fragmen1ada y poca recuperacion
de core
10.00 - 16.80m. Tramo fracturado a poco fracturado
16.80- 19.00m. Base de conglomerado volcanico, nose
recupcra mucstra. zona muy dcbil
>,-a~.,-M-B-RI-TA-so-A-c-,,.-,c-As-,-,,-~-,,-.-01c-,,;-,-,-,.-"-iO--------l ~ ..
pirocl.!lslico, poco fracturado, en algunos tramos se presenla
moderadamente fraclurado a muy fracturado, se presentan dos
a Ires sistemas de fracturas rellenas en algunos casos.
20.00- 27.70m. Tramo frac1urado a moderadamente
rraclurado
19.00 - 20.00m. Tramo muy fracturado, fracturas
subhorizontales rellenas de limo y oxidos de hierro
27.70- 28.35m. Fractura subvertical abierta relleno de
limo y arci11a y palinas de oxido de hierro aber1ura de 5
mm
30.00- 32.40m. Muy fracturada, fracturas rcllenas de
limo,arcillaycuarzo
32.40 - 43. 70m. Poco a moderadmente rracturado
CAUDAL CE(uS/cm)
00
87
20
5.112"
Reallzado por: c . Espinoza NOTAS:
>-R-•-vis--ad_o_p~o-,:----,,J-. -0"-;,-,.------< Datum: WGS84 Zona1ss Leyenda Litol6gica
Ph
83
83
Aprobado por: R. Ortiz mbst: Metros bajo la superficie del terreno ~ Conglomerado 13) lgnimbrita
>-'--~--+---------< msst: Metrossobre la superficle del 1erreno IQ] Oeposi1ocuaternario
C6digo: 1171802 'T" : Profundidad dcl nivcl de agua
HOJA N": 1 de 3
Oiamelro de piezometros (mm):
Stickup(msst):
Fecha inicio:
Fechafinal:
11 denoviembrede2017
19denoviembrede2017
Nlvel deagua l (mbst): 4
Descripci6n ~ :S Piez6metro j I Diseiio de
de detalles ~
~
0.00
5.00
Airlif1 1 1
Airlif1 11 2
Airlif1 1 3
Airlif1 1 4
Airlif1 1 5
LEYENDA CONSTRUCCION DE POZO
Re lleno Ei) Denurnbe
la Grava D PVC Clego
fZl Bentonlta 1::1 PVC Ranurado
0F111ro(paquete de gravalVTapa lnferklr
D Grout
169
flrP I t' DIREMAR
'i) ~SL~ .. !,9no?. f-----S-ila_la_- B_o_livia __ ____,
-~
~
DIREMAR
PERFORACION
DS-4P
Provecto N°: 1175601
INFORMACl<lN DEL CONTRATISTA INFORMACl<lN DEL SONDAJE
Contratista: MaldonadoExploraciones Norte(m):
Perforisla (dla/noche): Este (m):
7565924
603291
Ubicaci6n·
MetO<Jo de perforaclOn:
BoledalSur
RC
Ayudantes(dfalnoche):
Responsable de campo: J. Choque
Tipo de maquina: UDR-600
40
4380
4370
60-
4360
70 -
4350
Columna I~
Li tol6gica ~
~
Allitud {msnm): 4421
Azimul ("):
Profundidad de perforaciOn {mbst): 100
Profundidad de casing (mbst):
lnclinacl6n ("): -90 Dltlmetro de perforacl6n (mm): 5. 112"
Descripci6n Geol6gica
32.40 43.70m. Poco a moderadmente fracturado
43.70- 44 .40m. Muy fracturada , frac1uras sub ver\icales
y sobhorlzontales rc llenas de limo y arcllla
44.40 46.20m. Poco fracturado
46.20 48.00m. Moderadamanle fracturado
48.00 - 55.20m. Poco fracturado
55.20 - 55.80m. Moderadaman1c fracturado, fracturas
horizontales
55.80- 59.00m. Poco fracturado
59.00- 62.80 m. Moderado a muy fracturado, fracturas
abiertas de 5mm de abertura rellenos de limo, arcilla y
patinasdeoxidodehierro
62.80 65.90m. Pocofracturado
65.90- 67.00m. Moderadamen1e fracturado, fracturas
abiertas rellenas con limo y arena abertura hasta 1 cm
67.00- 90.90m. Poco fracturado. moderadamenle
fracturadoenalgunos tramos
CAUDAL CE(uS/cm)
30
40
4 0
l ,l
34
Reallzado por: c. Espinoza NOTAS:
t--R-•-vis--ado_p_o_r:-----,cJ.--0-,,,-,.-------, Datum: WGS84 Zona1as Leyenda Litol6gica
Ph
,. 4
:,. i,
:e. 3
,. 6
i"
Aprobado por: R. Ortiz mbst: Metros bajo la superflcie del terreno ~ Conglomerado G] lgnimbrita
>----'--~--+----------, msst: Metrossobre la superficle del 1erreno IQ] Oeposilocuaternario
C6digo: 1171802 ..- : Profundidad dcl nivcl de agua
HOJA N": 2 de 3
Oitlmelro de piezometros (mm):
Stickup(msst):
Fecha inicio:
Fechafinal:
11 denoviembrede2017
19denoviembrede2017
Nlvel deagua l (mbst): 4
Airlifl /1 6
Airlifl /1 7
Airlifl /1 8
Airlifl /1 9
Airl ifl ll 10
Airlift ll 11
Airl ift ll 12
40.39 ._
75.43
75.93
:-
LEYENDA CONSTRUCCION DE POZO
[i) Relleno Ei) Denurnbe
ID Grava D PVC Clego
fZl Bentonlta 1::1 PVC Ra nurado
0F111ro(paquete de gravalVTapa lnferK>r
D Grout
170
f I~ I t, DIREMAR SO LJ ions Silala- Bolivia
fluid thinking • solid decisions >-------------<
Provecto N': 11 75601
0 ~ ~~
DIREMAR
PERFORACION
DS-4P
INFORMACION DEL CONTRATISTA INFORMACION DEL SONDAJE
Contra tis la: MaldonadoExploraciones Norte (m):
Perforista(dfafnoche): Este(m):
7565924
603291
Ubicacion:
Metodo de perforaci6n:
Bofedal Sur
RC
Ayudantes {dia/noche): Allltud (msnm): 4421 Profundidad de perforaci6n (mbsl): 100
Responsable de campo: J. Choque Azimut (°): 0 Profundidaddecasing(mbst):
Tipo de mfiquina: UOR-600 lnclinaci6n (0
) : -90 Dltimetro de perforaclOn (mm):
1i Columna :2
UtolOgica ~ DescripciOn GeolOgica
CAUDAL CE(uS/cm)
~
BO
4340
90.90- 90.95m. Falla con orientacion de 60°, se observa
5. 5
estriasdefallarrelenasdearcilla
De 92 a 93, 1 m. De moder ado a muy frac turado,
fracturas subverticales re llenos de limo
93.10 - 95.SOm. Poco fracturado
90
4330 IGNIMBRITAS RIOLITICAS, Hujo piroclastico con menor 5. 5
conlenido de mlcas(blolita), mas plagioclasa, presenta
alteracion argilica y mas notoria en las juntas, las plagioclasas
son mas potasicas.
95.50- 96.00m. Fracturas subverlicales rellenas de
oxidode hierro
97 .00 - 97 .40m. Fracturas verticales rellenas de arcillas
3
blanquecinas
97.40- 100.00m. Fracturado
0
5.1/2"
Realizado por: c. Espinoza NOTAS:
._R_e_v-is-ad_o_p~o-, :--,_ J. _O"-is-p,-------l oa1um: WGS84 Zona18S Leyenda Litol6gica
Ph
,.,,
..
1··1
Aprobado por: R. Ortiz mbst: Metros bajo la superficie del terreno ~ Conglomerado EJ lgnimbrita
f-----'--~--+----------l msst: Metrossobre la superficledel terreno IQ] OepOsitocua1ernario
C6digo: 1171802 ~ Profundidaddclnivcl dcagua
HOJA N' : 3 de 3
Difimelro de piez6melros (mm):
Stickup(mssl):
Fecha inicio:
Fechafinal:
lldenoviembrede2017
19deno~iembrede2017
Nivel deagua l (mbst):
Descripci6n
de detalles
Airlift#13
Airlift#14
Airlilt#15
Diseno de
S Piez6metro
LEYENDA CONSTRUCCION DE POZO
[;] Relleno (:n Derrumbe
I§ Grava D PVC Ciego
~ Benlonita l~I PVC Ranurado
0Fi1tro(paquetedegr<1va)QTapa inferiOr
D Grout
171
DIREMAR
Silala - Bolivia
Resumen de Perforaci6n e lnstalaci6n de Piez6metros
::::-::~:-~
DIREMAR
POZON°:
DS-4P
HOJAN° 1 de 1
INFORMACION DEL CONTRATISTA INFORMACION DEL POZO Y LOS PIEZOMETROS
Compal'lia de Perforacion: Maldonado Exploraciones Norle (m) 7565924 lnclinacion .90 TipodeBroca: Tricono Diame1 ro Pie ~. (mm) Rcvisado por: J. Quispe
Perforislas (Dla/Noche): Este (m): 603291 Ubieaci0n Bofedal Sur Casing Prof. (m) o Stick up (mssl): Aprobado por: R. Ortiz
-c E Caudal Conductividad Temperatura ORP (mV)
,E ~ O/s) pH ~lec;ic; (u~cmJ (
0
C) ~ 0 ~ 0 0 ts Q 2 4 6 8 10 6 7 8 9 1Q N N M M 'SI" 10 12 14 16 18 20 ' N
,I
O r- 4420
10 -
,-4410
20-
.-4400
30-
r- 4390
4Q -
liiillll,lllll, :,,111 111111
II
,-4J80 11 ,,, Ill
50-
.-4370
60-
f-4360
70 -
r 4350
80 -
.-4340
90-
f-4330
100
II I 42
II
s
Ill 111 Ill
Logged by: C. Espinoza
•II
II
11 1
' 1'1.3
I
II
1111
111, IE
II
II
11
el'
I I
II
11
11,1
I
9,0
' ,tj
II I
~5961
,~o 'I
I ,I
II II'
,,1 I
11 I II -""1"
I 11
II
,,
II,, , ,1
'I
II 'II II
I
'I Ill'
I
111 I
II o
;;111~11111
lli
TUBE RIA RANURADA BEN TONITA GRANULADA
' '
Lllhology
Formaci6nf
Columna
Litol6gica
40.39
72.50
l!:ll
Contrucci6n
del Pozo
I-·
I>
·-
= 1-·
=1-·
Piezometer
Unidad Long. (m) ITotal (m)I Ma1erial Unldad I Canlidad Total (K )
Balsas
EJ Conojomerado GJ lgnlmbrlta
CJ Relleno !51 Derrurme
I Grava D PVCCiego
Draw by: J. Flores
Reviewed by: J. Quispe Unidad Long. (m) ITo1al (m)I Ma1erial
I I
Unidad I Cantidad To1al (kg)
Sacos I
!a 0ep,)s,tocuatcmario
~ Bcntonita ~I PVCRanur<IOO
OFillro(paquetelje grava)VTapa inferior
OGrout
172
.......
'80-82 . 1 10-e-12 02 cPo
s1. s·1 Zj'.2,."i.;9
, (/)
2-L/ iO
,SY- 86 .LJLI L/6 Y-6
; c
Ill 111
i_ =t. ·o
~G-caca
%'·'iB 68 L:::J
- l (f)
% -5Q 810
85-~0 50·51 I 1012
-·· -
90-~2 52-5'/ 12-1Y
~2.- ~~
'54-56 1~ -16
I n 56·56.. 16- )~ n
gy.96 • ~ ~
r:i "'
SB-60 1620
..
0
0
"%-9B ' w
C 2022 0 C
:ii I G0 - 62, N :ii
m ;;:
m
%·100
.,, )> 22-24
;;:
"' "' ' ~'1-(/(
.,, )>
0 "' "'
,: ~
0
24·26 ,: ~
100-102 ~ ;;;- bY·66 ~ ;;;-
;;;- ;;;-
0, 66-Gi 2628 0
10'.l.· 10Y 0 0 28-30 8
0 {k70
n 70 -72 30-32
I 11 ~ ~I 0,,
10'=>·10B ~ r:1 3'2 -3L.J
1,..,
3Y 36
:1 ~ I
•. fb· 78 -J6J8
78-eo 38-LJO I :I ~
173
Geological record and piezometer installation design
DS-05S
174
175
PIEZOMETRO
0
2
3
4
6
8
9
10
11
12
DS-05S
Profundidad
(m)
PVC Ciego
PVC
Ranurado
Concreto
Relleno
Bentonita
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
4.226
1
1.5
3
4
10
11
11 .3
Relleno
Bentonita
Filtro (paquete de
grava)
Derrumbe
Leyenda lnstalaci6n de Piez6metros


Filtro (paquete de grava)
PVC Ciego
I I PVC Ranurado
V Tapa inferior
Derrumbe
Grout
176
Client:
, ......
~
DIREMAR
ProjeciNumtler: 11 75601 Drilling and Piezometer Installation
Waler Level {mbgs)
Logged by: J. Quispe
Draw by J.Flores
Uthok.lgy
GJ SP Q lgnlmbrlta
Reviewed by: Ral.JI Ortiz
K (cm/s)
PIEZOMETER
DESIGN
Piezometer
BOREHOLE N° ·
DS-05S
5HEETN°: 1 Of 1
Piezometer
Design
1.00
3.00
4.0
11.00
11 .30
[ill Concrete D Filtro 3-5 mm. V Tapa inferior
!llll Grava D PVC Ciego 1211 Derrumbe
D Relleno l~I PVC Ranurado D Grout
~ Bentonita
177
fl~ sOl!:;Jtions
Project Number: 1175601 {FS)
~
D IREMAR
CONTRACTOR INFORMATION
Drilling Company SERGEOMIN
Drillers (Day/Night) :
Drillers Helpers {Day/Night)
Field Responsible (Day/Night)
sl lsi lc~ !lllil 1111
j
f
i
• ~ ;
I
Client:
Nor1h(m) 7565861
Eas1(m) 603354
Elevation{m): 4421 00
Projeclion· UTM WGS 84 - Zona 18S
Rock Parameters
I i
I ~ I I I -
.§ ..OU ~) --..-,1") 8'
.2 ~ liiiiiiiiiiiiii 0
~ o~:i;:e§ 0 :<::i;:!dl ,3
,l, l ,l, 11,1, l,l,I LJ ~
I-
,___
(.··
m
. ;
'
·}~-..,.-:
[
>>',
'.~\-.,·,.':·.- . ,>..·· .· ,_,.\
_1;_<.:
:\·-:-_}~.
·,:_...;_.\.
1\f/J
[
:,::. .✓.', .· •. ~\::.~<
\,}
/v\
_(;' ✓.:, ;;}
::'<:~ weathering Index I Degree of alteration Hardness RockStre~tt'llndex
£'::~
A. 1 NoAUe<e<l(f,<osh)
A -~ su..,htlv bllc, ~-.J
, Mo<>c:m!c!yAl!orod
A-< V"' Y"°l"f
A.s c.,,...,..,,,,.,A1t.,.-cd
.,,,,_.....,s,,ong
R4 St,ong
«~ V~')' S " oog
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
A 2lmut/Olp 0 I -90
Location Bofedal Sur
Dri lling Rig: lngetrol 64
Drilling Me thod: Diam,;1ntin;;i
Descrip!ion
SP. Arena pobremen1e graduada, con algo de
grava y pocos flnos, seco , suelto, grava angulosa
a subangulosa. arena 70%, grava 20%, llnos 10%
Oe 0 a 3.00 m.Frac1ur;,ss..,,,.,-tk:l;,1C-SrellcMs<leoxklode
11.,,.,.oen,c:.,a1gn1m1>r111ca
IGNIMBRITA, marrl)n rojlza, de textura
ln e-qulgranular, presentallnocrlstalesde roca
lgneade hasta10cmdedl.lmetro, larocase
encuentrameteorizada yfracturada, lasfracturas
~! ':~::~~~~:t~fi~~mos y algunas con c rl stales
Oe 3a3.10m. Muy r..acturaoo
~c1;;2/,~i!~,.~-~m!~~:!!':~a~~,!"~~i:~n!o
yoxklosdelllerro
ROCK CORE
LOGGING FORM
Bit Type: Broca HO
BOREHOLE N" :
Agua
DS-05S
of
Start Date 8 oclubre de 2017
Casing Depth(m)· 1.S OTW· 9 octu bre de 2017 Finish Date 9 octubre de 2017
Total Depth (m) 11.3
Core Diameter PO -HQ
= I »~•-· 1 ·l
0
~:cm~~ ~
2 50
,w
,1, 1,1
w
"
Water Table (mbs):
Diameter PVC (mm):
Discontinuity Data
0"
0
!
I
~
MW
MW
MW
SN
SN
MW
f
"~ I
e'
~
0
!
I
'S"tF"c
StFe
S t Fe Oz
S'tF"e
StFe
StFe
4 .226
50.80
J
1
c,
c,
c,
c,
c,
c,
c,
c,
,,..,,
Logged by·
Rev ·
K (cmls) [ 1~~1~~~~ V> - - - - - - -
111111
Additional
comments
De Oa0.5m en
10minutos
De 0.5 a 0 .8 m
e n 3 mlnutos
De Oa 1.8 m: 75
% de re tomo.
colorgrls pardo
1.5m: Casing
HWT
De 0 .8 a 2.3m
en 15mlnulos
1.8 m: No hay
retorno de agua
2.3 m: 50% de
retorno. color
pardorojizo
De2.3 a 3m en
5 minutos
De 3.0 a 3.8 m
e n 6 minutos
De 3.8a5.3m
en 10mlnutos
J. Quispe
c-;; I Well details ! (Piezomelers)
:2:
i Discontinuity Types I Discontinuity Width (mm) I Types of Infilling I Amount of lnfilllr!Q I Surface Shape I Surface Roughness Spaclng(mm) Geo~ De~n Plezometer
"" v,,..,.,, • .,,w(< 1 1
" N.-(1 3 -2 .Smm)
MW ;:::'""J.'tlv mm,J
W 'Nldo(1;,7 -S0.8mm)
•·--=-~::---"'"'""' I':: ,==:, .. ~
. ..-. •••-- -..,..,. C <,,o-,,,(o-2; =.I ) ~-:::.::::::rz ~~ ~;'c':: {'.:":.i""
"' ·~-~-~~:~"'."'""'l
!,,ii :; ...... .
;:."'.::::.._ ........
V T..,,.,.~, •••
178
fl~ solutions
Projccl Number: 1175601 (FS)
---~- DIREMAR
CONTRACTOR INFORMATION
Drill ing Company SERGEOMIN
Drillers(Oay/Nighl)
Drillers Helpers (Day/Nigh1)
Field Responsible (Day/Night):
~
Client:
NOf lh(m) 7565861
Eas1(m)· 603354
Elevallon{m): 4421.00
Projection· UTM WGS 84 - Zona 18S
Rgck Parameters
DIREMAR
Silala - Bolivia
BOREHOLE INFORMATION
Azimu1/Dip 0 I -90
Bofedal Sur
Drilling Rig lngetrol 64
Drilli119 MetMd: DiamanUna
1111:ltl!I I l!li i
~ i I I s i E~ l..,;:,-;:;:;S,;! ~!IL ,=i,:,:£:'~'§I f:s
~ l1l1l1l1l lili!JJ
0
~
~
Oescrl pllon
1-l-+-l----+----+---l--+--+--+---+--+---+-------<p w
It-
r--+-+--+--+--+-t--+--+--+-+----i l--
Weatheringlndex I Oegreeofalteratlon
wa ~My w e ~OM•e<I
Wl Mod.Wru,""'""'
A · 1 NoAlle,e<l(l, .. sn) "· s,,.,. . .,,,,,,._,
_ ,.,,v..,,o,.,,,,
" ·• v.,,y "'''"""
A·S C<>""""tc lyAltL<M
~
RockStre~th lndex
><3 ~umso,ong
1'<4 SUoog
fracture
De 4.40e 11.:rom. Zon&muyPOrQsa. roca lgn.m~!a
OlsconUnulty Types! Discontinuity Width (mm)
I SzSM"'Z"""
v.~ --,,.,•«-\· "")
N o,,,,.,,( 1 l•2, 5 mm)
Bit Type
ROCK CORE
LOGGING FORM
Broca HO Flush
SHEET N":
Agua
CasingDepth (m) 1.5 9 octubre de 2017
Total Depth (m): 11.3
Core Diameter PO- HQ
~
!
o ... g ~RI I
l1lil1 l1
,.w n
S.6S u
h
w
"
Water Table (mbs):
Dlamete1 PVC {mm)·
Discont inu_!_!y Data
~
0
!
I
s
~
~
f
£;
0 1
!" '
0
!
:: lsb~~:e
4.226
50.80
!
1
,,__,,
Types of Infilling IAmountofinfilling I Surface Shape I SurfaceR_oughness
DS-05S
of
Start Date: 8 oclubre de 2017
Finish Date: 9 octubre de 2017
Logged by
Re,
K(cmts)
a ~•'"•"' ~ 1:;l;l;l;z
C
Spacing(mm)
Additional
comments
De3.8a6.8m
Caldadecores,
poc;i
recuperacl6n
6.0 m: No hay
retorno de agua
De5.3a 6.8 rn
en9 minu10s
De 6.8a 8.3 m
en 8 minu1os
Dc 8.3a 9 .8 m
en7 m!nutos
Geo~
J.Qulspe
;e; I Well details l (Piezometers)
Des'2_nPlezometer
----- .::::-:::..--=::..1. ...,,:7.~";. "·
~-=--=- -~7'3 ~ ~~(~))
""·~"':,~ =:,"':,,.,,,
e, :;: ...... . ; V
179
fl~ sOl!:;Jtions
Project Number: 1175601 {FS)
~
D IREMAR
CONTRACTOR INFORMATION
Drilling Company SERGEOMIN
Dril lers (Day/Night):
Drillers Helpers {Day/Night)
Field Responsible (Day/Night)
sl lsi lc~ !lllil 1111
j
f
i
• ~ ;
I
Client:
Nor1h (m) 7565861
Eas1(m) 603354
Elevation{m): 4421 00
Projecl ion· UTM WGS 84 - Zo na 18S
Rock Parameters
I i
I ~ I I I -
.§ ..OU~) --..-,1") 8'
.2 ~ liiiiiiiiiiiiii 0
~ o~:i;:e§ 0 :<::i; :!dl ,3
, 1, 1,1 1, l, l , l,I
weathering Index I Degree of alteration Hardness RockStre~tt'llndex
£'::~
A- 1 NoAlle<e<l(f,<osh)
A -~ 51-.,t,tly bllCO~-.J
, Modc:<a!c!yAl!O<Od
A-< V..,yr,n.,,-
A-5 Comi>..,lcfyAl!.,.-<,d
.,,,,_.....,s,.-ong
R4 St,ong
«~ V~,Y S " oog
DIREMAR
Silala - Bolivia
BOREHOLE INFORMATION
A 2lmut/Olp 0 I -90
Location Bofedal Sur
Drilling Rig : lngetrol 64
Dri lling Method: Diam,;1ntin;;i
j Descrip!ion
ROCK CORE
LOGGING FORM
Bit Type: Broca HO
BOREHOLE N" :
Agua
DS-05S
of
Start Date 8 oclubre de 2017
Casing Depth(m)· 1.S OTW· 9 octubre de 2017 Finish Date 9 octubre de 2017
Total Depth (m) 11.3
Core Diameter PO -HQ
= I .. ~·-· 1 ·l
0 ~:cm~~ ~
10.10
10.15
10.40
10.50
, 1, 1,1
w
w
Water Table (mbs):
Diameter PVC (mm):
Discontinuity Data
0"
0
!
I
~
MW
MW
f
"~ I
e,
e,
e'
~
0
!
4 .226
50.80
J
1
'C-'~
Logged by·
Rev·
K (cmls) [ 1~~1~~~~ V> -- - - - --
.". 111111
Additional
comments
De9.8 a 11.3 en
7 m inutos
J. Quispe
c-;; I Well details ! (Piezomelers)
,,.J r~~f:~~
Discontinuity Types I Discontinuity Width (mm) I Types of Infilling I Amount of lnfilllr!Q I Surface Shape I Surface Roughness Spaclng(mm) Geo~ oe~n Plezometer
"" v,,.., .,, • .,,w(<1)
" N .-(1 3 -2.Smm)
MW ::::"'J.'tlv mm,J
W Wldo(1;,7 -S0.8mm )
•·--=-~:::---·"'""' I':: ,==:, .. ~
. ..-. •••---..,..,. C '-'°"'(0·2;<mJ ) ~-:::.::::::rz ~~ ~:cc::{'.:":.i""
"' ·~-~-~~:~"'."'""'l
!,,ii :; ...... . ;::..."'.::::.._""'""'"
V T..,,.,.~, •••
180
SERGE~ MIN
8EMCIO ~ IIIN:!M>
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-05 S
0
2
3
4
5
6
7
8
9
10
11
12
Materialdecoberturaeluvial
Fracturassuperficialesrellenasdeoxido
de hierro en roca ignimbritica
muy fracturado
roca presenta fracturas esporadicas
fracturas rellenas de limos de coloracion
marron amarillento y oxides de hierro
zona muy porosa roca ignimbrila
-----•o .
0
O • 0 • 0
0 • •
Fractures/30 cm
N
r
i
REFERENCIAS
Elv 0
■ lgm
181
--------- SERGE~ MIN
$1EIINICDIOl ~IE(O)IL.<OOOC©l ll>lllllf\!IIEIR!(O)
,('),.'i,¢ .,- 0 o,~ 0.tc)
' I) ,, ' 15 nd ..... 0 o~cJ •~ '" ~· ,o loor.
o.r.'-1
0 "
i., •2
'30 ;, 6 I
'.u,, /4,,G/ 0-1 I I
/.\'1 A4 /J4 I
C <J l 3 I
fi.' I) J 122 I I
. ..... .,., .....
ii I ' ~
~ t
J.~f ~1
182
::::: -------- SERGE ~ MIN
~IE~ ~IECll.00~ IMIDIMIE~
1i1i1!11f:
..,
s, ,,.
! ~ . I " ~ _, 2.
"' " .. 5'
q' . ~ •
z na~~ f ,~ I 'IZ l\fll! 1.,., 95
I ' jl 1l ,. 0 ,, It. ,, S'l
''" 0 3'
100 25
J.'i.J ,
GO I ,
1--- w'I
'!ZZZ ~ /;'I rrrrs
IH 1 , c,
I 0 0
"''I Iv'/
A,, A 'I
GJ GJ
(1 2 e 2
183
--------- SERGE~ MIN
alEDMCIIIO ~IE<Olll.MO<OO IMIIl~IEIRl.<Ol
I
J'
I;
I ': . "1
~1 rl n 1, .. i 0 R- R- {IJ
l) " r tp1 0 ~ ,~ . ,,
~ ~ ~~~I~ h ~ I ~
., .!i:i
? . 'ill, . ri
I
~~
_,. " .. .<~ ri -~~
'-!
:::: ~- : ... ~
184
Centimetros
Centimetros
185
Centimetros
186
187
Geological record and piezometer installation design
DS-5P
188
189
PIEZOMETRO
DS-5P
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Profundidad
(m)
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
86
98
Diametro Perforacicin HO: 96 mm
Diametro Piezcimetro: 1 1 /4"
T
4.99
:-: •:-:-: -:- •:•:•:•
:- :•:-:-: -:- •: -:-:-: •:•:•
:- :- :-:- :-:-:
:,:,:,:,:,: -:
:-:•:- :-: -:- :-:-:-
:-:•:-: -:-:- -: -:-:-: •:-:- ••
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
.. 48 ___ _
I !!!!!!!!,,,,:
:- :•:-:-: -:-
-.. ..: .. .:.- .. :..-.. :.. . .- ..:. .- ..:. . ..:. .: .. . . ..:.. - :...-. ..: . .- ..:. .- ...: . ..: .. : .. . .
......... ·. ............. ·. ..... ..
. ... .. .. .. ... ... .. .. ... . ... . .. .. . .... ... .. .. ... . .. .. ... . ... . . ... .. ... .. ... . . ..... .... . ... .. .... . ... .. ... . . ... . . ..... ... .. .... . ... .. .... . ... .. ... .. ... .. . .. ... .. ... .. ... .. ... .. ... .. .. . .. .. . .. ... .. ... .. ... .. ... .. ... .. .. . . . . . .. . . . . . . . . . . .. .. . . . . . . . . ..
. .... ..... ... ....... .... .... . ..... ... ....... .... .... ... .... . . .. .. . .. .. .. . .. . .. . .. . .. . .. .. .. . .. . .. . .. . .. . .. .. .. . . ... . .. • .. •..• . ... . .. .. • .. • .. • . ... . . ... . ... . ... .. .. .. .. .. .. .. .. .. .. . ... . ... . ... .. .. .. .. .. .. .. .. . .. . . . . . . . . . . . . . .
Leyenda lnsta laci6n de Piez6metros
26
34
50
54.05
79
83.8
Relleno
Bentonita
Filtro (paquete de
grava)
Bentonita
-----
Relleno
Bentonita
-----
Filtro (paquete de
grava)
Concreto D Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
Relleno D PVC Ciego V Tapa inferior D Grout
~ Bentonita
190
Client:
ProjedNumber:1175601
Recovery (%) ROD(%)
20
JO
40
50 50
60 60
70 70
80
90 90
100 100
Logged by: c. Espinoza
Draw by: J.Flores
Reviewed by: RaUI Ortiz
Drilling and Piezometer Installation
[Fracture/ 30cm]
0 5 10 15 20
Water Level {mbgs)
~ Water Recovery {%) ~
§. §.
15. 0 25 50 75 100 t
~ ~
10 10
20 20
JO JO
40 40
50 50
60 60
70 70
80
90
100 100
Lithology
K(cm/s)
~ Brecha volci'ln ica [a Dep6Sito cuaternario Volci'lnico
~ Cooglomerado ■ lntrus ivo
10
20
JO
40
50
60
70
PIEZOMETER
DESIGN
Lithology
V , V V I/
V Y Y V V Y
'.' V V V >'
V V V V Y V
V V I/ V I/ V
V V V V Y
V I/ V V V y
V V V V V
y y I/ V V V
\/ \/ V V V V
V V V V V
'',/1/1/1/VY
·,' V V Y V
V Y V V V y
\/ V V V V V
Y V V \/ V
'.I V V V I/ Y
'IVY Y V
V V V V Y V
YYVVVV
V V Y V V
I/ V V V V V
Y V V V V
I/ Y ~ V Y V
10
20
JO
40
50
60
70
80
90
100
Piezometer
B0REHOLEN° :
DS-5P
SHEETN°: 1 of 1
Piezometer
Design
26.00
34.00
[I Concreto O Fillro 3.5 mm. V Tapa inferior
II Grava O PVC Ciego ~ Derrumbe
: Relleno l~I PVC Ranurado O Grout
~ Bentonita
191
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. Choquc
IIIIE IBl¾IIlll II a~~~~ifsol ~~ ,_ &S&~cr~
Weattwringlndex I Degreeofalterntion
£':::.r:::J
A .1 NoAl!.,.-.,..(tr.,>h)
A·2 Sl'IJhlly a~&,&d
, . YA"•
Cn,m""'1"lyAH.,......,
i
j
Client:
North(m) : 7565866
East(m) 603347
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I .§ I = N I _,., I f
.~3 o~-S!:!:'§o~-S!;!:'§ .5.8
" I ii I I I I I I I I I I I I I 1
o·-O
r-------, :_cib ~-~
o-: 0
1---
t--,-
:_db~:
o-: 0 :.~:
}/J
:ci.-~ ...
d~~- :.~: :ci.-~ ...
d~~- :.~: :ci.-~: R
~~; :ci.-~ ...
d~i
:ci.-~ ...
. -0:;
RockStre!2th lndex
1>3 Me<i•umS,.ong
... "'"''".J
DIREMAR
Si lala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
DepOsltoCuaternarlo
De 0.00 • 5 70m, (GW) Gt>1va bien grl><la<la con a, en~
grava 75% anguk>sa poOmlCllca. " ""'" 25%, sueha, seca,
maicr;a1000<,gonnuvlo-aluvi31
Discontinuity Types I Discon1inuity Width (mm)
Vt; V<Ky N,,ffow ( < 1,3mm)
N NoHow(1 .3-2 .5mm)
MW ,_,.,,,,y
~p.s , 2., ...... 1
ROCK CORE
LOGGING FORM
Bit Type Broca Agua
Cr1sing Depth {m)· O.O OTW: 29 noviembre de 2017
Total Depth(m)· 100 Waler Table {mbs) I: 4.99 / II : 4.96
CCH"e Diameter (mm): 96.0 Diameler PVC (mm) 1 . 1/4'
Discontinui!_y Data
DS-SP
of 20
Start Date: 13 11ovlembre de 2017
Finish Date: 19 noviembre de 2017
Logged by C. Espinoza
g K(cmls) ,,_ I '""m ~ ~11111~
0
~
~
~
0 i
r ;;
~
i 1~~~~i~~ Additional
comments ~ I Well details
~ (Piezometers)
11111111111111
_li!?!sof lnfillln Amount of Infilling I Surface Shape I Surface Roughness Spaclng(mm)
Encapecon
abundantc
opalinaen su
supcrflcle.
Geol~

.D e~n Plezomete1 . c";'", ."."." " "' ~- □ c,,-..,.-~.. . ,. ... "'"""'
ei~~
0PVCG'°<t>
w w•~•(1'7•50.8""'l l cv c,,um
-~ -:.:F:'=::=.:·.-::--·=- ·1:; '::.-..":":::::'..':.:~':".:·'-:'·. t'' I §j ::::::-:::"
~ . ..;.,..__......,.__, ~ ~} -1\2- )) CIIJ '""""'"'
·_---~~-""'' ~ ;~:.":".:""
192
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Dr ille rs Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
EIEl·llilil \llEI? .c:E~§ ::, rac
i(t~J] Jgg
i I i
l
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I - · , -~ ;~::! - l=i I F.E o)(l5l:!'§o)(l5l:C§ :S
~ , I, I, I, I I, I, I, I ,I
1--ro
·~ o
1:.di~-~-
0-: 0
. : 'o·
Weathering Index I Degree of alteration Hardness RockSlren~thlndex
W2 Sigt>llyWcol""'<XI
W3 MWW..,olh<.>C<I
A-l NoAlt"'""'('"'"n)
A.2 Sl.:lhtly &ll 8<6<1
A.J Mooe<atelyAIW6<1
A•4 Ve<yAno ,ec,
A-5 com,,..,1@1yAll8f ... ,
VorySo'1
RJ M<,d,umSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
Conglomeradovolc.lnlco
De5.70•7,00m. Con1ac10Suelo-Roca.Sec...,.ndade
oonglomerado\/Olcilnk:o~lmlcllcoconclastosdedlilmeuo
>1cm y rMl< lz pcrmcal>lc, Clasto,; s<.tltcGooOOa<Jos 00 roca
volcilnicaymctamorllca Coloraclonrojlza TraMO
retraba)ado.noseobser\Oanfracl"'as.pocarecuperaclOn
demue~1,a,poslblesr,ue~1,aslrac1,sadas.
De 7 .DO • 'l 70m. Cooglomerado volc~ok:o mji~o muy
permeable y Clll~to,; SUl>re<IOn<le/ldO~ a suMngulOsos de
rocaP01im1CliCa.Roca piroc1i'iS!iCaconauseociaOO
lrac1..-as. Tramolragmen1ad0.o-i1..-adocompletamente ;~::t~;,i!:::Z/nc,,-H<la y su"""• no~" or,,;e,v;,n
Discontinuity Types I Discon1inuily Width (mm)
Bit Type ·
ROCK CORE
LOGGING FORM
Broca
casing Depth (m) O.O
BOREHOLE W
Agua
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96
Core Diameter (mm): 96.0 I Diameter PVC (mm) 1 . 1/4'
Discontinuity Data
DS-5P
of 20
Start Date : 13 novicmbrc de 2017
Finish Date: 19 noviembre de 2017
Logged by: C. Espinoza
K(cm/s) E
!
·ij
~
\t
0"' $?: >'.?RI '5
g
0
{
0 ! J
i
I
i 1~~~~~~~ Additional
comments
;; I Well details ,! (Piezometers)
, 1, 1, 1 Ill
ll
n
Spaclng{mm) Geol~
!Gy Gypsum ~§jf: - . l~~~c:_ ..
ii
d : ~
Desl~n Plezometet" -- .i!'l:li!i .G.<. ...,...._ ..
□,,,:.,.·•-•• ... c,,.-.ol
['l :::;~ e~-::::;,,-
193
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. Choquc
IIIIE IBl¾IIlll II a~~~~ifsol ~~ ,_ &S&~cr~
i
j
Client:
North(m) : 7565866
East(m) 603347
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I -§ I = N I _,., I f
.~3 o~-S!:!:'§o~-S!;!:'§ .5.8
" I ii I I, I, I I, I, I, I, I
.,
<:'.
:. :.c
l-l-l--+-+f--l-l--+--+--+--+--+--+--1 Ir-- ,..... ·.·
f-t--+---t-+f--t--t--+--+----+-+--+-+--1 I--
Weattwringlndex I Degreeofalterntion
£':::.r:::J
A.1 NoAl!.,.-.,...(tr.,>h)
A·2 Sl'IJhlly a~&,&d
, - YA"•
C<>m""'l"lyAH.,.....-,
RockStre!2th lndex
1>3 Me<i•umS,.ong
... "'"''".J
.,
<:'.
·. -:c
(
'i:
DIREMAR
Silala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
Oe10.00 - 13.50m. Tramo<lecoresre1rabaJa<los,nose
~~~~!s u~~:,~,,':~~fo ':,.,~~::oraclOn
De 11 30 - 13.00m. ROCH con pe,rnea~l li<l;,d ~fir'IH<id Roca
notrac1uta<1ape,meallle
0<>13.00-lb.OOm. Cooglomcta<lOconl½)orolocmrncntooo
d as1os,nasta<1eelm<llrlcost1erocapltoclas11ca
De 13 90 • 14.20m. Tr~momuyporoso, seot>serv~n
oquea,.,,,,senlasupe,fkle <lelcore yallnter lor<ielmlsno
ro11cno can arcillayo,i<los00Jlor •o
Discontinuity Types I Discon1inuity Width (mm)
Vt; V<Ky N ..,row(<1,3mm)
N NoHow(1 .3-2 .5mm)
MW ,_,.,,,,y
~p.s , 2., ...... 1
ROCK CORE
LOGGING FORM
DS-SP
of 20
Bit Type Broca Agua Start Date: 13 11ovlembre de 2017
Cr1sing Depth {m)· O.O OTW: 29 noviembre de 2017 Finish Date: 19 noviembre de 2017
Total Depth(m)· 100 Waler Table {mbs) I: 4.99 / II : 4.96 Logged by C. Espinoza
CCH"e Diameter (mm): 96.0 Diameler PVC (mm) 1 . 1/4'
Discontinui!_y Data
g
i lo~;:,mSS 0
~
,1,1,1,
_li!?!soflnfi llln Amountoflnl il_l_lflg_
'o I'o
E 1[ J ?:'
~
s,,
Surfaces~
K(cmls) f 1~q~~qij:;;
~ ~;,;,;,;,t
I 111
I .-e.
~Jt SurfaceRoughness I Spaclng(mm)
Additional
comments
Geol~
~ I Well details
~ (Piezometers)
r
.D e~n Plezometer . c";'", ."..".". " "' ~- □ c,,..,."'"~,.,•.,.oc•••>
ei~~
0PVCG'°<t>
w w•~•(127•50.8""'l l cv c,,um
-~ -:.:F:':=:=..·:.-::--·=- ·1:; '::.-...:":"::::'..:'.:~·:".:·'-:'·. t'' I §j :::::::::"
~_..;.,..__......,._,. ~ ~} -1\2- )) CIIJ '"""'"'"'
·_---~~-""'' ~ ;~:.":".:""
194
fl~ ~91h i.ti 9n_~ :~:;..,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Drille rs Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
?l!11
l II. I"-
1
\ ?1 ~1 t r E- l J 1 g g
i I i
l
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I - · , -~ I F ;~::! o)(- l5l:!'§o)(ll=5l:iC § :.ES
~ I I, I, I, I I, I, I, I
t-f-<-t-+--+--+--+-t--+--+--+-+----, 1- I-.-
t-f-<-t-+--+--+--+-t--+--+--+-+---, , _ i-'--
I .. ~s::
<l -.0 :
Weathering Index I Degree of alteration
W2 Sigt>HyWco,_C<I
W3 MWW..,olh<.>C<I
A·l NOAH ... ""1(!«,,_n)
A .2 SU,:ihtly&Uer6d
A.J Mooe<atelyAUer6d
A•4 Ve<yAnore<:1
A-5 com.,..,1@1yAU"'"''
RockSlren~thlndex
Vory:.0"
RJ M<,dlumSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
De 16.00. 17.00m. Broct>a \IOl<:ank:a. Roca grlsOCea con
clastosdec,!Tmtr;cos,muy,,.,,.meal>le
Do1J.()() .19.62m.Tramoll<)rccu,,.,,-l>do. po,;lbloroc.a
lragm~ntada. dCbilasuav,:,,scpie<dCClrelomodCagua
De1900•22,00m Bled1aVOICMk:adcl<ilk:acon
»1>ondan!erna,~oybio,~a. Matrizpo1Micayescasa
pla9k>Clasa.Rocacomp.ac1aconclastosangulososa
suMnguklso~ Pre,;en,;;,. de piro,eno,;
Discontinuity Types I Discon1inuily Width (mm)
ROCK CORE
LOGGING FORM
BOREHOLE W
DS-5P
of 20
Bit Type · Broca Agua Start Date : 13 novicmbrc de 2017
casing Depth (m) O.O Finish Date: 19 noviembre de 2017
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96 Logged by: C. Espinoza
Core Diameter (mm): 96.0 I Diameter PVC (mm) 1 . 1/4'
!
·ij
~
\t
0"' $?: >'.?RI '5
, 1,1, 1
,~
"1".9·..8i"6 ll~ .'",
Discontinuity Data
g
0
!
{
0
J
_;,:. s~:e
'
i
I
i ,!!:Kl~(,c$m~,/$s)q q
~ ~;,;,;,;z
; IJJ
Additional
comments
Types of infilling !Amount of infilling I Surface Shape I Surface Roughness Spaclng{mm) Geol~
!Gy Gypsum ~§jf: - . l~~~c:_ ..
E
;; I Well details ,! (Piezometers)
ii
d
Desl~n Plezometet" -- ill! <,, ... .':ii ....,._..
□ ,,,:.,.·•-•• ... c,,.-.ol
['l :::;~ e~-::::;,,-
195
fl~ solutions :~::;.;----=
D IREMAR
Projec1 Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drillers(Day/Night):
Drillers He(pers (Day/Nighl)
Field Responsible (Day/Night): J . Choque
1 l1 IE ltl 1l1 l?IIl?I a~'c;!:i[fs§
~~I-&£&& °'
weathering lnde~ I Degree of alteration
A- 1 NoA1t,,.-.,,, r·,i
A -2 Sllgt,llyall<Uec!
V"' yAl!A« ><1
C..omp""' \·Al .
i 0 • l
Ve<y,S.01!
Cl ient:
North{m) 7565866
East(m) 603347
Elevation(m): 4433.00
Projection: UTM WGS 84 - Zona 18S
Rock Parameters
I I
I .§1 = " I __ ,, Ii ~2 olG- S!f.?§o -:GS! ~§ .5.8
1,11,1, 1,1 ,1
Rock Stre~th lode~
1>3 Me<>tumSt<o,,g
"' '"'""!l <>S v e,y s1,ong
;,_~.·,
B ·
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
Azlmut/Olp 0 I -90
Location Bofedal Sur
Drilling Rig
Drilling Method DDH
Description
A23.70m.X<mnlil<><l<> r«.AW>l<:Mk'11<1<>gN'IMIIM
Grisacea. Cle<:;~i,ica.subanQulOSa.
Discontinuity Types I 0iscon1inuity Width (mm)
VN V"'Y N...-ow (<1 .3mm)
N No·,aw(13-2.5)
MW """'°'"'"'• Wk,>,, (2. 5 12.7 """-l
ROCK CORE
LOGGING FORM
Bit Type Broca Agua
Casing Depth (m)· O.O OTW 2Q noviembre de 2017
Total Dep1h(m) 100 WaterTable {mbs) 1:4.99/11:4.96
Core Diameter (mm): 96.0 Diameter PVC (mm) 1. 1/'1'
Discontinu_!!y Data
DS-SP
of 20
Slart Date 13 novlembre de 2017
Finish Date: 19 noviembre de 2017
Logged by C. Espinoza
~ ,. • ••I i 1,1,1, 1,
&
!"
I
I
{
0 1 I I I
K (emfs)
j ~i ~ i ~~~
Additiona l
comments
:E,: I Well details ,! (Piezometers)
,,,, I~
JJ Typesollnfilllng IAmountoflnfilllng I SurfaceShape j Surface Roughness Spaclng(mm) Geol~
i:
1:
=i
.,De,~_n P lez.ometer
l9t G,ovo
.:::.;i ....., .. ,,, ..
□ G,.;..-··- ... · ••J
EJ ,,.........,..,.,
□ PV CC>ogo
w w•,., (1 0,1-so n"""l I'-'• Gyp,u"'
.. ::.:-;-----::~-::-:\ '; \:::::::::~"'' ··:r.::=.,,·::-= ; = :.:·::. .. •· I l;il =c""'.
-::,r~_,._,_.....,._,. ~ ._.,, C"»ol(l;_ l) tm "°""'"°"
""·':':;',-•:·"'..,.,"-" ,..,., ~ ;:.-:::::,.--
196
fl~ ~91h i.ti 9n_~ :~:;..,--=
DIR EMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Dr ille rs Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J . Choquc
EIEl·llilil \llEI? .c:E~§ ::, rac
i(t~J] Jgg
i I i
l
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I - · , -~ I F ;~::! o)(- l5l:!'§o)(ll=5l:iC § :.ES
~ , I, I, I, I I, I, I, I ,I
1111 111 1111 IHI =
Weathering Index I Degree of alteration
W2 Sigt>HyWco,_C<I
W3 MWW..,olh<.>C<I
A·l NOAH ... ""1(!«,,_n)
A .2 SU,:ihtly &U8<6<1
A . J Mooe<atelyAIW6<1
A•4 Ve<yAno ,ec,
A-5 com.,..,1@1yAU"'"''
"·C.: ·::,: ~-
RockSlren~thlndex
VorySo'1
RJ Mt,dlumSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
De2500•27.7CKn. Tramo retrat>ajado. poslblepe,dk!ade
co,e,;lfactca-aoosamuylracturaaos
~.:~!,,° ~e
2!~=~•== .;;r.!~:~~:=::~::~=I~
<1<,fle-n-o.Co1<:<11c10nr0jlz~
De27 .70 •l1.QOrn.Frac1,..-.:,s1rre,g,..,1are,;subverlicaleS(80·)
conalgodeoxklaco)n
A2<1.65m.Pequena1a11a.seOllservanes1r1asde
clt!,;.ptaaaml~nlo. r,,11.,nasclt!limosy6xidos
Discontinuity Types I Discon1inuily Width (mm)
ROCK CORE
LOGGING FORM
BOREHOLE W
DS-5P
of 20
Bit Type · Broca Agua Start Date : 13 novicmbrc de 2017
casing Depth (m) O.O Finish Date: 19 noviembre de 2017
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96 Logged by: C. Espinoza
Core Diameter (mm): 96.0 I Diameter PVC (mm)
!
·ij
~
\t
0"' $?: >'.?RI '5
, 1, 1, 1
~
Discontinuity Data
g
0
{
0 ! J
Sp 1 s1. Fo
s,,
1 . 1/4'
i
I
Types of infilling !Amount of infilling I Surface Shape I Surface Roughness
K(cm/s) i 1~~~~~~~
J,J,J,J,~11
~
w I jJ
Spaclng{mm)
Additional
comments
Geol~
!Gy Gypsum ~§jf: - . l~~~c:_ ..
E
;; I Well details ,! (Piezometers)
Desl~n Plezometet" -- .i!'l:li!i .G.<. ...,...._ ..
□,,,:.,.·•-•• ... c,,.-.ol
['l :::;~ e~-::::;,,-
197
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. Choquc
!l i~f I ~I Ki l%~ 1~K ll & § ~
Weattwringlndex I Degreeofalterntion
£':::rr:::J
A. 1 NoAl!.,...,...(tr" >h)
A·2 Sl'IJhlly a~&r&d
, . y AI ..
C<>m""'l"lyAH"'....r
i
j
Client:
North(m) : 7565866
East(m) 603347
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I -§ I = N I _,., I f
.~3 o~-S!:!:' § o~- S! ;!:' § .5.8
" I ii I I, I, I I, I, I, I
1---
RockStre!2th lndex
1>3 Me<i•umStrong
... """"'.J
'
'
V V
V V V
V V
V V V
V V V
V V
y _,vv
DIREMAR
Si lala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
De 30.00" 33.60m. Tramo moy fracturado. lrac1uras
rellenas<learena. llrnc,sy~xlclos<lelleno
Oe31 .00a31.80rn. Frac1orasutwertlcalkregularconel
':':~pa1ronJuntasllgcrarncn1coxklaPas.scparaciOn
Has1an.1 om. Zona r, achJfodacnb<cch<rvolel'in!carlolll!ca
Fluj0notabf$ subh0rl~on1a1 Frac1.....ascorncklen con IOS
pfar,os<leflujo.Flujo2S• subpar;,lelo
A34.00m.Lavas rlol(11casma$oompacros. at•.«>dame
cuarzo h~lino.blolllas.m;,trlzcon rek;lespalospot~sicos
Plro, ,,,.,,,.-nclllSIO!<d«l.,.,..,lrlCos9r1~=
Discontinuity Types I Discon1inuity Width (mm)
Vt; V<KyN ,, «ow(< 1, 3 mm)
N NoHow(1 .3-2 .5mm)
MW ,-,.,,,ry
~p.s , 2., .. .... 1
Bit Type
ROCK CORE
LOGGING FORM
Broca Agua
DS-SP
of 20
Start Date: 13 11ovlembre de 2017
Cr1sing Depth {m)· O.O OTW: 29 noviembre de 2017 Finish Date: 19 noviembre de 2017
Total Depth(m)· 100
CCH"e Diameter (mm): 96.0
!
o• • ••I
1, 1,1,1,
]
Waler Table {mbs) I: 4.99 / II : 4.96 Logged by C. Espinoza
Diameler PVC (mm)
Discontinui!_y Data
g
0
~
I
I 'o I'o
E 1[ J ?:'
Su ~ . S1. F<
Sp ~ . SI . F
Sp I S<I.Fe
Sp I Feo~l-
1.1/4'
K(cmls) r 1~q~~qij:;;
& ~;,;,;,;,;I:
I 11
LaJ
Additional
comments
.lil?!SOf lnfillln Amount of Infilling I Surface Shape I Surface Roughness Spaclng(mm) Geol~
~ I Well details
~ (Piezometers)
.D e~n Plezometer . c";'", ."."."" "' ~- □ """"'- ~,.••"""'"""'
ei~~
0PVC G'°<t>
w w•~• (127•50.8""'l l cv c,.um
~ :::::.:--•-'1: ';:..~~":':'.t'' --.F'==·.::-= ; :-.::::.::':.·-· I §j :::::::::"
~ . ..;.,..__......,._,. ~ ~} - 1\2- )) CIIJ '""""'"'
·_--·~~-"""' ~;~:.":".:""
198
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Drille rs Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
E.cIE:El·~l§lili::, l \lrlEaIc? i(t~J] Jgg
Weathering Index I Degree of alteration
W2 Sigt>HyWco,...,.C<I
W3 MWW..,olh<.>e<.I
A-l NOAH ... ""1(!r<, >,n)
A .2 SU,:ihtly &U8<6<1
A.J Mooe<atelyAIW6<1
A•4 Ve<yAno,ec,
A-5 com.,..,1@1yAU"'"''
i I i
l
Vory:.0"
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I - · I -~ I F ~;::! - l=i .E o)(l5l:!'§o)(l5l:C§ :S
, 1, 1,1
V V
V V >
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
1----1 1 I/ V '<
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
_V_ .,V_ ., >
RockSlren~thlndex
RJ Mt,d,umSkDOQ
DIREMAR
Silala - Bolivia
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versadrill
Drilling Method: OOH
j Description
Discontinuity Types I Discon1inuily Width (mm)
ROCK CORE
LOGGING FORM
BOREHOLE W
DS-5P
of 20
Bit Type · Broca Agua Start Date: 13 novicmbrc de 2017
casing Depth (m) O.O Finish Date: 19 noviembre de 2017
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96 Logged by: C. Espinoza
Core Diameter (mm): 96.0 I Diameter PVC (mm) 1 . 1/4'
!
·ij
~
\t
0"' $?: >'.?RI '5
, 1,1, 1
~
"·'" n 38.23 μ
"" ~
,,
"
'"
"
Discontinuity Data
g
0
!
I
i!
""
{
0
J
!
!
~~ I s.fcre
i
I
K(cm/s) i 1!!;1~,$~,$qq
~ ~;,;,;,;z
,w
,c
'" w ,e C
w I ltJ
Additional
comments
Zona con
fracturas
conjugadas de
ss•yJs• rnas
olrasde 20·
coincidentes con
la inclinaciOn del
flujovolcclnico
Types of infilling IA11101Jnt of infilling I Surface Shape I Surface Roughness Spaclng{mm) Geof~
!Gy Gypsum ~§jf: - . l~~~c:_ ..
E
;; I Well details ,! (Piezometers)
Desl~n Plezometet" -- .i!'l:li!i .G.<. ..,..._ ..
□ ,,,:.,.·•-•• ... c,,.-.ol
a::::-=e~-::::;,,-
199
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. Choquc
IIIIE IBl¾IIlll II a~~~~ifsol ~~ ,_ &S&~cr~
Weattwringlndex I Degreeofalterntion
£':::.':::I
A.1 NoAl!.,.-.,...(tr.,>h)
A·2 Sl'IJhlly a~&,&d
, - YA"•
C<>m""'t"lyAH..,...-,
i
j
Client:
North(m) : 7565866
East(m) 603347
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I -§ I = N I _,., I f
~.3 - - ..8 0 :(lS!:c-!~o~ S! ~§ 5
1, 1, 1,1,
t---
RockStre!2th lndex
1>3 Me<i•umS,.ong
... """"'.J
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
DIREMAR
Silala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
A44.55m. Transic,O,,arocaVOIC.lnicamasoscu,aycon
mdyor conlenidodt, biolilH . m,,,,orcHnlicl>td <1t,d.,,1os
(<10%). R,x;acompacla
Discontinuity Types I Discon1inuity Width (mm)
Vt; V<Ky N,,ffow ( < 1,3mm)
N NoHow(1 .3-2 .5mm)
MW ,_,.,,,,y
~p.s , 2., ...... 1
ROCK CORE
LOGGING FORM
DS-SP
of 20
Bit Type Broca Agua Start Date: 13 11ovlembre de 2017
Cr1sing Depth {m)· O.O
Total Depth(m)· 100
CCH"e Diameter (mm): 96.0
!
4265
42.70
o• • ••I
1, 1,1,1,
43.90 "" lj
""
OTW: 29 noviembre de 2017 Finish Date: 19 noviembre de 2017
Waler Table {mbs) I: 4.99 / II : 4.96 Logged by C. Espinoza
Diameler PVC (mm) 1 . 1/4'
Discontinui!_y Data
g
0
~
I
I
""
~
~
0 i
~
~
r ;;
~
St. Fe
St. Fe
~ s,
~ s,
K(cmls) r 1~q~~qij:;;
& ~;,;,;,;,;I:
I 11
~ Im
VR M
VR VC
LaJ
Additional
comments ~ I Well details
~ (Piezometers)
_li!?!soflnfi llln Amount of Infilling I Surface Shape I Surface Roughness Spaclng(mm) Geol~ .D e~n Plezometer . c";'", ."."." " "' ~- □ """"'"'"~.,.,•"""'"""'
ei~~
0PVCG'°<t>
w w•~•(1'7•50.8""'l l cv c,.um
~ :::::.:--•-'1: ';:..~~":':'.t'' --.F'==·.::-= ; :-.::::.::':.·-· I §j :::::::::"
~ . ..;.,.,__......,._,. ~ ~} .,..1(2- l) CIC '""""'-
"' •_ ---~~"""""' ~ ;~:.":".:""
200
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Drille rs Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
E.cIE:El·~l§lili::, l \lrlEaIc? i(t~J] Jgg
Weatherin_i lndex
W2 Sigt>HyWco,_C<I
W3 MWW..,olh<.>C<I
_Degree of alteration
A-l NOAH ... ""1(!r<, >,n)
A .2 SU,:ihtly &Uer6<1
A.J Mooe<atelyAIW6<1
A•4 Ve<yAno«,<l
A-5 com.,..,1@1yAU"'"''
i I i
l
Vory:.0"
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I - · I -~ I F ~;::! - l=i .E o)(l5l:!'§o)(l5l:C§ :S
, 1, 1,1
V V
V V >
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
1----1 r V y
V V >
V V
V V >
V V >
V V
V V >
t--- V V
V V >
V V >
V V
V V >
V V
V V >
_V_ .,V_ ., >
RockSlren~thlndex
RJ M<,d,umSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versadrill
Drilling Method: OOH
Description
A45.00m. Las lavasnolltkasrosaceasconcuar:rn,blo!lla
1elde<;patopol.Klco, 1el<1e<;patooecu31zo·pasanaotra
,oca ffi/ls oscura aunqw 00 ~in,~~, compo,;ici(>rl pc<o m.1s
oonsls!Cnlc.maUlzg,ar,.olar Rioll!ab<echoldc
A :Kl OOm pom•nio de lavas m:h osruras nglilil;a~_
Discontinuity Types I Discon1inuily Width (mm)
Bit Type ·
ROCK CORE
LOGGING FORM
Broca
casing Depth (m) O.O
BOREHOLE W
Agua
DS-5P
10 of 20
Start Date : 13 novicmbrc de 2017
Finish Date: 19 noviembre de 2017
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96 Logged by: C. Espinoza
Core Diameter (mm): 96.0 I Diameter PVC (mm) 1 . 1/4'
!
41.>.45
41.>.50
41>.l.>7
~I.> 73
·ij
~
\t
0"' $?: >'.?RI '5
, 1,1, 1
L
w
Discontinuity Data
g
0
!
I
i!
""
{
0
J
'"
"s,'
~
"s,'
"" "' "" "'
"'
!
!
Sd".S t
i
I
K(cm/s) i 1!!;1~,$~,$qq
~ ~;,;,;,;z
,c
C
SC
SO C
SR VC
w I ltJ
SurfaceRoughness J Spaclng{mm)
Additional
comments
E
;; I Well details ,! (Piezometers)
148.00
lso.oo_id ~
Geology I Design Plezometet"
!Gy Gypsum ~§jf: - . l~~~c:_ .. -- .i!'l:li!i .G.<. ..,..._ ..
□ ,,,:.,.·•-·· ... "' .... '
a::::-=e~-::::;,,-
201
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. Choquc
IIIIE IBl¾IIlll II a~~~~ifsol ~~ ,_ &S&~cr~
Weattwringlndex I Degreeofalterntion
£':::.r:::J
A.1 NoAl!.,.-.,...(tr.,>h)
A·2 Sl'IJhlly a~&,&d
, . YA"•
C<>m""'l"lyAH..,....,
i
j
Client:
North(m) : 7565866
East(m) 603347
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I -§ I = N I _,., I f
~.3 - - ..8 0 :(lS!:c-!~o~S!~§ 5
1>3 Me<i•umS,.ong
... "'"''".J
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
DIREMAR
Silala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
bfoct>oldes 90%mmr1z 110% c~1s1os. Roca !Wocl.ls!ica
~neacooQujosclarosde rocagrOlclarablolltlcay
plrmcooskidlcios<lcrlogolll~
Discontinuity Types I Discon1inuity Width (mm)
Vt; V<Ky N ..,row(<1,3mm)
N NoHow(1 .3-2 .5mm)
MW ,_,.,,,,y
~p.s , 2., ...... 1
ROCK CORE
LOGGING FORM
Bit Type Broca Agua
Cr1sing Depth {m)· O.O OTW: 29 noviembre de 2017
Total Depth(m)· 100 Waler Table {mbs) I: 4.99 / II : 4.96
CCH"e Diameter (mm): 96.0 Diameler PVC (mm) 1 . 1/4'
Discontinuity Data
DS-SP
of 20
Start Date: 13 11ovlembre de 2017
Finish Date: 19 noviembre de 2017
Logged by C. Espinoza
K(cmls)
!
o• • ••I i g
0
~
I
I
~
~
0 i
r ;;
~
i 1~~~~i~~ Additional
comments ~ I Well details
~ (Piezometers)
Geol~ . . c";'", ."."." " "' ~- □ c,,..,."'"~,.,•.,.oc•••>
ei~~
0PVCG'°<t>
w w•~•(1'7•50.8""'l l cv c,,um
.--.".:F ::':=:';==·.:=:-= 1:; · ::-...:.:~::~.::"·::.':·-'.·t '' I §j :::::::::"
~ . ..;.,..__......,._,. ~ ~} .,..1(2- l) CIC '""""'-
""•~""""'' ~ ;~:.":".:""
202
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Dr ille rs Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
E.cIE:El·~l§lili::, l \lrlEaIc? i(t~J] Jgg
Weathering Index I Degree of alteration
W 2 Sigt>HyWco,...,.C<I
W 3 MW W..,olh<.>e<.I
A - l N o AH.., ""1 (! « , ,.n)
A ,2 SU,:ihtly &U8f6<1
A . J Mooe<atelyAIW6<1
A•4 Ve<yAno ,ec,
A-5 c om.,..,1@1yAU"'"''
i I i
l
Vory:.0"
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 44 33.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I - · I - ~ I F ~;::! - l=i .E o)(l 5l:!'§o)(l5l :C § :S
, 1, 1,1
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
De S9.10·61 .40m. Trarnocor,1,ac1ura10ngitu<1.,dl rt,n<,nd
<le a ,cmagr1~1ona11<1~d rojlrn. lis.a . posi~lcfa la. s111<1rlca<IO
-----'L....'LJ I A ffi OOm ?om, r,aclt •!!dl' coo '!>1¥tclo:; rrjlP'J9'.i di! l![Cill
RockSlren~thlndex Fracture I Discontinuity Types I Discon1inuily Width (mm)
RJ M<,dlum S kDOQ
ROCK CORE
LOGGING FORM
BOREHOLE W
12
DS-5P
of 20
Bit Type · Broca Agua Start Date: 13 novicmbrc de 2017
casing Depth (m) O.O Finish Date: 19 noviembre de 2017
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96 Logged by: C. Espinoza
Core Diameter (mm): 96.0 I Diameter PVC (mm) 1 . 1/4'
!
·ij
~
\t
0 "' $?: >'.?RI '5
, 1, 1, 1
Discontinuity Data
g
0
!
I
i!
{
0
J
!
!
i
I
K(cm/s) i 1!!;1~,$~,$qq
~ ~;,;,;,;z
ltJ
Additional
comments
Zona de
fracturas
su bverlicales
con re lleno de
arciUamuy fina
Types of infilling !Amount of infilling / Surface Shape I Surface Roughness J Spacing {mm) Geology
!Gy Gypsum ~§jf:- . l~~~c:_..
E
;; I Well details ,! (Piezometers)
I
I I
i
I I
Desl~n Plezometet" -- .i!'l:li!i .G.<. ..,..._ ..
□ ,,,:.,.· •-•• ... c,,.-.ol
['l :::;~ e~-::::;,,-
203
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. Choquc
IIIIE IBl¾IIlll II a~~~~ifsol ~~ ,_ &S&~cr~
Weattwringlndex I Degreeofalterntion
£':::.r:::J
A.1 NoAl!.,.-.,...(tr.,>h)
A·2 Sl'IJhlly a~&,&d
, - YA"•
C<>m""'l"lyAH.,......,
i
j
Client:
North(m) : 7565866
East(m) 603347
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I -§ I = N I _,., I f
~.3 - - ..8 0 :(lS!:c-!~o~S!~§ 5
1, 1, 1,1,
1---
1---
RockStre!2thlndex
1>3 Me<i•umSt<ong
... """"'.J
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
DIREMAR
Silala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
A 62.80m. FlujO~ d,.-, k~v~ viSil)k") con 10' d<> in<:liM<:i<l<'I
COIOfaciOngrlsClara
Discontinuity Types I Discon1inuity Width (mm)
Vt; V<Ky N,,ffow ( < 1,3mm)
N NoHow(1 .3-2 .5mm)
MW ,_,.,,,,y
~p.s , 2., ...... 1
Bit Type
ROCK CORE
LOGGING FORM
Broca
13
Agua
DS-SP
of 20
Start Date: 13 11ovlembre de 2017
Cr1sing Depth {m)· O.O OTW: 29 noviembre de 2017 Finish Date: 19 noviembre de 2017
Total Depth(m)· 100 Waler Table {mbs) I: 4.99 / II : 4.96 Logged by C. Espinoza
CCH"e Diameter (mm): 96.0
!
6148
61.55
o• • ••I i ,1,1,1,
w
'
Diameler PVC (mm)
Discontinui!_y Data
g
0
~
I
I
~
~
0 i
r ;;
~
~ I c1, Fc
1 . 1/4'
_li!?!soflnfi llln Amount of Infilling I Surface Shape I Surface Roughness
K(cmls) r 1~q~~qij:;;
& ~;,;,;,;,;I:
C
C
"'
~ II
LaJ
Spaclng(mm)
Additional
comments
Geol~
~ I Well details
~ (Piezometers)

Ill ;
Ill .
l
\/L
{ti
.D e~n Plezometer . c";'", ."."." " "' ~- □ """"'"'"~,.,•"""'"""'
ei~~
0PVCG'°<t>
w w•~•(1'7•50.8""'l l cv c,,um
~ :::::.:--•-'1: ';:..~~":':'.t'' --.F'==·.::-= ; :-.::::.::':.·-· I §j :::::::::"
~ . ..;.,.._._......,._,. ~ ~} .,..1(2- l) CIC '""""'-
"'•_ ---~~""""'' ~ ;~:.":".:""
204
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Dr ille rs Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
E.cIE:El·~l§lili::, l \lrlEaIc? i(t~J] Jgg
Weathering Index I Degree of alteration
W2 Sigt>HyWCOH>CfC<I
W3 MWW..,olh<.>e<.I
A-l NOAlt..,""1(!r<, >,n)
A ,2 Sl>,:jhtly &U8<6<1
A.J Mooe<atelyAUer6<1
A•4 Ve<yAno re<:1
A-5 com.,..,1@1yAU"'"''
i I i
l
Vory:.0"
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
.§ I - · I -~ I F ~;::! - l=i .E o)(l5l:!'§o)(l5l:C§ :S
, 1, 1,1
-
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V >
V V >
V V
V V >
V V
V V > 1----1- RockSlren~thlndex
RJ M<,d,umSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
A 68.00m. Lnas rlolllicas. muy<:0mpel.,nles, grls ,os&cea
concu,.,-zoy t>lolll:, M"lflLpol,~sk".ay fcldc,;J>iltlc:,
plagiO(k>S(IS.Lige<Jmcntcmag~1iel'>
Discontinuity Types I Discon1inuily Width (mm)
ROCK CORE
LOGGING FORM
BOREHOLE W
14
DS-5P
of 20
Bit Type · Broca Agua Start Date: 13 novicmbrc de 2017
casing Depth (m) O.O Finish Date: 19 noviembre de 2017
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96 Logged by: C. Espinoza
Core Diameter (mm): 96.0 I Diameter PVC (mm)
!
tt~
·ij
~
\t
0"' $?: >'.?RI '5
, 1, 1, 1
~
~
Discontinuity Data
g
0
!
I
i!
:
{
0
J
!
!
~e
s,
"'
,,
''""
1 . 1/4'
i
I :
Types of infilling !Amount of infilling I Surface Shape I Surface Roughness
K(cm/s) i 1!!;1~,$~,$qq
~ ~;,;,;,;z
~
i------
'n
Spaclng{mm)
Additional
comments
Fracluracon
relleno de arcilla
mja.
Zona con
rracturas
conjugadas de
50° y60° sin
separacionen
las juntas
Geol~
!Gy Gypsum ~§jf: - , l~~~c:_ ..
E
;; I Well details ,! (Piezometers)
I
I I
i
I I
Desl~n Plezometet" -- .i!'l:li!i .G.<. ..,..._ ..
□,,,:.,.·•-•• ... c,,.-.ol
a::::-=e~-::::;,,-
205
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. Choquc
a~~~~ifso
1 l1 l"llil 1l1 lll:gll l ~~ ,_ &S&~cr~
Weattwringlndex I Degreeofalterntion
£':::.r:::J
A.1 NoAl!.,.-.,...(tr.,>h)
A·2 Sl'IJhlly a~&,&d
, . YA"•
C<>m""'l"lyAH..,....,
i
j
Client:
North(m) : 7565866
East(m) 603347
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I -§ I = N I _,., I f
~.3 - - ..8 0 :(lS!:c-!~o~S!~§ 5
1>3 Me<i•umS,.ong
... "'"''".J
DIREMAR
Silala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
A 70.00m. Rloll!a muy compacta. Al>undanle cuarzo. bloll!a
yma1,;, r,.1<1osa1icapo1asica
A 73.00m. Rk;,llmequlgranularycrlplocr1s1allna.
~~~•~,~;::-!e~spato pol~slco. Roca compacta muy
Discontinuity Types I Discon1inuity Width (mm)
Vt; V<Ky N,,ffow ( < 1,3mm)
N NoHow(1 .3-2 .5mm)
MW ,_,.,,,,y
WIU,;p.s , 2., ...... 1
ROCK CORE
LOGGING FORM
Bit Type Broca Agua
Cr1sing Depth {m)· O.O OTW: 29 noviembre de 2017
Total Depth(m)· 100 Waler Table {mbs) I: 4.99 / II : 4.96
CCH"e Diameter (mm): 96.0 Diameler PVC (mm) 1 . 1/4'
Discontinuity Data
DS-SP
15 of 20
Start Date: 13 11ovlembre de 2017
Finish Date: 19 noviembre de 2017
Logged by C. Espinoza
g K(cmls)
i lo~;:,mSS 0
~
~
~
0 i
r ;;
~
i 1~~~~i~~ Additional
comments ~ I Well details
~ (Piezometers)
Spaclng(mm) Geol~

• Rc"""6 . c;, ... "' ~-
Ill ;
Ill .
l
\/L
{ti
□ c,,..,."'"~,.,•.,.oc•••>
ei~~
0PVCG'°<t>
w w•~•(1'7•50.8""'l l cv c,,um
.--.".:F ::':=:';==·.:=:-= 1:; · ::-...:.:~::~.::"·::.':·-'.·t '' I §j :::::::::"
~ . ..;.,..__......,._,. ~ ~} .,..1(2- l) CIC '""""'-
""•~""""'' ~ ;~:.":".:""
206
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Dr illers Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
?l!11
l II. I"-
t r E- 1 l
J \ 1?1 g~ 1g
Weathering Index I Degree of alteration
W2 Sigt>HyWco,_C<I
W3 MWW..,olh<.>C<I
A-l NOAH ... ""1(!r<, >,n)
A -2 SU,:ihtly &U8<6<1
A .J Mooe<atelyAIW6<1
A•4 Ve<yAno ,ec,
A-5 com.,..,1@1yAU"'"''
i I i
l
Vory:.0"
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
I
~
RJ M<,d,umSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
A 71>.00m. Rk>IUa COO'f)aeta y algo t,3911. Fracl.,.as
m""'1rica~. Cl~sto-; < 5%, M~trlz pot~~lc.l con cuarzo
J>la~no. blolilaanhcdrnl. Rocacr,ptocrlsmllna.
Discontinuity Types I Discon1inuily Width (mm)
Bit Type ·
ROCK CORE
LOGGING FORM
Broca
casing Depth (m) O.O
BOREHOLE W
Agua
DS-5P
16 of 20
Start Date : 13 novicmbrc de 2017
Finish Date: 19 noviembre de 2017
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96 Logged by: C. Espinoza
c ore Diameter (mm): 96.0
!
!Gy Gypsum
·ij
~
\t
0"' $?: >'.?RI '5
Diameter PVC (mm)
Discontinuity Data
g
0
!
I
i!
{
0
J
!
!
1 . 1/4'
i
I
K(cm/s) i 1~~~~~~~
Spaclng{mm)
Additional
comments
Geol~ ~§jf: - . l~~~c:_ ..
E
;; I Well details ,! (Piezometers)
I
I I
-- .i!'l:li!i .G.<. ..,..._ ..
□,,,:.,.·•-•• ... c,,.-.ol
['l :::;~ e~-::::;,,-
207
fl~ solutions :~:::,,--=
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraciones
Drilk:-rs(Day/Night)
Drillers Helpers (Day/Night)
Field Responsible (Day/Night): J. Choquc
a~~~~ifso
1 l1 l"llil 1l1 lll:gll l ~~,_&S&~cr~
Weattwringlndex I Degreeofalterntion
£':::.r:::J
A.1 NoAl!.,.-.,...(tr.,>h)
A·2 Sl'IJhlly a~&,&d
, . YA"•
C<>m""'l"lyAH..,....,
i
j
Client:
North(m) : 7565866
East(m) 603347
Elevation(m) 4433.00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
I i
I -§ I = N I _,., I f
~.3 - - ..8 0 :(lS!:c-!~o~S!~§ 5
1>3 Me<i•umS,.ong
... "'"''".J
DIREMAR
Silala - Boliv ia
j
BOREHOLE INFORMATION
Azlmul/Olp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Versadrill
Drilling Method OOH
Description
A82.00m. Riollmml'isbrecl>oi<kl,conclastoscen11mollrlcos
cleroca rojizaclegrar>0 !1no.Rocacrlp1ocnsia11naconmair1z
granular
Discontinuity Types I Discon1inuity Width (mm)
VN V<KyN,,ffow(<1,3mm)
N NoHow(1 .3-2 .5mm)
MW ,_,.,,,,y
WIU,;p.s , 2., ...... 1
ROCK CORE
LOGGING FORM
Bit Type Broca Agua
Cr1sing Depth {m)· O.O OTW: 29 noviembre de 2017
Total Depth(m)· 100 Waler Table {mbs) I: 4.99 / II : 4.96
CCH"e Diameter (mm): 96.0 Diameler PVC (mm) 1.1/4'
Discontinuity Data
DS-SP
of 20
Start Date: 13 11ovlembre de 2017
Finish Date: 19 noviembre de 2017
Logged by C. Espinoza
g K(cmls)
i lo~;:,mSS 0
~
~
~
0 i
r ;;
~
i 1~~~~i~~ Additional
comments ~ I Well details
~ (Piezometers)
,,
"
~
~
w
C
Spaclng(mm)
Zona con
frac luras
subvertlcales
irregulares
Geol~ . . c";'", ."..".". " "' ~- □ c,,..,.-~,.,•.,.oc•••>
ei~~
0PVCG'°<t>
w w•~•(1'7•50.8""'l l cv c,,um
.--.".F ::'=::=:'·;.=::-== 1:; · ::-...:.:~::~.::"·::.':·-'.·t '' I §j :::::::::"
~ . ..;.,..__......,._,. ~ ~} .,..1(2- l) CIC '""""'-
""•~""""'' ~;~:.":".:""
208
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Dr illers Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
E.cIE:El·~l§lili::, l \lrlEaIc? i(t~J] Jgg
Weathering Index I Degree of alteration
W2 Sigt>HyWco,_C<I
W3 MWW..,olh<.>C<I
A-l NOAH ... ""1(!r<, >,n)
A -2 SU,:ihtly &U8<6<1
A.J Mooe<atelyAIW6<1
A•4 Ve<yAno ,ec,
A-5 com.,..,1@1yAU"'"''
i I i
l
Vory:.0"
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
I
~
RJ Mt,d,umSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
o,,ssoo.ss.00m. R1o1;1n 1>1.-.,M1<1<,r.nnp,,c1nc.,,..,cun,io
biolilay01agioc1asas. ZonamasWaoor,act,...ad~
De 88 00 - 91.00m tllolll" ~o,rp,,1,mrn '"" r,oc1,...as
p<1martas
Discontinuity Types I Discon1inuily Width (mm)
Bit Type ·
ROCK CORE
LOGGING FORM
Broca
casing Depth (m) O.O
BOREHOLE W
Agua
DS-5P
18 of 20
Start Date : 13 novicmbrc de 2017
Finish Date: 19 noviembre de 2017
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96 Logged by: C. Espinoza
c ore Diameter (mm): 96.0
!
!Gy Gypsum
·ij
~
\t
0"' $?: >'.?RI '5
Diameter PVC (mm)
Discontinuity Data
g
0
!
I
i!
{
0
J
!
!
1 . 1/4'
i
I
K(cm/s) i 1~~~~~~~
Spaclng{mm)
Additional
comments
Geol~ ~§jf: - . l~~~c:_ ..
E
;; I Well details ,! (Piezometers)
-- .i!'l:li!i .G.<. ..,..._ ..
□,,,:.,.·•-•• ... c,,.-.ol
['l :::;~ e~-::::;,,-
209
fl~ ~91 hi.ti 9n_~ ~ ~
DIREMAR
Projecl Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: M,;1ldon,;1do Explor.iciones
Drillers(Day/Night)·
Dr illers Helpers (Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
?l!11
l II. I"-
Weatherin_i lndex
W2 Sigt>HyWca,_C<I
W3 MWW..,olh<.>C<I
t r E- 1 l
J \ 1?1 g~ 1g
_Degree of alteration
A-l NOAH ... ""1(!r<, >,tl)
A -2 SU,:ihtly &U8<6<1
A .J Mooe<atelyAIW6<1
A•4 Ve<yAno,ec,
A-5 com.,..,1eoyAU"'"''
i I i
l
Vory:.0"
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84. Zona 18S
Rock Parameters
j i
t ~
I
~
RJ M<,d,umSkDOQ
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Drilling Rig Versad rill
Drilling Method: OOH
Description
A91.00m.Roca,1o1I1acon ll9eradlsrnouc10ndecuarzoy
bio1Ua. aumcntodcpt"9iocla.-.,,
De 112.10 - 93.20m. Zona muy r,act...-ada con ,o1,..-as de
;)OQUIOallocirreguta,cs
A 93.00m. B>Olil:, :,llc,-:,ct:,:, flogofola irM:ipiCOIC y i.:,S
1,acI...-asnene,,arcmasapar1,deIaa11eracIonc1eIas
pklgioclasas
De9480•91>,00mZonarnoyftact...-Ma
A95.00m. Zonaootrac1urasoo ano ang.i1ooonprnseocta
deserlcltasecundarlaenlas1<m1as
Discontinuity Types I Discon1inuily Width (mm)
Bit Type ·
ROCK CORE
LOGGING FORM
Broca
casing Depth (m) O.O
BOREHOLE W
Agua
Tolal Dcplh(m)· 100 WalerTable{mbs): I: 4.99/1 1: 4.96
c ore Diameter (mm): 96.0 Diameter PVC (mm) 1 . 1/4'
Discontinuity Data
DS-5P
19 of 20
Start Date : 13 novicmbrc de 2017
Finish Date: 19 noviembre de 2017
Logged by: C. Espinoza
K(cm/s) E
!
·ij
~
\t
0"' $?: >'.?RI '5
g
0
!
I
i!
{
0
J
!
!
i
I
i 1~~~~~~~ Additional
comments
;; I Well details ,! (Piezometers)
90.91
90.95
!Gy Gypsum
.,
" ~: I ~:: ~~ ,a C
SR VC
,,
,,
"'
SurfaceShape l SurfaceRoughness Spaclng{mm) Geol~ ~§jf: - . l~~~c:_ .. -- .i!'l:li!i .G.<. ..,..._ ..
□,,,:.,.·•-•• ... c,,.-.ol
['l :::;~ e~-::::;,,-
210
fl~ solutions ~:;:.,---=c
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drillirig Company: M,;1ldon,;1do Exploraciones
Drillers(Day/Night)·
Drillers Helpers {Day/Night):
Field Responsible (Oay/Nlghl) J. Choquc
111111;111111;1;
Weathering Index I Degree of alteration
W2 Signlly Weol""'e<I
W3 Mv<!W..,o lh<.• e<.l
i=~
A-l N0Altf!<"'1f")
A -2 Sl"'>htly&ll .. <6<1
"·3 Mode<otelyAl1e<6<1
A·• VetyAne,e<:1
A-S com,,...,1@1yAII,,,.,.,
i I i
l
VorySol1 ~:; _,
Client:
North{m): 7565866
East(m) 603347
Elevation(m) 4433.00
Projection UTM WGS 84 . Zona 18S
Rock Parameters
j i
t ~
I
~
RJ """"'umSkDO[)
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
Azimul/Dip : 0 I -90
Bofedal Sur
Drilling Rig Versadrill
Drilling Method: OOH
Description
Dcll550•1lt>.05mFrac1~1ongi1udina1 ,e11C<1adCO• idOS
A \lJ.OOm. Matrlz con domlnlo <le '"kles~ato ~.\sicoe
~"';;'.:,men!edep!aglodasasOdlca. Rlo!i!abtechoide.cl8slos
Dcll805all880m Frac1u,alongi!udinal rcllC<ladcO•ldos.
All9.00m.Roc11mcn.o,;compctcn1cy1ractu,a<1a.
0.-, ll'I bO - 100 OOm. Fracturn longlludin~I tcllc,na do calclla
Dlscon\lnulty Types !Discon1inuilyWidth(mm)
V N V .,., N ~·-·,.~{<1,3 """)
N NOH<W< (1 ,3•2,5""")
ROCK CORE
LOGGING FORM
BOREHOLE W
DS-5P
Bit Type· Broco
casing Depth (m) o.o
Total Dcplh(m)· 100
core Diameter (mm): 96.0
!
118.35
98.40
I Gy Gypsum
·ij
~ 0"' ;?: >'.? RI '5
20 of 20
Agua Start Date: 13 novic mbrc de 2017
Finish Date: 19 noviembre de 2017
Waler Table {mbs): I: 4.99 / II : 4.96 Logged by: C. Espinoza
Diameter PVC (mm) 1 . l/4'
Discontinuity Data
g
0
~
I
i!
{
0
J
!
~
~: I f!
i
I
K(cm/s) i 1~~~~~~~
Spacing{mm)
Additiona l
comments
Geol~
:•··~=:a;;~d;; .~, "•--<•"'~ I ~ ~z:7·.
""-:;..":.+:"".:.~-=--)
E
;; I Well detai ls ,! (Piezometers)
Deslin Plezometet" -- -.':J -G-" -...- · □ ,;.,..<P•-•o<IOc,,.-.ol
~ 15\"s:,-
211
-~
~
DIREMAR
10 20
CASE:
30
DIREMAR
02 FROM (m):
40 50 f,()
Centlmetros
CORE: DS-05P
6.25 TO (m): 13.08
70 90 100
212
-~
~~
DIREMAR CASE:
DIREMAR
03 FROM (m):
CORE: DS-05P
13.08 TO (m): 19.00
,a.,.,1 •~ - I• "-"•'"'I, ~~-- --- - , - '. ': ~, ~--:') / ~ ·- -.;•-:,,:,..,,,·.= -- - ~ . "' . . ....
., ' •, • , : ~ ., '•:}"'° •¥"fl,~. • 1~' '~\' ,:_ - • ... :..•~ . ..-. :' ~ ' ~
10 20 "' 40 50 60 70 80 90 100
Centimetres
Centlmetros
213
Centimetres
Centimetres
214
Centlmetros
215
Centlmetros
216
Centimetros
217
DIREMAR CORE: DS-05P
FROM (m): 55.80 TO(m): 59.61
10 20 "' 40 50 60 "' 80 90 100
Centimetres
10 20 "' 40 50 60 "' 80 90 100
Centlmetros
218
Centimetres
Centimetres
219
220
-~
~~
DIREMAR
DIREMAR
Centimetres
Centlmetros
CORE: DS-05P
81 .92
221
Centlmetros
222
223
DIREMAR CORE: DS-05P
CASE: 25 FROM (m): 99.89 TO(m): 100.00
centlmettos
224
225
Geological record and piezometer installation design
DS-06
226
227
PIEZOMETRO
DS-06
O l Profundidad
(m)
11
'i 31
·7
57
l
6
7~
8
i l J i
111
12
PVC Ciego
Schedule 40
PVC
Ranurado
Slot 40
(1.00 mm)
Concreto
Relleno
Bentonita
Diametro Perforaci6n PQ: 126 mm
Diametro Perforaci6n HQ: 96 mm
Diametro Piez6metro: 2"
Iiilil 1 1
■ G,i1 1.5 I I 3.67
T
3
4
10
11
11 .3
Leyenda lnstalaci6n de Piez6metros
Relleno
Bentonita
Filtro (paquete de
grava)
Derrumbe

Filtro (paquete de grava)
PVC Ciego
1=1 PVC Ranurado ~1 Derrumbe
V Tapa inferior D Grout
228
0
2
3
4
5
6
7
8
9
10
11
12
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-06
Eluvi6n: material suelto de
diferente granulometria y
composici6n con pobre desarrollo
de suelo (limo arenoso S/MWH)
lgnimbrita : Toba soldada de
composoci6n acida con clastos
liticos de diferente composici6n,
fracturamiento variable, con
relleno limoso y ocacionalmente
con oxidaciones ferrosas, variable
grado de meteorizaci6n hidrica,
dando lugar a tramos lixiviados
Fractures/30 cm
...
I
REFERENCIAS
Elv 0
■ lgm
229
--------- SERGE~ MIN
$IE~ll<Ci GIEIQl~DCIQl lil!!Il™11ERIQl
2• 0 5 ' , ..'-~
~ 3 2
1 I ,
1 . .5 0? o,
100 .. , 35~1.
06y
'-ll'/.
~ '· ~ > ,, ..,
q <.
<
rr t'
~ ~ {
~ ~ t .,,,, ,, ~ ·- > ( ( - \
!
1 I .... . . . ~
~\ ~ t
-~ ii !i:
"-I
230
z i
- I!! l! I
~ a
w~
t:, I
1:11:: ~ wl "'~
~
FOR,\IA TO DE REGISTRO GEOL ◊ G I C O DE TESTIGO DE ROCA
~ D :;,-p_.; DDH (DIAMD7'1:''A) f111<f.M\R
T Pozo de prrfora cl6n ~o.: D5. O?
1
1Hm,uod~pro, tt10: l T~.: _ Clintt : ~
f---L,~T~O=.,, ~IA=c ,=o=, ·o~ ,~, ~co'", '"T'R" •"T°DC-~ 1XFOR.\ L-\Ct6:x SOBRL EL POZO DI PERFORACTO:\"
7 Roja No.: '). de ..3 ------,
:-.or1t Cm): l 5 £ .S =i 3 ' Orier.taciO!l<~~l~iOD: - f,:, • Tipo de broc:a: 1::f..R__ Dtt.:a,g,: fed•~ dt.-.Cio- ~-r>~
..:..;:;;;;;;;;..,;.;; ,.;_ ; ;;_==a"'"'eLo-,"'~""'=~'-1-=:.:=-::·c!tJZJ;, -- ~;;:~~::t~i~~.-r,,. :;::::;.-~;) ~ ::n . .:a(mbns) ~:::=:.0:-r,~l. :. ·mfiJ;; ·i;~7j=:" ~ •'L :::-~ ••• ~-, ~ ::1r (1·~1i1f;,I i;·ll
j J ~ 1 ~ i i ~ 1 ~ £ ~ J F -1 J , ! > ~
:;I,,- ··1·. o f--,----c=-----.--,--,.-~-~---J. --·" 10• _f/ (Q✓1-+.11 ... I"\ 1-.5,1, ,.,u,,, <.. ,,:,,(1 IJIC,4 ~ <: _I I s
~=1" 1"·'·1~- "'"" ':)\I ~ ::;, ~ I Oc
0)1 ro,.1,e,c-f4 ht-11'1 ,ii,.-l,Jr,/actc~ •, < '1 "'5 I ~
- .:, ()£Ci1,1 ilJd1,ifGo, '1t>J1PI (c,J :;-,$Om
,P3.,. .C,t: '1:,
r·-li=;
..
"l"I I I I I 1• - o, s-S" "'" go p, ,.,,,,,o.,-i,- "'"' ~ •1 ~1=1.. 1N 1 ~1 ;;r ~ .,, A3 :-: ., f 2 ~ v,, •. -,. p• , .. , p•. ... ,, .,,, p--, • ., ••. :.:•1'2 . t·:--1: I~ :1·· ~"''•· j :;
/_ 41 $,SO 0.. t:SO fl; t omp~rf ... c<>n f.JJ .. ,,., ;;I rJJ f, t ·, ___ p,.,, JC.~ J, t,aJ..;-_ ... _ ,... .••. t,ttc/v;c,,_:; ,,s , .. r ,...., f:'1 , .. °' J. ...
1

_ I'<~,, . u <,--f..,,<,/, ?i .4. •: ) I,>,!. 1 ~:,• 1' r-t :,.1 d-.J ~r lr 12.
11
":_ co-1--4,nvt,. 1-::;,i mb 1 -f":, 10,,,,iot+e.._
C,J o 1-/, , odo y~t .;;,tc_1fJr "1 ~,.,e..
,.
'•
~ I . "I I 1- ''"'" = ,_,_ F• , ,,,,,,4,! ,,,~ :l:l~IC\Jl:1::l; [w,l~~l:~,°'1 r, ",/ t;mi>f;-ic,
t- 1,,,11 13°1_,. lμ wl": 1,~ 11, le I<-,
·1~~0)121~1t1 ~I ~HA~ J;J,11''
- V f--------
.i,., u, .. -\ """' J: 5,,:,,,l)1-~#. -;::_,.,.,-;;;;1~1,,:
f 0J.1O. ::J,u>qJ• g,,,,,,,d",(' r,-,1 J:r,,t:'1,)(
" ~ 3 ,. ... , ,,c;.<. ~b~,, .,t,., f.,,., ~·..,u,~
• : ne,-t"o11" ,;. 12,.-: ,.1aJ, ,c. ,i,.,,,,.,-1, "'oi"-.
_" oH,,"e"'.
ltqcm',
Comoutano1~s ~ dd oozo
(JM:<lmto:o)
~·.r-1·
.
:: I '
A, q,90 j). rt.:o pr.;r. J,. ..,,,,, Ot
ro,11110,-lt, n pC•l().ft~ pol"' ,fo,c;,,;.,,,(
h:/,,", • 1
4()-,J I ? 1 -r ,: !Y 1, 12.. E'I t, ~t gg:: ,~. ~~ iii:: ii It it~ fi ~f; f'.if~f- ~it
231
------- SERGE ~ MIN
81EIJNICl](Q) GIIE«..OOllc«ll 11/j]OIMIEl!lC
~
¾
;-
I ! If i ~
l,, ...
lf! ] ~ ~
.. 0. c,_, "'"' ". 0
~ t I
). ' .~ ~-~w
232
SERGE@ MIN
~IE~ll©l lGIIE(Q)ILOO~ IMIOIMIEIJ'l(Q)
Drill hole
DS-06 (DDH-1)
4.90
233
-------- SERGE@ MIN
alE~ll©l lGJIEICllLOO~ IMIOIMIEIRl.lCl
234
235
Geological record and piezometer installation design
DS-07
236
237
PIEZOMETRO
0
2
3
4
5
6
7
8
DS-07
Profundidad
(m)
PVC Ciego
PVC
Ranurado
filillillJ Concreto
[] Relleno
~ Bentonita
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
1.3
2.3
5.3
8.1
Bentonita
Filtro (paquete de
grava)
Derrumbe
Leyenda lnstalaci6n de Piez6metros
□ .

Filtro (paquete de grava) I I PVC Ranurado
PVC Ciego V Tapa inferior
Derrumbe
Grout
238
Client: ~
DIREMAR
ProjectNumber:1175601 Drilling and Piezometer Installation
Water Level {mbgs)
Logged by: A.Hilkens
Draw by: J.Flores
lithology
D SP Q lgnimbrita
Reviewed by: RaUI Ortiz
K(cm/s)
PIEZOMETER
DESIGN
Piezometer
BOREHOLE N°
DS-07
SHEET N°: 1 Of 1
Piezome1er
Design
0.00
1.30
[ill Concreto D Filtro 3-5 mm V Tapa inferior
11 Grava D PVC Ciego l21J Derrumbe
I] Relleno l~I PVC Ranurado D Grout
~ Bentonita
239
fl~ sOl!:;Jtions
Project Number : 1175601 {FS)
~
D IREMAR
CONTRACTOR INFORMATION
Drilling Company Sergeomin
Dril le rs (Day/Night) :
Drillers Helpers {Day/Night)
Field Responsible (Day/Night)
sl lsi lc~ !lllil 1111
j
f
i
• ~ ;
I
Client:
Nor1h(m) 7565846
Eas1(m) 603067
Elevation{m): 4422.00
Projection· UTM WGS 84 - Zona 18S
Rock Parameters
I i
I ~ I I I -
.§ ..OU ~) --..-,1") 8'
.2 ~ liiiiiiiiiiiiii 0
~ o~:i;:e§ 0 :<::i;:!dl ,3
,l,l,l,11,1,l ,l,I _Jl. ,.'C:'
::·/.\·>
f---L-
1--
I:> !:
'
C
. .
.:.\·_,.·-,.:
['_·\.~-_;.,.,·'-·,:..-. \·· .
I·'"\
}·f~J .
1{,}
·,>-.:.-\-
\j]
·/'-·\
_:..._(.;":'..:.
~\'_}::
·/v\
_:..._(.;<:.
~\-,)<
·/"-·\
.-:.,_(.;":'.:.
_,,.\-~}~
·,:..:.-\·
~-~;)
weathering Index I Degree of alteration Hardness RockStre~tt'llndex
£'::~
A. 1 NoAUe<ed(f<U h)
A -~ su,,nuv bUc, ~--.J
, Modc:<a!c!yAl!o.-od
A-< V"'yAn.,,-
A.'5 Comi>..,lcfyAl!.,.-o,d
.,,..-.....,s,,ong
R4 St,ong
«~ V~ry S " oog
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
A 2lmut/Olp 0 I -90
Location Bofedal Sur
Drilling Rig: lngetrol 64D
Drilling Method: Diam,;1ntin;;i
Descrip!ion
SP. Arena pobremen1e graduada, gravosa y pocos
flnos,seco,suelto,gravaangulosaa
subangulosa, arena 1>5%. grava 25%, flnos 10%,
matl!rlaldcorlgl!nl!luvlal.
IGNIMBRITA, pardo a grls vlol.\cco, de tcxtura
inequigranular, matrizdevidriovolcanico,laroca
seencuentrameteorlzaday rracturada,las
fracturasestanrellenasporlimos yalgunascon
crlstalesdecuar:zocrlstallnoyOxldosde hlerro,
roca porosay
Oe1.00a1 .90m. lgnlmbri!a<locomposici6ndacltlcagr~
rosacea,Jrac!urada. secaemuestra , pocarecuperaclOri
Oe2.l>0»3.bOm. lgnimbrilHHl1e,!ldH, fracl..-asconOxkk>s
<lehlcuo.rocasuaw,ytr.lyll,muypaosa
ROCK CORE
LOGGING FORM
Bit Type: Broca
BOREHOLE N" :
Agua
DS-07
of
Start Date 25 octubre de 2017
Casing Depth (m)· o .o OTW· 28 octubre de 2017 Finish Date: 25 octu bre de 2017
Total Depth (m) 8.1
Core Diameter (mm): 96.0
= I »~•-· 1 ·l
0 ~:cm~~ ~
,1,1,1
Water Table (mbs):
Diame ter PVC (mm):
Discontinuity Data
0"
0
!
f
"~ I
e'
~
0
!
1 .943
50.80
J
1
Logged by· A.Hilkens
Rev·
K (cmls) [ 1~~1~~~~ V> -- - - - --
111111
Additional
comments
Retorno 100%
coloraciongris
pardo. tiempo de
corrlda 10.52
minutos
Retorno de 80%
tiempo de
corrlda 4.59
minutos
Retorno de l 100
% tlcmpo de
corrida 4.43
minutos.
atravlesa nlvel
de arenas
negruzcas
Retorno d el 80%
tlempo de
corrlda 6 .14
minutos
c-;; I Well details ! (Piezomelers)
Discontinuity Types I Discontinuity Width (mm) I Types of Infilling I Amount of lnfilllr!Q I Surface Shape I Surface Roughness Spaclng(mm) Geo~ De~n Plezometer
"" v,,.., .,, • .,,w (<1l
" N.-(1 3 -2.Smm)
MW ::::"'"J.'tlv mm,J
W Wldo(1;,7 -S0.8mm)
•·--=-~:::---""'""' I':: ,==:, .. ~
. ..-. •••-- -..,.., . C <,-.,.,.,(o-2;<mJ ) ~-:::.::::::rz ~~ ~;'c'::{'.:":.i""
'"" · ~ -~-~~:~"'."'""'l
!,,ii :; ...... . ;::."'.::::.._""'•··
V T..,,.,.~, •••
240
fl~ solutions
Project Number: 1175601 {FS)
~
D IREMAR
CONTRACTOR INFORMATION
DfillingCompany Sergeomin
Dri llers (Day/Night) :
Drillers He lpers {Day/Night)
Field Responsible {Day/Night)
sl lsi lc~ !lllil 1111
j
f
i
• ~ ;
I
Client:
Nor1h(m) 7 565846
Eas1(m) 603067
Eleva1ion{m): 4422.00
Projection· UTM WGS 8 4 - Zo na 18S
Rock Parameters
I i
I ~ I I I -
.§ ..OU ~) --..-,1"1 8'
.2 ~ liiiiiiiiil 0
~ o~:i;ie§o~:i; ~ § ,3
,l ,l ,l ,1 1,1, l,l,I
...
weatheflng Index I Degree of alteration Hardness RockStre~thlndex
A-1 NoAUe<ed(fr<osh)
, SIV,tlv bllc,~-.J
I Mod<:<~!ctyAr· •
A-< V"'yAn.,,-
Comp1<>1• ty A-5 Com,, ..,tctyAl!.,.-<,d
« 3 ..-.....,s,roog
R4 S t,ong
«~ v ~,y S!rnng
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
A:1:lmut/Olp 0 I -90
Location Bofedal Sur
Dri lling Rig: lngetrol 64D
Dri lling Method: Diam,;1ntin;;i
Descrip!ion
De 3.60 a6 60 m. Noseoblieoerncuperacklo<le mue,ma
laroca eslavadadurao1.,lape1foraci0n, posl1>1t, lgnlmbl lrn
pocosoldada. semlconsolkladao tragrrenlada. la
pcrforocior1gcncraabulldan1o aronaon es101ramo.color
grlsv.ol;keo.
De 6.60a8.1 0m. lgnlmbrltagrls vlolaceaosc...-a. roca muy
""e<ada . tracrurada . .-.eobllenepocarecuperaclOn de
mooslra.lramo1rag;1
ROCK CORE
LOGGING FORM
Bit Type: Broca
BOREHOLE N" :
Agua
DS-07
of
Start Date 25 octubre de 2017
Casing Depth (m)· o .o OTW· 28 octubre de 2017 Finish Date: 25 octu bre de 201 7
Total Depth (m) 8.1 Water Table (mbs):
Core Diameter (mm): 9 6 .0 I Diameter PVC (mm):
I
.•. ~
,,.,, 5? ~i;il ~
, 1, 1, 1
Discontinuity Data
~
0
!
f
"~ I
e'
~
0
!
1 .943
50. 80
J
1
Logged by· A.Hilkens
Rev·
K (cmls) I 1~~ ~~~~~1
1111 11
Additional
comments
Retorno del 90%
tiempo de
corrida 5.42
1500 pcl
Derrumbe del
pozo liempo de
corrida 4.02
mlnulos
c-;; I Well details ! (Piezometers)
Discontinuity Types I Discontinuity Width (mm) I Types of Infilling I Amount of Infilling I Surface Shape I Surface Roughness Spaclng(mm) Geo~ DesignPlezometer
"" v , ~yN••mw(<1)
" N ·•«-(1 3 -2.Smm)
M W ! :::::'""J.'th.> mm,)
W Wldo(127 -S0.8 mm)
•·--=--~:.:--"'"'""'.I-:: '=:=~ .. ~
. ..-. -•---"' '"' . c cro-..,(o-2;<mJ J ~-:::;::::'EZ'Z ~~ ~:cC::{'.:~""
'"" · ~-~-~~:~"'."'""'l
!,,ii :; ...... . ;-·· _, ......
V T..,, •• ~, •••
241
SERGE~ MIN
8l!IIVICIOCl2Cl.0Cllco11191Et0
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-07
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
3.6
4
4.4
4.8
5.2
5.6
6
6.4
6.8
7.2
7.6
8
Eluvi6n: material suelto de diferente granulometria y
composici6n con pobre desarrollo de suelo (limo
arenoso S/MWH)
lgnimbrita: Toba soldada de composoci6n acida
con clastos liticos de diferente composici6n,
fracturamiento variable, con relleno limoso y
ocacionalmente con oxidaciones ferrosas, variable
gradodemeteorizaci6nhidrica,dandolugara
tramoslixiviados
Arena Tobcicea: material de grano fine a medic
producto de la meteorizaci6n y posterior lixiviaci6n
hidricadelarocamadre{laignimbrita)
lgnimbrita: Toba soldada de composoci6n 8cida
con clastos liticos de diferente composici6n,
fracturamientovariable,conrellenolimosoy
ocacionalmente con oxidaciones ferrosas, variable
gradodemeteorizaci6nhidrica,dandolugara
tramoslixiviados
Fractures/30 cm
"' "' N ~ t--;
0 0 0 0
REFERENCIAS
Elv
Ar Tb
■ lgm
242
----------- SERGEC MIN
~!Effl9UICD©> lt)IEIOllLOOUICIOl ll,lJU~IEIR!IOl
.,'"",.' .'.!: "' ...
;;; ~,.,
"' -e c)
7-\ ;;:
243
----------- SERGE~MIN
21E~ICO(O) ~IElOlll.00~ 11!11D~IEIR!l0l
" C Cu s. /r1
fl_ lo "- ,,.., I
u, I
1- 2 I
o_ I'S
'14 / tn I
,.,_ -;-
_____ ,
I~ I G, ----:-,:- ,-,
-,
"' "'
"0 I .l.."t.!
vi ~
c,. (;) · t . C> C \ ,P
I e.b I C> <:,
~
i.
'
s
'!-- ~
Q
" :,- :
;, .
• ;_ -. ';-
,, ,, ;
<. >
~ . "
~
.,_
~
I I
I I
-n I I
H I I ~
'-- I I
I I
I I
I I
I I
I/ V
244
Centimetros
DIREMAR CORE: DS-07
7. 10 TO (m): 8. 10
o DS-01-
~~ ,'!----. 1•, .'! ,. :•, .'~ .- !l . ...... ~,•.' , !~. ~'.' •• -!"'; ~
20 30 40 so 60 70 80
Centimetres
245
Geological record and piezometer installation design
DS-08
246
247
PIEZOMETRO
0
2
4
6
8
9
10
11
12
13
14
15
DS-08
Profundidad
(m)
ffl
wr':8
~
PVC Ciego
8.7
PVC
Ranurado
Concreto
Relleno
Bentonita
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
. . •:•
. . •:•
4
7
14.7
15.5
Relleno
Bentonita
Filtro (paquete de
grava)
Derrumbe
Leyenda lnstalaci6n de Piez6metros


Filtro (paquete de grava)
PVC Ciego
I I PVC Ranurado
V Tapa inferior
Derrumbe
Grout
248
Client: ~
DIREMAR
ProjectNumber:1175601 Drilling and Piezometer Installation
Water Level {mbgs)
Logged by: G. Claure
Draw by: J.Flores
lithology
0 SP Q Tufo volc~nico
Reviewed by: RaUI Ortiz
K(cm/s)
PIEZOMETER
DESIGN
Piezometer
BOREHOLE N°
DS-08
SHEET N°: 1 Of 1
Piezome1er
Design
4.00
[ill Concreto D Filtro 3-5 mm V Tapa inferior
11 Grava D PVC Ciego l21J Derrumbe
I] Relleno l~I PVC Ranurado D Grout
~ Bentonita
249
fl~ sOl!:;Jtions
Project Number: 1175601 {FS)
~
D IREMAR
CONTRACTOR INFORMATION
Drilling Company Sergeomin
Dril lers (Day/Night): JorgeVal~z
Drillers Helpers {Day/Night)
Field Responsi ble (Day/Night)
sl lsi lc~ !lllil 1111
j
f
i
• ~ ;
I
Client:
Nor1h (m) 7565791
Eas1 (m) 603206
Elevation{m): 4419.00
Projection· UTM WGS 84 - Zona 18S
Rock Parameters
I i
I ~ I I I -
.§ ..OU ~) --..-,1") 8'
.2 ~ liiiiiiiiiiiiii 0
~ o~:i;:e§ 0 :<::i;:!dl ,3
, l , l ,1 1, 1, 1, l,I
,__.._
,-
I
weathering Index I Degree of alteration Hardness RockStre~tt'llndex
£'::~
A - 1 NoAUe<ed(f,<osh)
A -~ su.,htlv bUc,~-.J
, Modc:<a!c!y A l!o.-od
A-< V"'Y"°l"f
A-5 Comi>..,lcfyAl!.,.-o,d
.,,..-.....,s,,ong
R4 St,ong
«~ V~,Y S " oog
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
A 2lmut/Olp 0 I -90
Location Bofedal Sur
Drilling Rig: Movll Dr ill - 80
Dri lling Method: Diam,;1ntin;;i
Descrip!ion
Malerlal sueltodedlrerenlegranulometrfay
composlclOn lltolOglca formado In s itu (eluvlOn),
muy pobre desarrolo cte suelo.(SP)
Roca lgnimbrlta, comformado por c las1os
rlo lltlcos a rlod ~clllcos, angulosos a
subangulosos; meterorliacion moderada,
fracturamlentodemoderadoafuerte,con
prescncladc llmosyo•ldacioncs dchierro
D.30m - 2.wm: l9nim1><~a. eo<npo,;iciOn Mterog<)nea con
,:J.,,m,sll!k;osdt,difm>n!"cumpu,,k:IOn, lr>1<Jur,,mit,nlo
mode<ado,conieuerooli,ooso yoxld03<le ~leuo, rnode<a<la
""'leo<iL3ciOn,dandolugara1<amoslixMa<IM
2.90m - J.40m: Arena Tobacea, ria1crlal de grano fir,o a
nwdlo, nw1eorlzacl0nmo<k;rada(lgnlmbll!;,)
3.40m-4.50m:19nlmll<ka.eo<npo,;ocl0nadda
ciastoshCIOO<]Or>OOS,trac1ura<l'kn10,noocrado,prc«cncia
~,'=-~~~i~',!?5&, ~~:;""'cc con oxl<lacloncs
◄ . 50m - 5 . 30m:ArcnaTo!Mcca : rialcrlaldcgranonooa
nwdlo, me1eof1zacl0n moderada (lgnlmbll!a}
ROCK CORE
LOGGING FORM
Bit Type: Broca
BOREHOLE N" :
Agua
DS-08
of
Start Date 29 octubre de 2017
Casing Depth (m)· o .o OTW· 28 octubre de 2017 Finish Date: 29 octubre de 2017
Total Depth (m) 15.5
Core Diameter (mm): 96.0
= I »~•-· 1 ·l
0 ~:cm~~ ~
'o"w
'''"° ,..
"'
, 1, 1,1
" ,0
%
,0
00
%
w
'"
Water Table (mbs):
Diameter PVC (mm):
Discontinuity Data
0"
0
!
I
~
MW
MW
f
"~ I
''"" ,,..
''""
,'".
e'
~
0
!
StFc
s,
s,
StFe
0 .53
50.80
J
1
,, ....
, .. , ..
,,. .,.
,,. .,.
Logged by· G. Claure
Rev·
K (cmls) [ 1~~1~~~~ V> -- - - - --
,C,
111111
Additional
comments
Sin presencia de
frac1 uramiento
No exislen
caracteristicas
estruclura!es
mapeables
Sin recuperaci6n
por haber sido
lavado la arena
de este tramo
c-;; I Well details ! (Piezomelers)
n; ~ i
:: i:: ·:::
l\l =Hl=
l\l =Hl=
:: i:: ·:::
..1 1c·c·
Discontinuity Types I Discontinuity Width (mm) I Types of Infilling I Amount of lnfilllr!Q I Surface Shape I Surface Roughness Spaclng(mm) Geo~ De~n Plezometer
"" v,,.., .,, • .,,w(<11
" N.-(1 3 -2.Smm)
MW ::::"'"J.'tlv mm,J
W 'Mdo(1;,7 -S0.8mm)
,.. . ... ,_,,,..,..,_,.._,,,, ~-~i:iii 1n~~f~=·~1 ~ ,,. ___ '"" · ~-~-~~:~"'."'""'l
;:."'.::::.. ________ _
VT..,,.,.~, •••
250
fl1 sol!:;Jtions
Project Number: 1175601 {FS)
~
D IREMAR
CONTRACTOR INFORMATION
Drilling Company Sergeornin
Dril lers (Day/Night): JorgcVal~z
Drillers Helpers {Day/Night)
Field Responsible (Day/Night)
!IIIE l\ § ;;-
,3 u:: I- !lllil 1111
!
f
i
• ~ ;
I
Client:
Nor1h(m) 7565791
Eas1 (m) 603206
Eleva1ion{m): 4419.00
Projection· UTM WGS 84 - Zona 18S
Rock Parameters
I i
I ~ I I I -
.§ ..OU~) --..-,1") 8'
.2 liiiiiiii ~ 0
~ o~si;ie§o~ 51; 1e§ ,3
,l,lil, 11,1, 1,l,I
Il-
l--l--l---l-+-1-l-f--+---+--+--+---< p '-,
weathering Index I Degree of alteration
£'::J'.::7:1
A .1 NoAUere<l(fr<osh)
A·~ SUohtlV bllered
• Mo<X:<atclyAUorod
A-< V"' Y "°lef
A.,S Comi>..,lcfyAl!.,.-<,d
Hardness RockStre~ thlndex
1,13..-...-.,s,,or,g
R4 S t,ong
"5 V"'VS!foog
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
Azlmut/Olp 0 I -90
Location Bofedal Sur
Dri lling Rig: Movll Drill - 80
Drilling Method: Dic1m,;1ntin;;i
Descrip!ion
5.30m - 1.,.5Qm: I9nlmllflta,composicl0nhet<0rc>ger>eacon
ciastosll!ioos<ln d i!,:,rrnto~. 1rac.l,..-,.micnlo
mode<a<lO. con,c,uc,noIimosoyoxidOSdehiCfro,mooerae1a
me1...,,1,ac10n, d ~n(lo lugara 1ramos ll•Maclos
l.>.SOm.J.40m: AfenaTob.lcea, r:,,11erlal degranonnoa
medlo, me1e<><lzacl0nmoderada(lgnlmorlta)
7.40m • 7.BOm: lg nimllf il " . com posiclOn heler~""" con
clastosllocos<1e d it«enteco,npo,;1eion . 1, ac1,..-am1en10
modera<Jo,conrelleno llmosoyrudoos<lenleuo,mooeraoa
me1eo,iz,,clOn,danOO lugara 1ramosli, ivia<IOS
7.80m - 8.20m: Arena Tobacea; 1'131erlal de gr;,r,o nno a
medlo, me1eorlzacl0o moderada (lgnlml>ll!a)
8.20m. 11.1om: lg(ljml>llla. composlCIOo heter~r.ea con
cklslosllticosde di(er<0ntecomposici0n, l racl,..-amienlo
modcrndn, conml lcnolimoso y o , ldo,;dc hlC<ro,mo<lcfadl'I
meI«:1,i,aci0n.Oanoo Ivg:,ra I,amosIi,MOCIOS
Discontinuity Types I Discontinuity Width (mm)
v" v,~v"••«>W(< l
" N·wmw(1.3 -2.5mm)
MW ~J.•~~2.1 mm,)
W Wldo(121-S0.8mm)
ROCK CORE
LOGGING FORM
BOREHOLE N" :
DS-08
of
Bit Type: Broca Agua Start Date 29 octubre de 2017
Casing Depth (m)· o .o
Total Depth (m) 15.5
Core Diameter (mm): 96.0
= I »~,-- 1 ·s <>~:=~~ ~
ltl ,1,1,
OTW· 28 octu bre de 2017
Water Table (mbs):
Diameter PVC (mm):
Oiscontinu!!Y_ Data
~
0
!
f
"~ I
e'
~
0
!
0 .53
50.80
J
I
Finish Date : 29 octu bre de 2017
Logged by· G. Claure
Rev·
K (cmls)
§ 1~•nHs
& ~;,;,; ,;,;,:'
Additional
comments
Tramo donde tos
rasgos
estructuralesno
c
~ I Well details ! (Piezometers)
II
I Typesoflnfllllng ]Amountof lnfilllng] SUrface Shape I Surface Roughness Spaclng(mm) Geo~ ,., , ..................... -.... , ~-~i:~ 1rfll~'~I ~ ,:. ___ •• · ~ -~-~~:~"'."'""'l
; ::;::~'".,,.,,., .. ,.
V '"""''~'"""
251
fl~ sOl!:;Jtions ~
D IREMAR
Client:
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Drilling Company Sergeomin
Dril lers (Day/Night) : JorgeVal~z
Drillers Helpers {Day/Night)
Field Responsible (Day/Night)
sl lsi lc~ !lllil 1111
weathering Index I Degree of alteration
£'::~
A- 1 NoAUe<ed(rruh)
A -~ SIV,tlv bllc, ~-.J
, Modci"a!c!y Al!orod
A-< V"'yAn.,,-
A-5 Comi>..,lcfyAl!.,.-<,d
j
f
i
Nor1h(m) 7565791
Eas1(m) 603206
Elevation{m): 4419.00
Projection· UTM WGS 84 - Zona 18S
Rock Parameters
i~ I ~• I ~
Hardness
i
I ~ I I I -
.§ ..OU ~) --..-,1") 8'
.2 ~ liiiiiiiiiiiiii 0
~ o~:i;:e§ 0 :<::i;:!dl ,3
,1,1,11,l, l , l,I
,-'
RockStre~tt'llndex
.,,..-.....,s,.-ong
R4 St,ong
«~ V~,Y S " oog
DIREMAR
Silala - Bolivia
j
BOREHOLE INFORMATION
A 2lmut/Olp 0 I -90
Location Bofedal Sur
Drilling Rig: Movll Dr ill - 80
Drilling Method: Diam,;1ntin;;i
Descrip!ion
11 .70m•12.20m:Ar<>n,oTob>'Jc.c,o:m.,tc,lal<lc9r,onoflnoa
mediO, me1eor178CIO<\ mo<terada(lgnlmbr~a)
12.20m - 15.~: l gnlmb<ila.com!)OSlclOnhelerog<loea con
cJastoslltlcosclcdlferentecomposlclO<l, lracluramienlo
modera<lo,conrellenollmo50yo,cldos<lehleoo,rnodermeloorlzaci0n,
dan<lolugara1ramosll~Mados
Discontinuity Types I Discontinuity Width (mm)
"" v,,..,.,, • .,,w(<1)
" N.-(13-2.Smm)
MW ::::"'"J.'tlv mm,J
W Wldo(1;,7 -S0.8mm)
ROCK CORE
LOGGING FORM
BOREHOLE N" :
DS-08
of
Bit Type: Broca Agua Start Date 29 octubre de 2017
Casing Depth (m)· o .o
Total Depth (m) 15.5
Core Diameter (mm): 96.0
= I .. ~·-· 1 ·l
0 ~:cm~~ ~
, 1, 1,1
OTW· 28 octubre de 2017
Water Table (mbs):
Diameter PVC (mm):
Discontinuity Data
0"
0
!
f
"~ I
e'
~
0
!
0 .53
50.80
J
1
Finish Date: 29 octubre de 2017
Logged by· G. Claure
Rev·
K (cmls) [ 1~~1~~~~ V> -- - - - --
111111
Additional
comments
estan blen
d efinidos
c-;; I Well details ! (Piezomelers)
~
Typesoflnfllllng IAmountoflnfilllr!Q I Surface Shape Surface Roughness Spaclng(mm) Geo~ De~n Plezometer ,.,. . ... ,_,,,...,,.,_,.._,,,, ~-~i:iii 1n~~f~=,~1 ~ ,,. _ __ _
'"" ·~-~-~~:~"'."'""'l
;:."'.::::.. ________ _
V T..,,.,.~, •••
252
SERGE(©MIN
82IIVICIOOl!OL.6GicoMMU:O
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-08
0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Sedimenlo suelto de diferente granulometrfa y
composici6n lilol6gica formado in situ (eluvi6n),
muy pobre desarrolo de suelo (MWH)
Toba soldada (ignimbrita) con claslos riolilicos
a riodaciticos angulosos a subangulosos;
tramo meteorizadoporacci6nhfdrica,
fracturamiento de moderado a fuerte, con
presenciadelimosyoxidacionesde hierro
La misma roca ignimbrftica pero afectada por
una mayor meteorizaci6n hidrica al punto que
presenta lixiviaci6ndesusmineralesmenos
estables quedando solamente material
cuarzosodegranomedioafino
Fractures/30 cm
0 N
REFERENCIAS
ArTb
Elv 0
■ lgm
253
-------- SERGE0 MIN
81EIINICll<O ~IEIOlll.M~IOl lMIOIMIEIR!IOl
254
SERGE(§) MIN
IIEIJNICll<O GIEOILMD«li lli4IDIMIE~O
.. " •o
q .r ,
2
o,s
,o
OiJ
oo ..,., ~· (Y
R,
;.,
j
J
t
I
r.f
1~
"1
255
SERGE0 MIN
~IEIRMIClliOI OIECIL.MD(C(OI fl!41DWIIEIR1C
256
Z a
- !!! :l! i
@)8
w~
C:, lll
DI: 8 eWn I ell
if
'!
.-~ FORMATO DE REGISTRO GEOLOGIC? DE TESTIGO DE ROCA Pozo de perforac!Ou No.: D 5 .. 0 8
~ :_ DOH (DTAME.:'ffIK-\_J __________ __,
l)J RF,~tAR --0-:-- _ - _____ j -;---~ . .. . . __ ~~Ja No.: L( tie __ ,.£ ___ _
:r.,;ro
r'-=:;;;;;~~:;::.:=c/_""_' -'_ '1!_!-'_ "'-_C !._? L '.!.._ -1_/=;c....==c.1-f':---.. - : /,~ ~-~ --· ::::~:1~~~;::: ~yl~li. 1. ;1. .-~ j"wM7-''1· ~Tri ,~~r;:r~i~1:7,-~~,~. ,--:;--::·="""""-"""...c..A-.. C.( __ ffl j j ~ ~ i .. , , DESCRIPC16, ~ ~ jf l I j j ! H Ji 1 1,, .. ,,,
r--+----1--
~ddpo10
(picL<i<,,tlfo)
"1~~1~ IS ii ~I ~l~-t L-+- i-----+-L
~ -.,,, ~ ..... :~~·
--==-·
:':'.'4"., :."': , ,. .. ,. .. ...l .,i.:i... ,_...._-,.,. .,,,_-,_ CC-,'JhC-•.,.-., ........t.>
.~l-'~l-h=r"-'.":"._=. .,_... c-:D<a•-Y• • t- !b<--•-
wN,,.,,._.,,,i. .... , ,...,,.. r w,_.., _.,,....-.... -:\p,,,'-,_ ~-.... ~ ..:!:;:J:,-,-.Y- a.-""~--- l!,.......:.c.-1
~~~~~- ~~ffei;= ~~~=- ~~~ ~~~[~~ ~t~ f.~j; iI~r~~~~~- ~~~~~
257
----------- SERGE~MIN
21E~ICO(O) ~IElOlll.00~ 11!11D~IEIR!l0l
> I i';;
"
,,., •3
', , " H " " ' '
o.~ ~~3 o,~~
aa i;-1( ,,,.~
. 0
" ~ 3 rn 4> A' ir ~ (3
I'
' A .,
,,
1iip1i !
r ·•1 i
'• I ! r' ' ' ;;-- .
' ' ,
Hfn f" t
!-i !!~,! ~ '
[P f '
: ~::'';'i1i';' i' ~ r-· i!i!ii' i I.
J t t · ti
~H · ~
~,?, i gr I ~
~!~1~111! ' i. l~ ''·I'
-''""o iiiiHr
r~~-r: i
•1Pi
H!i! f !ii111l I
258
----------- SERGEC MIN
~!Effl9UICD©> lt)IEIOllLOOUICIOl ll,lJU~IEIR!IOl
i i ! ! ~ p .~
ltlilllf 1 i ;3;; ,,,-
re
> :;,
I ,;.z,,3
/3,Y
11
;/ i~iir-i i I
ihl!l: .&;'.l
Q 0
I •!! !.
t I i
o,,~
~f
O 0
0
..,./5 W3 -~.'~
zr.ztz
fHH A~ A~
IH' C €
l r<l
{. ~
f'O
" ~ .-- ,
? .
"'l p ,
~
~ " 1 ? ~ ?
I:
"' ..,
' g ~ t
"'-- ' ; ' 0 ~
259
-~
~
DIREMAR
10
-~
~
DIREMAR
10
CASE:
20 30
CASE:
20 30
DIREMAR
01 FROM (m):
"' so ""
Centfmetros
DIREMAR
02 FROM (m):
"' so ""
Centimetros
CORE: DS-08
0.00 TO (m): 6.50
70 80 90 100
CORE: DS-08
6.50 TO (m): 15.50
70 80 90 100
260
261
Geological record and piezometer installation design
DS-09
262
263
PIEZOMETRO
0
2
4
6
8
9
10
DS-09
Profundidad
(m)
PVC Ciego
4.6
PVC
Ranurado
10.1
H Concreto
[] Relleno
~ Bentonita
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
2
4
10
10.5
Relleno de
bentonita y grava
intercalada
Bentonita
Filtro (paquete de
grava)
Derrumbe
Leyenda lnstalaci6n de Piez6metros
0 Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
264
Client:
ProjectNumlx!r:1 175601 Drilling and Piezometer Installation
[Fracture/ 30 cm]
Water Level {mbgs) K (cm/s)
Logged by: A.Hilkens
Draw by: J.Flores
Lithology
~ Brecha la DepOSito cuaternario [;] Turo volcanico
Reviewed by: Rat.ii Ortiz
PIEZOMETER
DESIGN
Piezometer
BOREHOLE N°
DS-09
SHEETN°: 1 of 1
Piezome1er
Design
[] Concreto D Filtro 3-5 mm V Tapa inferior
1111 Grava D PVC Ciego lflj Derrumbe
[] Relleno l~I PVC Ranurado D Grout
~ Bentonila
265
fl~ solutions
Project Number: 1175601 (FS)
~
DIREMAR
CONTRACTOR IN FORMATION
Drilling Company: Sergeomin
Drillers (Day/Nigh!): Jorge Valdez
Drillers Helpers (Day/Night)·
Field Responsible(Day/Nig ht):
fi l I~l e~: l~l I I~ I IfI 1181 8l
~ g & a: a:
j r i
0
i
l
Client:
North(m): 7565691
East (m) 603374
Eleva11on(m): 4419.00
Projection: UTM WGS 84 - Zona 18S
Rock Parameters
j
~
I
I .§a I ~= " I ~--" ' I 0a '
~ o~S!ie§o~S!:e§ 5
l1l1lil1 l l1l1 l1l
>---+-+--+-+-+->----1------<f--+---+---+--+----t ,......
f--t-+-+-+-+-+--+--+----t-+--+----t-----, J--,- 1---------,-aJ
>----"--,
DIREMAR
Sila la - Boliv ia
g
j
BOREHOLE INFORMATION
Azlmu1/0lp· 0 I -90
l ocation: Bofedal Sur
Drilling Rig Movll Dri ll - 80
Dri lling Method: Dlamantlna
Description
Eluv lOn : Ma1erlal s ue1to de dlrerente
granulornetrla y composlclOncon pobre
desarrollodesuelo(llmoarenoso)
lgnlm brlta, prcscncla de flames y clastos Htlcos
de dlferente composlclOn, fracturamlento
mode<ado, frac tura s rellenas de llmosy
~ e~:",~: ~~~~,~ ~,~~1~_aclones ferrosas,
0.30m - 3.30m; lgnlml}r1ta. !}<aoomedio a gmeso.
~esencladeclastosrloll11cosariod,lc(11cos, ar,gulososa
subangulosos, (racturarr-.entornoderadoaf,.,.,,-1ecoo
reOeoo llmoso y O•Fe y Manganeso· lncremcn10 00
fracll.lfamlen1oyelgra<lo<lcmo!eo<lzack)n
Brecha: hor izonte brechoso? de 5 c m de espesor,
clas tos angulosos de 1 a 3 cm de dl3mel ro,
soportadoscnuna ma1r lzarc lllo lcrrosa.
lgnlmbrlta : composoclonaclda , presenclade
clastos IIUcos de dlferente co mposlcl6n.
fracturamienl o modcrado, prescncla de limos y
ocas lonalmente OwFe rellenando parc lalmente las r~=l~\~~s~ ~ :~~;~~~c!~;n~ a"."ada, lramos
3.30m - 3.35m;Horlzootebrecl>osodepoca~encla
~esenta das1osangulosos.en,mama1rl•llmosooxklado
3.3Sm• 6.00m: lgnlml>ri!a (loba~). l<>xl..-~ ,,,eno,,,, ,
meteo,lu>elOnn>Ode<ada.reOenollm::,soenla s lraclu<asJ
OxFeenpa!IMs
ROCK CORE
LOGGING FORM
BOREHOLE N"
Bit Type Broca
Casing Depth (m)· o.o
Total Depth (m) 10.5
Core Diameter (mm): 96.0
~ I »~•-· I
! ,,::=~~
o.,o
0~
00,
0 ,75
u,s
"'
ltl1 l1l1
""
""
DS-09
of
Agua Start Date 30 oclubre de 2017
DTW 28 octubre de 2017 Finish Date 30 octubre de 2017
Waler T able {mbs) 1 .13 Logged by A Hilkens
Diameter PVC (mm) 50.80 Rev
Discontinu!_!y Data
"' " K (emfs) e "0"
!
I
~
f
~
~
j
~
0
!
J1
j I
j
I 1~~~~~~~ Addit ional
comments
~ I Well details ! (Piezometers)
''""
!~ I s~~e I ~:
~~ l !~~ I ~:
Su Fe C3 C
Su No CJ VC
1111111111111
•5 6 • 1,5 100 0.5 33 W4 R2 F• . _
Weathering Index De ree of alteration Rock Strength Index Di scontinuity Types Discontinuity Width (mm) T s of lnfllll Amount of lnfilll Spacing (mm) Geology Des ign Plezometer
:;,=::;
1\. 1 NoA .. ..-<>d(f,eSl'I)
A•~ Sl""'"Y Hll"•~<l
A•J Modor.>lclyAf1orc<f
A·4 v.,,yAU.,,<Kl
A· S CQff>f>lclclyAltcrcd
0,3 Me<llumS1rong
R4 St<ong
F-1 Puo<F!..Ct.,, ... (<1 .. 'm)
, '"''"""'" ( 1· 5 • •• \) r: ve,yr,, .. .-,., ( ,o""'-)
F -4 rx, oct,[11. ,01,aoct./m)
F F, ,..,._,,..,.. c, :ooh-act.lm)
V" Uo,yl'0<,..(< ..,)
" ,.,.-mw(1l -2,Smm)
MW ~fi~2Jmm.)
W ""do{12.7-W8...-n)
:-...-.. ~:-;,.=.:,:;:.=:':"-%.=;:-::.~:.::-./-=-2=·- 1~: "=-~ ·:~~';;•::"·"',· •1... ..•.• I"§ :-:.:-.~·: :_,,.,. ..., <: (..,0.,,,(6-2\;;) <.m) ~ ;::,~:;;;:,~•-•> ~
YR•':::.,"-;::,';:"'.:-"',.._.":!,_ . E £ •. ( I V '~"~"~"""
266
fl~ solutions
Project Number: 1175601 (FS)
~
DIREMAR
CONTRACTOR INFORMATION
Drill ing Company: Sergeomin
Dfillers(Day/Night): JorgeVal~z
Drillers Helpers (Day/Nlgh1)·
Field Responsible (Day/N ight)
flfl!lilll i\ Ill§ ~ ~~.li~ j "•
j
f
i
I
i
Client:
Nor!h(m): 7565691
East (m) 603374
Ele va11on(m) 4419.00
Projection· UTM WGS 84 - Zona 185
Rock Parameters
j
~
§ I = "' I ·-"' I ~ .2 - ~ 0 ~ o~~~~o~S!~§ :S
, 1,1 , 1 1,1 ,1, 1,
I,---
-
~
weatherlnglndex I Deqreeoralleration Hardness Rock Stre~ thlndex
A. 1 NoAl:e,-<!(1(1, . Sh )
A-,t Sll<jr,Uy1,1!v,L-<l
A -3 Modo<alcly Al!c,cd
1\-~ V"' y l\U"'""
A.5 C""">lc,1c,lyA1tc,,e<:1
" 3 M-umSlfOO\I
R4 Sl<OO\J
DIREMAR
Si lala - Boliv ia
g
I
BOREHOLE INFORMATION
A 2lrnul/Olp · 0 I -90
Location: Bofedal Sur
Drilling Rlg Movll Drill - 80
Drilling Me thod: D iam ;;in tina
Description
Arena Tob.lcea: material de grano lino a medio
productodelameteorizaci0n(ignimbrita),
abundancladeOzydeoxldaclonesdeFe.
t>.OOrn-7.90rn: Arenaoe o,;gcnVOIUiniCo.g,anofinoa
noo"-1. abundancia""' Oz y cit! <.>• klaciones de Fe
lgnlmbrlta : Me!eorlzaclOn moderada, clastos
lltlcosdcdlfcrcntc composlclOn,prcsencla dc
~~=~:~~=: mecanicas, abundancia de OxFe en
7.90rn - 10.50rl: Tramocle roca!gnlmb<Ka,fue<1e
r'>Clcorl=k>n, p<<JS<:ncl» ~lastosll!lcos, 1<,,,;1,..-,.m1cn10
r>e<:3n<:o,pn,scncladcO•Fc
DlscontlnultyTypes j Olscontlnultt_Width(mm)
\IN V•• v N••ww(< .....,.)
N t' ,ow(1.3-2 .S ~•")
MW ~J_•~~27mm.)
W Wldo(127-,08n-.n)
ROCK CORE
LOGGING FORM
Bit Type Broca
Casing Depth {m) o.o OTW:
BOREHOLE N°:
DS-09
of
Agua Start Date 30 oc1ubre de 2017
28 octubre de 2017 Finish Date 30 octubre de 2017
Tolal Oepth(m): 10.5 Water Table (mbs) 1.13 l ogged by A.Hilkens
COfe Diamete r (mm): 96.0
£ 8 I 1:iocm
""' 2 :!?~
,1,1,1
Oiameler PVC (mm)
Discontinuity Data
"0"
f
i
'I"
~"
0
!
J"1
j
50.80
!
I
Rev·
K (cmls) I 1~~~~~~~ Additional
comments
;e; I Well details ! (Piezomelers)
Type$ of Infilling !Amount of Infilling I SUrface Shape I Surface Roughness Spaclng(mm) Geolofil'._ Desl.2_nPlezometer
~ =,. .. ..-, ....-. -~,-,.~I~W 'W"l-do{~bl ,20-lcm··j "•I I•• •o~--e""'""'")
::~;;;;.;.;;:.:. :: :?c~~i::::: ~ ~ ,,_.,_.
267
z i
- !!! :l! I 0 s
wi C:, I
Et: 8
LL1 I
U, I
FORMATO DE REGISTRO GEOLOGICO DE TESTIGO DE ROCA Pozo de pl'rforad6n No.: :D.S - of/
~ ODIi (DIAME:'\~INA)
-j°)JRF.MAR '!'-....,e«>d•p•oYKlo: ___ E,es::-o.: ____ =:lC!i•••~=-..J2.rLe,,_,na_-r I HoJ11No.: 2 de 3 ___ _
========--I--'---------'"'"'· """"'l'"""."""""'""-'""'"-"'""'"'.><: . - - -
~~ij~~;e="::"~~J.!~°'~:.C~C:,=C:,=S.=tl'-;;.,',-'-'-"="'-'"----- . Feebadena(>·
C~.I'/ -------,fmc7 ,ri~11m1en1<1c,mJ. __ fc.::had<~-.:lo-,o- -O·
.,,dio.nochc. -aa,a~_4//'/____ _ _ __(;,:,}. 0 Rea,in:<>~adop,x: -d:,.l,._ _
•,n;,cnu1:1 .... .,campo<&anoc~ -· ·vrftt tv6-~ -J'f ••• do7
I
~•, 1f 1~ L t1° ,- : i f-1-•., I,=!~~= =~~~~"-:-M -jF . '-r-c_~_--,..,-,---.=
~< i I Ii~ ~ a,:,., DESCRIPCl6:'\ i :Si ~ i ~ i jf et ! K("""") {pic«>C>Hro) ~ ;(. .:! j ... ,t 1 & ~ J. ! .I ~t
v /lOS•,, 7 ecc.,l'l.oC.t tr, #"Y F-Xm~C-4.- -
~ ,ut~S ~ ~m - ,yvco....f"'.A06.Je. c1..L
r"j~~ .. 1--1'::hl~1~1 11~1 ti ~1~1 ,:: :-rv;;,~"f,.;',t- p.,< r,,.-,v, 6
r«>"- . 'H••- dUhf
• 't------------~---t tO-"'ftt"<,...tt.C,.,
.,,.,£0...
-1--ro.m CJ mvy a."ltf'la.JO ~d~, " dl..
r~ mefe""•J<'=" /11<,t,,I(<• Y /4., l1?r1v I l Is, ... ;...,.,J
. , cr~ton. tl-t h. ....r.,ee.... 11-rtJ1n.,.J.. anef'A :lf'•"~J•n.c, <"•" o#.,,Ae/'11UfA. cb, ~ y ,hq,f.,,.,j d
o~"w d✓J~ .. ~ '"t~«"'1 co
'5
11'.:.i"'l+~h1i1~-l~l~I '::; '"0' 1<:i
1· . -------- --
4 •0
cLe.rd~ /.t:..i> ~ , m vtAefvt.. t.c.. re, ...,.,.,
,. t!11114,;,c:,t6Jt. M,_ "'I'~ ~"-'=' ~,,.te~
r.!)1oj-<>f~1~1~1 OJ p
-i;r °' t ~~ ~ 01 '-:)·r~
• 6.,,/-• .,tft ,ne½, .... y ,..,. ,,,,,. ,c-,- I,,.✓• F,r ,nu-
,a.; 1-•oG.. c,c l.v:ic-11.-oq, ·"' ,tv ~ -rcc~P. ,,_,GQ.Z_ po,:.o ~I 0 I~ 1::? j II" --r "=>l-r~c./t>-Y,/pf 6-jn.. -re-c..,~l#-)-~, ~'-'C~nt,,(~~
:
11
·~ c-t~ «• 1 h,Jf}Jo ,, r:::Z;--. fl,.,
'1-1-1- a ,, T'-(z,,,A,D 'Jl1~"11:rrt "Jc~ ..,,..0 -d'o y b.1.,·tc.... e...-fl}IYM"~
• 0 h1eh~odb Go7\._ Fq-, ,,t~collt.Ca. J ,I,,,,_ A4~fr-_ cl-/i"4..I
f.Jl;:i~l"-1«>1~1:I~ :-.1.-1 ! Ii l<\(I~ 1:·. y;;. ... ;c.;:f' /,~ ..: z:._ -:'7/~ '!J P"J-> i ~ ~1 "') $ V O.., ,.Cq-"" /for,-V");a,~ <lr4.rtet/A(", ~ ;c,[
1.-.. --,,
"N< - :-=5-· -==·
~.,,,., _ _
ts;::-- 1 f:l~~=::.
W:«1,,_.,_,.._1,..,, ,...,_. -;- .,_., ..,_i,i,-., '~<o..:a- -.Jo,.- ~~;.-~-[;~I= ~f_= ~}~ ~~~ ~1~ ~~~
(l.l.~J:•-
/:::.~ :~~~~~~~-=--:•---~ :~~·;;it
·::..r:- ::;.c:;. 2"°E~l,~3 [=:~;:-:
\"l.•_,-.,...~..,;.......,KT-"'=
268
Z a
- !!! :l! i
@)8
w~
C:, lll
DI: 8 eWn I ell
!i
I
,... FORMATO DE REGISTRO GEOLOGICO DE TESTIGO DE ROCA
~ ' DOH (DIMIEX~Tl~_-,\_)_-=c------------1
DIRf:-.iAR --;_:-,.,...,rod•vro,·~o: ____ -:-· ----=(_r,.,.1 _:,;;,=_--- HoJaNo.: _/ ___d e _ _;3_ ___ _
Pozo de perroradOn :\'o.:
1>.S- 09
l:0- :..:SOB
,entacioc/i ~-+.'c======-=- - --- F""badesxioc 30- /0 - /1
i~d&t:_ ~'-c-7-o-..,,.J~~==~=:;:..:::=4~==,--,,---- f~h.o&,CW......,;..¼; 30...:./9. tJ I .,• · (u,} o/~/9 . · inade __ R•,;'1N~po,: G, C.S 'nii Hi'' f---'Firr=i'=i--J w~<,!y DES:J:~f= n ~~ 1 --(~; C_,.-,., ~~~
J. j j ~ "' ~ ... .!I ~i
--,,n&Yos 3ocm a..lu11,0"1.. ele .:/ g.,.,.a.11.11/0 -
~ .,,o_ 1~)_,,,Ai Pu.oi'IJo ~ uf\s... --<LJtt>- yn ,1111.if', •,. _;.,,k11 F°-.;
_"., •~ F?c-.{:f,.r,odo,.,- y m.e_hc:,-yzo,c:10,./ ~ ~c.v.tcc...)
...J 6. Con c.t',,,f=./,/troJ.., , A • • ~I " -Y.l..,Of.; t::,...... ,:,_,7u,dD,.C·1/o,., ~o
:: q °'- ~ o:z. c.. ~osm ¢ r:::t" ll'l<!cartCG'--Y I.I r.
-;- Gfu,,,,o~.J ~lq/m .J J ,J .sv ~T c.y '-
...
~j_':J[ 7-[~-lii ~ c[ §I ~I~[ t
·•.>I-+-+-
•A' .J!.'J-d"'- "'= M.-n- ;=-,,._,,,,,,.,,oc,.,,.,_ 4tJ
b>-'1~'1•J'1- -<1-1'-"-1"'?1. ::.;iI~'".-
.,,I,~. ::: l.;' lt
'• f•,umbtri~ "'1-~od:rme11lt.-~t;:,· ~"~ 2. .~'--1-.L+"c,+!-"-~'.-f-;:;-~tf#'t--1
_"' t od'6-o~ ., Aiods,,~"e·n1i-nfe. romf'c<:/i,- 'l" !E>Dl
0
tF,rr .,,,O"D,,~
I/ /.,, P"T' /4,r,~,aao n. ~Jc-- /)yeff11h...- ~' cJU
- " 17,-4.,1/dl..J ' 3 V , ~~ok-fv
._._I--+---+- f- 1--1----1-1-1- · ,_
"' •- ~o,;-.,._,..,~,:,,r,c,c._
.... ~ _ ,,. nti!'IJ,. ou.H-'J,.,,,,,1,,.,,1t,,,_ ~ -~"lale,:·... ,-2
O v t.c1cla..., A..,/4. /4... ..,,.,,. P~F:ir d,. oA, ad4 ,
~ /.,,.. /'l\i'l'oll/raf
J. 190 • lt"wlPs R',IIY I"-'
() \ri "1 ~ -0 ~ Q ~-·,~rl~ i-,,1"~ -:::~~;1 ~1~1t t l:Z
0 , -~~,,311 af'• fee.. e.~«c.Ji.o.6o D4 <?. "~ "1
· : ,.,du A~k-nl,_ 1,-,,.,v,,,a,,,_ ,.,,,_,.,,.,,~d-i,• 1 ~Jr O I"'-'~" l,'e II-< IC>
6 -re~/9~~"'-- mad~ Jo--n.,._ fedh.:

4
.. //rr' /o.. .,,udetn'.)oaon lu'chrcc,... .,. 0 L & 'f- J M l,J I••
,I
"1--
l<' le.~ 1-G.
•.51-1--
I, 1~l~·l"'l "1~ ~2-I E 31 ~I e;·I~
1; ..... _,,...
Wt !rn."O :~s~
-'='·
~w•,•·• ~;,=--· I i1~t::: ..
-y-,a,.. CK.t. d~f<"' L,.JO- A l('t~Jto,..
v ·1t.-.,m,, o/'.'da:>!'P ;> .. ?. mel,,,,.,'f•
,~.._1,. 11._t. 4oi,, ~ti:/-,1ra. ..£c7tof!..-/;;:::,F':Jr/10/u-ol!f ~
ll )i.v~•~
,..;c,;a,~ ,.,,___ __
a,~1;,.,-,. u-..... l::~5,~r:::::..,t · :. ,;:;::-.:.::' ~,.:=:;::..;. F•JU.,,fn,""OA ,Zat, .. '9!.>,s,o t•U...;i o,,,a'.-Q.t•n.m ::~;·- r:~~-~ ;~$, ~;~ -:.-=
(l.:.~lo'S- ..:,,:: /;-o
:;;;r...: a.-... .. ....-
#a.:r~1rk.,, ~?(
•~~.. .. hoE;,r
e=,.,,a:w e.:.-'«rt.
',,J,,~q-n.-1,.,,r
~[E l:-i:_ l~:~~~~~-- t"'·---.. - p.;1:11,-i
W•-~•1'll-)
:,.i a -w-C::l .. l,_)
C•--(t.ll...) o,·c:-•~_,,-a4--,
,,~--..---..... - .. 7..::.-:-~
269
Z a
- I!! 2 1
@)S
w~
C.:, I
ai= ~ wi
U, I
II ~ T FOIHIATO DE REGitTg~<g~~f~;g,o~fE TESTIGO DE ROCA
Pozo de pt'rforaci611 l'-o.: ,-ZJ .5 _ O q
-- l)JJ{F.MAR -~ .... , ... ~~= __ l Taru'So:,-=----=----J ClinH:~m'!J::!_ HoJaNo.: ~ ~ ..:3
1
1
C-FOR.'\lACI f:-.-FOR.'\L\.Cl6;,. ~OBRE EL POZO DE PERrOAACI◊'.'.
/compM __ T"""'ct...bo-o::~-- ~· Fech.:adtiJiici<>·
1 .!~ .H _ L.1licac101'!: $,/o1..fk Pr..,'\~-~-,:•M.:i•.,,_~_("'.'): ~--- ~~hade_~- ..3.::, -IO--J~
f 1 '!.... _t;,. ~(DI): "t.'f.l'I _ _ ~_:01G.um1~forac1 ~:.>llll-~r.,): /0 ~- . Jlc~d,,l.,,, . .!opor. /r-£( __
I ~e-cr.ul: f-'i'-';rr=i=,-------jM ~U_s-$ -f { .!i, -t'V M.-todode~rfotac16n °':""""trodeltc,~: 1/'2,,_ o.,;,,,..,ol>VS(p.,lpdas); ,i;...,
I ~ 'j ~ ., ] ,._ j ,.1 g -~ ~ J ~ j -8' .111_ ! c~~s c~ddporol ,; • :g •• '" ll-1- 8-1 ·1"''"""·""-"~I,..__..,.......,, __ ll _I_ llf] 1 1 1 f ~ I i ,_' D£sawc,o, I ]
1
jf J I j 1. I ! d lf l [,c-»I f<P<•••m>
f,J
·~
f.•
t,,,,
<>I..J,,J..,[~~~;';[ ti ~I tl~IQ
c. ·• .... ... , .
:.;..._,... ()ndodt.altttaei6A l,,jiN foJo-.., , .. _ , ,._ ':° .. _ ,._,.I,_ ,,..,,._
~~- g~-t= ~jff~-- ~~~. ~~,r= ~~=: ~~~ !~~~}~ 1 ~~~
~ .. ~.,..,- ..,. __ _
;~~ :~::~~:::.-:-,:::=~-::· .. --- :"'~-::£1~:
·:=.-:; :~~~-=§-7.E~= r~~;..-:..
n.•-·-~--.. 1--~:::!:.':
_J
270
-~
~
DIREMAR
10 20
CASE:
30
Centfmetros
DIREMAR
02 FROM (m):
"" 50 60
Centfmetros
CORE: DS-09
4.35 TO (m): 9.00
70 80 90 100
271
-~
~
DIREMAR CASE:
DIRE MAR CORE:
03 FROM (m): 9.00
Centfmetros
DS-09
TO (m): 10.50
272
273
Geological record and piezometer installation design
DS-10
274
275
PIEZOMETRO
0
2
4
6
8
10
12
14
DS-10
Profundidad
(m)
PVC Ciego
Schedule 80
11
PVC
Ranurado
Slot 40
(1.00mm)
15
Concreto
[] Relleno
~ Bentonita
Diametro Perforaci6n HO: 96 mm
Diametro Piez6metro: 2"
.. .... . ... . .. ... ... ... ... ... .. . ... .. .. .. .. ... .. ... . . ... .. .... . .... . .... . ... .. .. .... .. .. .. .. .. .... .. .. .. .... .. .. .... .. . ... ... . .... ... . .... ... .. .. .. .. .. .. . ... ..... . . . .. . .. .. .. . ... .. .. . .. .. . ... .. . .. . .... .. .. .. .. .. .... .. .. .. .... .. .. .... .. . . .. .. . .. .. .. .. . . .. .. .. .. . .. .. .. . .. . .. . .. . .. . .. .. . . .. . .. . .. . .. . .. ... ... .. .. . .. ... .. ... . ... .. ... .. .. . .. ... .. .. . .. ... .. .. . .. . .. ... . .. . ... .. . ... .. .
i!i! i!i !i! i!i !i! i!i :
.. . .. . .. . .. .. . .. .. . .. .. . .. . ... ... .. .. . .. ... .. ... . ... .. ... .. .. . .. ... .. .. . .. . .... .. .. .. .. .. .... .. .. .. .... .. .. .... .. .. .... . ... ... .. .. .... .. ... . ... . .. .. ... . . .. . .. . .. . .. .. . . .. . .. . .. . .. . .. ... ... .. .. . .. ... .. ... . ... .. ... .. .. . .. ... .. .. . .. .. .. .. . .. . .. ... . .. . ... .. . ... .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. ... .. .. . .. .. .. .. . .. .. .. .. . .. .. .. . .. .. .... .. .. .. .. .. .... .. .. .. .... .. .. .... .. .. . .. .. . . .. .. .. .. . . .. .. .. .. . . .. .. .. . . .. . .. ... ... . .. . .. ... .. . ... .. . ... . ... ... .. .. . .. ... .. ... . ... .. ... .. .. . .. ... .. .. . .. . .. .. . .. . .. ... . .. . ... .. . ... .. .
::::::::i::rn:rn: ... . . .. .. .. . ... .. .. . .. . .. . . .. ..... . .. . .. .. .. ... .. .. ... ... .. ... . .... .. . ... . .... .. .. .. .. .. .... .. .. .. .... .. .. .... .. . .. ... . ... . .. .. .. .. .. .. ... . ... . ... . .. .. .
.. ........ .. .. .. ..
.. ........ .. .. .. ..
.. .. .. ... . .. .. .. ..
... ............ ... ... ... ...
.. ........ .. .. .. ..
.. .. .. ... . .. .. .. ..
.. ........ .. .. .. ..
Relleno
6
Bentonita
9
Filtro (paquete de grava)
15
Leyenda lnsta laci6n de Piez6metros
[J Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
276
10
-~
~
DIREMAR
10 20
30
CASE:
30
40 so 60
Centlmetros
DIREMAR
02 FROM (m):
40 so 60
Centimetros
70 80 90 100
CORE: DS-10
5.50 TO (m): 10.0
70 80 90 100
277
10 30 40 so 60 70 80 90 100
Centimetros
278
279
Geological record and piezometer installation design
DS-11
280
281
PIEZOMETRO
DS-11
0 Profundidad
(m)
5
10
15
20
PVC Ciego
Schedule 80
25
30
35
40
44
45
50
PVC
Ranurado Slot
40 (1.00 mm)
55
60 60
Concreto □
E. l Relleno □
~ Bentonita
Diametro Perforaci6n HO: 96 mm
Diametro Piezometro: 1 1/4"
T
;;~
-~
3.79 ....... 6
PVC Ciego
Schedule 80
-~P~V~C--
Ranurado Slot
· · · 10 40 (1.00 mm)
■ -..... .. ... .. . ... .. . .. ... .. .. .. ... . . .. . ... .. . .. .. . .. .. . . ... .. . ... .. . .. .. .. . .-·:.-:· :.:. ·:.-·:.-:· :.:. ·:.-·:.-:· :.:.:. .. .. . . .. .. .. .. . . . . .. .. .. . . . . .. .
-:-: :: :-:-: :: :-:-: :: :
.·. .· . .. .. . · .·· ·.· . . .. . · .·· ·.· . . .. .. . . . . . . . . . . . . . . . . ·.... ·... . ·. ·... ·. ..· ... · ... · ... . . · ... . ·. ·.... . ··... · . .. ..·. ·... · ... ·. . ·... . ·. ·.... . ··... · . .. ..·. ·... · ... . . ··.... · . .... . ... . .. .. . ... . .. .. .. . ... . .. .. . ... . .. .. .. . ... . .. .. . ... . .. . . . . . . . . . . . . . . . . . -:-::: :-:-::: :-:-::::
.·. .· . .. .. .· .·· .·· . . .. . · .·· .·· . . .. .. .
..-:.. .-:.. .:.. . :... :... -:... -:... :.. . :... :... -:.. .-:.. .:.. . :... :.. . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .·.. .· .. ... . .. . ·. .· ·. ·.·. . .. . . . ·. .· ·. ·.·. . .. . .. .. . .·. .· . .. .. . · .·· ·.· . . .. . · .·· ·.· . . .. .. . . . . . . . . . . . . . . . . ·...·.. . ·. ·....· ..· ·..·... .· .... · ·... ·.·...· . ..· . ·.·..·. . ·.... · ·.... ··....· ..·. ·.·... .· ·....· .... . ... . ... .. .. .. .. .. .. . ... . ... .. .. .. .. .. .. . ... . ... .. .. .. .. . . . . . . . . . . . . . . . . . •:;: •:•:;: -:-:-: -:-: -:;: •:•:;:;
Leyenda lnstalaci6n de Piez6metros
1
3
11
Relleno
Bentonita
Filtro (paquete de
grava)
Bentonita
16 ------
Relleno
37 ------
Bentonita
41 .8
60
------
Filtro (paquete de
grava)
------
Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
PVC Ciego V Tapa inferior D Grout
282
fl ctsglutions Client:
ProjectNumDer:1175601
Recovery(%) ROD(%)
I a ~ ~ ~ § o ~ a ~ §
g
10 10
15 15
20 20
25 25
JO JO
35 35
40 40
45 45
50 50
55 55
60 60
Logged by: C. Espinoza
Draw by: J.Flores
Reviewed by: RaUI Ortiz
~
DIREMAR
PIEZOMETER
DESIGN
BOREHOLE N°
DS-11
Dri lling and Piezometer Installation SHEETN°: 1 of 1
[Fracture/ 30 cm]
0 5 10 15 20
Water Level (mbgs) K (cm/s)
I Water Recovery(%)I q 9 9 9
q 9 ~ I
0 25 50 75 100 :5 ~ ~ ~ ~ ~ ~ £ 8 8 Lithology
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
V V I/ V V
vvvvvv
V V V V V
JO JO JO vvvvvv JO
vvvvvv
V V V V V
vvvvvv
V V V V V
35 35 35 vvvvvv 35
V V V V V V
V V V V V
vvvvvv
V V V V V
vvvvvv
40 40 40
V V V V V V
40
V V V V V
vvvvvv
V V V V V
vvvvvv
45 45 45 vvvvvv 45
V V V V V
vvvvvv
V V V V V
vvvvvv
50 50 50
vvvvvv
50
V V V V V
vvvvvv
V V V V V
vvvvvv
vvvvvv
55 55 55 V V V V V 55
1/VVVVV
V V V V V
vvvvvv
vvvvvv
60 60 60 V V V I/ V 60
vvvvvv
Piezomeler
Lithology []j Concreto D Filtro3-5mm.
□ G Pll:j ML [Jsw llil! Grava □ PVCCiego
Piezometer
Design
· -: -:-
·.·. .•.·
:::::
37.00
41.80
V T apa inferior
~ Derrumbe
[9 GW [J SP 1!1 Volcanico I] Retteno l~I PVC Ranurado D Grout
~ Bentonita
283
fl1 solutions :~:,-,=
DIREMAR
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Dri!!irig Company Maldonado Exploraclones
Drillers (Day/Nigh!): VGomez
Dr illers Helpers(Day/Nighl ):
Field Responsible {Day/Night): J. Choque
IIJlilll!I IJl!li
Weathefin~ Degreeofalleratlon
w2 Slgnuywcot""'""
WJ M<><l.W,;,ul"'-•~-d
A-1 Nor;·-,-.)
A -2 Slogt,Uyalt .. re-d
A-3 "od6<al<>lyAll<>•e-d
.o.., Ve,yA1tere<1
A·5 C0<>>pl"l"ly''lt"'""
j
1 g
c-• ~~Son
Client:
North (m) 7965756
East(m) 602857
Elevation(m)
Projection u ·1 M WGS 84 • Zona 18S
Rock Parameters
j i t I'I =~ 1-~ ~~ olG- 5!l!'§ol~G~l! l§ I F.5E
" I, I, I, I, I I, I, I, I
~~
1•;-~-~-
0 0 .---.- ; 0
•:'::l
RockStre~thlndex
R4 S"<>nu
DIREMAR
Si lala - Bolivia
~
1
BOREHOLE INFORMATION
Azimu\/Dip: 0 I -90
Bofe dal Sur
Drilling Rig Versadrill
Dril ling Melhod: DDH
Description
0.00. 0.3Sm. (ML). Limo 60%, A,ena •0%. Limo de ba)a
plas1lclda<1aconarenagruesayalgo<1ellnos,arena
suba"')ulO!<a,soco.colofQ<ispa<OO,ori(Jcnc<>1u,rin.aluv,al
0.35•1 .65m.(SWJ. Arena%%·Llm05%.a,ena<leg,uesa
an,..,, sulxlngulosa. se,;a. color gris
l.bS-2.2Sm.(GW) Oava100%,g,avabieng<a<la<la<l0
gruesaanna. angulos.a,pdlm1ctica.fl11oslavadosduran1e
lape,toradon
2.25-9.70m. (SWJ,Arena05%: f lno5%. arCflagruesaa
=~~~~:c"'a,sa1urada.po1m1cuca. sue"a·
ROCK CORE
LOGGING FORM
BOREHOLE Nu
DS-11
Bit Type Broca
casing Depth (m) o.o
Tolal Oc p1h(m)· 61
co.-e Diameter (mm): 96.0
·§
! {
o .... o?:~Rlc
1, 1,1 ,1,
of 12
Flush· Agua S1ar1 Date : 23 novicmbrc de 2017
DTW: 29 noviembre de 2017 Finish Date : 26 noviembre de 2017
Waler Table (mbs) I: 3.82 / II: 3.79 Logged by c. Espinoza
Diame1er PVC (mm): l .1/4"
Discontinui!Y_ Data
8 f 0 0 J I
!
!
!
j I
1
K(cm/s)
.§ 1~q~~q~~
; :;,;,;,;,;,:'
Additiona l
comments
0.00-35.00.
Ambiente de
oxldacl6n
LTC-01
~ I Well details
~ (Piezometers)
Discontinuity Types I Discontinuity Width (mm) I Types of infilling !Amount of infilling I Surface Shape I Surface Roughness Spaclng(mm) Geol~ Des~nPlezometer
VN .. ,...,,,..,( <, .J~•,ot)
N ,..,,_() ~ -2 Sm,n)
I SL .,...,,., z,.,,~
I Gy ~ -~"""
·••--·----~·1 •· .. .,~ .... ---- W ,;_,~201~) ,..... .... =?~-:..--=· ~ ::·;"','.':.;:;•=)
::-r-. . .;... ........ _...... ;;; ;:_:-. ~"')
-~•-,1
~ ~;
titi :::-~.,
Bi:c:l. -""""'"' • D n·o(j>o~.ei. O.O'>•>)
~~fu284
fl~ ~9l~Ji2_ns :~;.,--=
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraclones
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ):
Field Responstble (Day/Night): J. Choque
IIJliljl!I IJl!li
Weatheringlndex I [)(!gl'(!eofalteratlon
wa SV,t1y w eo1>>0red
Wl M.,,;IWco•hC•
A-1 NOAU .. r<><'.',)
A-2 Sl'llh"va1te,e<1
l,J.ode<alel'tAU.,.-&d
A-4 Ve,yAlte"'<I
A-S Com,-t .. lyA""'"''
i I i
i
c-•~-,
Client:
Nor1h (m) 7965756
East(m): 602857
Elevation{m): 4 427.00
Projec11on: UTM WGS 84 . Zona 18S
Rock Parameters
I ~ t f I =~ , -~ I ? 2~ - i=i .E o:G~:C§o:G~:C§ 5
~ I I, I, I, I I, I, I, I, I
II:
RockStre~thlndex
R 3 M<;,dlumSbOOQ
R4 5,,,_...,
RS Very s~'-'"11
~ -,
o O i 0
DIREMAR
Silala - Bolivia
}
I
BOREHOLE INFORMATION
Azimut/Dip: 0 I -90
Bofedal Sur
Drilling Rig Versadrlll
Drilling Method OOH
Description
•uo - 13.lSm. (CW). Grava 100%, blengradadade gruesa
a fl"". ang'-'osa a subang......,._,,_ s""""· polimlctk;a. flnos
lavado,.cnpc<foracion
ROCK CORE
LOGGING FORM
BOREHOLE N"
DS-11
of 12
Bit Type· Broca Flush · Agua Start Date : 23 novicmbrc de 2017
Casing Deplh {m): 0.0 DTW 29 noviembre de 2017 Finish Date: 26 noviembre de 2017
Total Depth (m) 61 Water Table (mbs): I: 3.82 / 11 : 3. 79 l ogged by: C. Espinoza
COfe Diame1er (mm): 96.0 I Diameter PVC (m m): 1.1/4"
Discontinuity Data
K (cm/s) 1a
!
o..., ~ ~:S:I
~
0
!,
f 0
J
f 0 ;
!
1 I
I
I 1~~m~~ Additional
comments :;; I Well details ! (Piezometers)
, 1,1, 1 J,J,J,J11
fil
I!)
~ -
IJJ.J
'=
LTC-02
10.oo l•·
Discontinuity Types I Oiscon1inuily Width (mm) I Types of infilling !Amount of infilling j Surface Shape I Surface Roughness Spacing{mm) Geolo_l!I Des'2_nPlezometer
I SL -·~ Z<_,N
IGy Gy"'""'
.,----~,I __ ""_,...,._.,,_ ew e,...,.,,.,.,.,w;oo (,201co\l
•·., .. ~ .. -~--~_,,_ w
"'·~:-~~":.."':" ~
- ·- ·..._..:::;:,-.z \IC
~ )
~ f tifi !;:_~,
!"I.,..,_,.,
Bl <ao,.,•
ea
□ F""o' ~~=~= --
285
fl1 solutions :~:,-=
DIREMAR
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Dri!!irig Company Maldonado Exploraclones
Drillers (Day/Nigh!): V Gomez
Dr illers Helpers(Day/Nighl ):
Field Responsible {Day/Night): J . Choque
IIJlilll!I IJl!li
Weathefin~ Degreeofalleratlon
w2 s,g,,uywcot""'""
W J M<><l . W,;,ul'"-•~-d
A-1 No r ;··,-.)
A -2 S logt,Uyalr .. ,&d
A-3 r,Jod6<a l<>lyAl1<,,&d
A -~ V e,y A1tere<1
A·5 C0<>>pl" l" lyAlt"'""
j
1 g
c -• ~~Son
Client:
North (m) 7965756
East(m) 602857
Elevation(m)
Projection u ·1 M WGS 84 • Zona 18S
Rock Parameters
j i t I'I =~ 1-~ ~~ olG- 5!l!'§ol~G~l! l§ I F.5E
" I, I, I, I, I I, I, I, I, I
,__
RockStre~thlndex
R a S 1<<>nu
1 000
O O i 0
0 0
0 0 O
0 0 o
~o 00 : , .. 0 0
0 0
0
I> 0 0 p O 0
DIREMAR
Si lala - Bolivia
~
1
BOREHOLE INFORMATION
Azimu\/Dip: 0 I -90
Bofedal Sur
Drilling Rig Versadrill
Dril ling Melhod: DDH
Description
:l l :.1=5 - 1~6.o,~om~. M(MLa). Ll moW%· Arena 40%. limode baja tlM. polim(c1k ;,, compacto. finos
ROCK CORE
LOGGING FORM
BOREHOLE Nu
DS-11
Bit Type Broca
casing Depth (m) o.o
Tolal Ocp1h(m)· 61
co.-e Diameter (mm): 96.0
·§
! {
o .... o?: ~Rlc
1, 1,1 ,1,
of 12
Flush· Agua S1ar1 Date : 23 novicmbrc de 2017
DTW: 29 noviembre de 2017 Finish Date : 26 noviembre de 2017
Waler Table (mbs) I: 3.82 / II: 3.79 Logged by c. Espinoza
Diame1er PVC (mm): l .1/4"
Discontinui!Y_ Data
8 f 0 0 J I
!
!
!
j I
1
K(cm/s)
.§ 1~q~~q~~
; :;,;,;,;,;,:'
m
t--------------
w
llJJ
Addit ional
comments
LTC-D3
LTC-04
~ I Well details
~ (Piezometers)
Discontinuity Type5 I Discontinuity Width (mm) I Types of infilling !Amount of infil ling I Surface Shape I Surface Roughness Spaclng(mm) Geol~ Des~nPlezometer
VN .. ,...,,,..,( <,.J~•rot)
N ,..,,_() ~ -2Sm,n)
I SL s .... , .. z,.,,~
I G y ~ ·~' "'"
·••--·----~-1 · - .. .,~ .... ---- W ,;_,~201~) cm) ..,_=?~-:..--=· ~ ::·;"','.':.;:;•=)
::-r-. . .;... ........ _...... ;;; ;::-. ~"')
-~•-,1
~ ~;
titi :::-~ ..
Bi:c:l. -""""'" '• D n ·o(j>o~.ei. O.o<>•>)
~~fu286
fl~ ~9l~Ji2_ns ~ ~
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraclones
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ):
Field Responstble (Day/Night): J. Choque
Il l!~1 ~i IE l*I l!II ~ ~ ~
Weatheringlndex I [)(!gl'(!eofalteratlon
wa SV,t1y w eo1>>0red
Wl M.,,;IWco•hC•
A-1 NOAU .. r<><'.',)
A-2 Sl'llh"va1te,e<1
l,J.ode<alel'tAU.,.-&d
A-4 Ve,yAlte"'<I
A-S Com,-t .. lyA""'"''
i I i
i
c-•~-,
Client: DIREMAR
Sila la - Bolivia
Nor1h (m) 7965756
East(m): 602857
Elevation{m): 4 427.00
Projec11on: UTM WGS 84 . Zona 18S
Rock Parameters
I ~ t ~ I I I - 1 •
~ .;;:: ;;;;;N f ~
,Z o:G~:':dlo:G~:C§ 5 ~
,l,l ,l ,11, 1,l,l,I
I-- I --
.
1·:--.:./
BOREHOLE INFORMATION
Azimut/Dip: 0 I -90
Bofedal Sur
Drilling Rig Versadrlll
Drilling Method OOH
Description
16.00 • 25.00m. (SP). Alene, 97%· Limo 3%. arena fina
~.:="'9fMIIM.SUClt/lAComp,,ctA.'<ll:ca-M~
ROCK CORE
LOGGING FORM
BOREHOLE N"
Bit Type· Broca Flush · Agua
Casing Deplh {m): 0.0 DTW 29 noviembre de 2017
Total Depth (m) 61 Water Table (mbs): I: 3.82 / 11 : 3. 79
COfe Diame1er (mm): 96.0 I Diameter PVC (m m): 1.1/4"
Discontinuity Data
DS-11
of 12
Start Date : 23 novicmbrc de 2017
Finish Date: 26 noviembre de 2017
l ogged by: C. Espinoza
K (cm/s) e
!
o..., ~ ~:S:I
, 1,1, 1
~
0
!,
f 0
J
f 0 ;
!
1 I
I ! ,~:,:,:,;"~~
Additional
comments :;; I Well details ! (Piezometers)
I II
·r ,,
w LTC-05
::::::::
1; LTC-06
RockStre~th lndex Discontinuity Types I 0iscon1inuily Width (mm) I Types of infilling !Amount of infilling j Surface Shape I Surface Roughness Spacing{mm) Geolo_l!I Des'2_nPlezometer
R 3 M<;,dlumSbOOQ
R4 5,,,_...,
RS Very s~'-'"11
I SL -·~ Z<_,N
IGy Gy"'""'
"----~·1 __ ""_,...,._.,,_ ew e,...,.,,.,.,.,w;oo (,201co\l
•-., .. ~ .. -~--~_,,_ w
"'·~:-~~":.."':" ~
- ·- ·..._..:::;:,-.z \IC
~ )
~ f tifi !;:_~,
!"I.,..,_,.,
Bl <ao,.,•
ea
□ F""o' ~~=~= --
287
fl1 solutions :~:,-=
DIREMAR
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Dri!!irig Company Maldonado Exploraclones
Drillers (Day/Nigh!): V Gomez
Dr illers Helpers(Day/Nighl ):
Field Responsible {Day/Night): J . Choque
IIJlilll!I IJl!li j
1 g
Client:
North (m) 7965756
East(m) 602857
Elevation(m)
Projection u ·1 M WGS 84 • Zona 18S
Rock Parameters
j i t I'I =~ 1-~ ~~ olG- 5!l!'§ol~G~l! l§ I F.5E
" I, I, I, I, I I, I, I, I, I
l::,.=:· .
. }:":-·
k:·.\
r.··· ...
1,:::.·
DIREMAR
Si lala - Bolivia
BOREHOLE INFORMATION
Azimu\/Dip: 0 I -90
Bofedal Sur
Drilling Rig Versadrill
Dril ling Melhod: DDH
~
1 Description
ROCK CORE
LOGGING FORM
BOREHOLE Nu
DS-11
Bit Type Broca
casing Depth (m) o.o
Tolal Ocp1h(m)· 61
co.-e Diameter (mm): 96.0
·§
! {
o .... o?: ~Rlc
1, 1,1 ,1,
of 12
Flush· Agua S1ar1 Date : 23 novicmbrc de 2017
DTW: 29 noviembre de 2017 Finish Date : 26 noviembre de 2017
Waler Table (mbs) I: 3.82 / II: 3.79 Logged by c. Espinoza
Diame1er PVC (mm): l .1/4"
Discontinui!Y_ Data
8 f 0 0 J I
!
!
!
j I
1
K(cm/s)
.§ 1~q~~q~~
; :;,;,;,;,;,:'
~
Addit ional
comments
LTC-07
~ I Well details
~ (Piezometers)
:: : : : : :•
=!iti:
:
::::: :::
2S.00-26 30m. (GP). Grava100%. grnva pobfcmcnlc _ • _
r.,~~!~:!~!~~::i:1f~~~~~~k>s=. , ona del Ill I Ii~:
Weathering Index De ree of alteration Hardness Discontinuity Types Discontinuity Width (mm) T of infillin Amount of infil li
w2 s,g,,uywcot""'""
W J M<><l . W,;,ul"'-•~-d
A-1 No r ;·-,-.)
A -2 S logt,Uyall .. ,&d
A-3 r,Jode<al<>lyAl1<,,&d
A -~ Ve<y Alte fed
A·5 C 0<>>pl" l" lyAlt"'""
c -• ~~Son VN .. .....,,,..,( <,.J~•tot)
N ,..,,_() ~ -2Sm,n)
R a S 1<<>nu I SL s .... , .. z,.,,~
I G y ~ ·~' "'"
.... -,----~·1 • · .. .,~ .... ---- W ,;_,~201~) cm) ..,_=?~-:..--=· ~ ::·;"','.':.;:;•=)
::-r-. . .;... ........ _...... ;;; ;::-. ~"' )
-~•-,1
~ ~;
titi ::: -~ ..
Bi:c:l. -""""'" '• D n ·o(j>o~.ei. O.O'>•>)
~~fu288
fl~ ~9l~Ji2_ns :~;.,--=
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraclones
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ):
Field Responstble (Day/Night): J. Choque
IIJliljl!I IJl!li i I i
i
Client:
Nor1h (m) 7965756
East(m): 602857
Elevation{m): 4427.00
Projec11on: UTM WGS 84 . Zona 18S
Rock Parameters
I ~ t f I =~ , - ~ I ? 2~ - i=i .E o :G~:C§o:G~:C§ 5
~ I I, I, I, I I, I, I, I, I
... .
~
V V V
V V
V V S
V V V
V V
V V S
V V S
V V vi
V V
r--,--+--+--+--+--+---t-+--+----t--+--+-----, I---!-- V V S
V V
Weatheringlndex I [)(!gl'(!eofalteratlon
w a SV,t1y w eo1>>0red
Wl M.,,;I Wco•hC •
A-1 NO AU .. r<>< '.',)
A-2 Sl'llh"va1te,e<1
l,J.ode<alel'tAU.,.-&d
A-4 Ve,y Alte "'<I
A-S Com,-t .. lyA""'"''
c-•~- ,
RockStre~thlndex
R3 M<;,dlum SbOOQ
R4 5 ,,,_...,
RS Ve ry s ~'-'"11
V V S
V V vi
V S
V V S
V V
V V S
V V V:
V S
V V S
V V
V V V
1
V V V j
V V
V V S
V V V
DIREMAR
Silala - Bolivia
BOREHOLE INFORMATION
Azimut/Dip: 0 I -90
Bofedal Sur
Drilling Rig Versadrlll
Drilling Method OOH
}
I Description
ROCK CORE
LOGGING FORM
BOREHOLE N"
Bit Type· Broca Flush · Agua
Casing Deplh {m): 0.0 DTW 29 noviembre de 2017
Total Depth (m) 61 Water Table (mbs): I: 3.82 / 11: 3. 79
COfe Diame1er (mm): 96.0 I Diameter PVC (m m): 1.1/4"
Discontinuity Data
DS-11
of 12
Start Date : 23 novicmbrc de 2017
Finish Date: 26 noviembre de 2017
l ogged by: C. Es pinoza
K (cm/s) 1a
!
o ..., ~ ~ :S:I
, 1,1, 1
~
0
!,
f 0
J
f 0 ;
!
1 I
I I l~I,J,J" ~ ~~ Additional
comments :;; I Well details ! (Piezometers)
::::::::
:!;! ;!;:
::;:;:;:
~ '. '. ~ '. ~ '. : '.
::;:;:;.
: '. ~ '. ~ '. '. :
JLJ :::::::·
Discontinuity Types I Oiscon1inuily Width (mm) I Types of infilling !Amount of infilling j Surface Shape I Surface Roughness Spacing{mm) Geolo_l!I Des'2_nPlezometer
I SL -·~ Z<_,N
IGy Gy"'""'
_ _ ".." -_, .-..-,.-_.,,~_ ·1 ew e,...,.,,.,.,.,w;oo (,201 co\l
• · ., .. ~ .. -~--~_,,_ w
"' ·~ :-~~":.."':" ~
- ·- ·..._..:::;:,-.z \IC
~ )
~ f tifi !;:_~,
!"I.,..,_,.,
Bl <ao,.,•
ea
□ F""o ' ~~=~= --
289
fl1 solutions :~:,-=
DIREMAR
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Dri!!irig Company Maldonado Exploraclones
Drillers (Day/Nigh!): VGomez
Dr illers Helpers(Day/Nig hl ):
Field Responsible {Day/Night): J. Choque
IIJlilll!I IJl!li
Weathefin~ Degreeofalleratlon
w2 Slgnuywcot""'""
WJ M<><l.W,;,ul"'-•~-d
A-1 Nor;·-,-.)
A -2 Slogt,Uyall .. ,e,d
A-3 "od6<al<>lyAll"'e-d
A -4 Ve<yAltefed
A·5 C0<>>pl"l"lyAlt"'""
j
1 g
Client:
North (m) 7965756
East(m) 602857
Elevation(m)
Projection u ·1 M WGS 84 • Zona 18S
Rock Parameters
j i t I'I =~ 1-~ ~~ olG- 5!l!'§ol~G~l! l§ I F.5E
,1 1,1 ,1, 1,
E---
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V V
V V V
V V
&---------i I V V V
RockStre~thlndex
R a S1<<>nu
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V ,,__,,_
DIREMAR
Si lala - Bolivia
~
1
BOREHOLE INFORMATION
Azimu\/Dip: 0 I -90
Bofe dal Sur
Drilling Rig Versadrill
Dril ling Melho d: DDH
Description
~1~~'!,~,2 8cm. muy .,,.-oso. zooa dc OOl>iliOOO. alto
~{;~•Je~~ 4cm. muy po,oso. zon:> do dobili0"'1, alto
32.00-32.00m.CJaslodedec,~!rlcodepumllarojo
bermeoo. rlca en especular11a. cblt3. cuarzoyvicklO
volc.anicoc,;ponjoso
~~!~'Je~~ 9cm. muy po,oso. zooa de <lebill<IOO, alto
34.60-35.SOm. Brechamli<1a.1eonlnaaponedep~oclas1os
ycomlenz~brect>avolc~nicamixllticacoodcl rllo,;de,oca
paJcozok:ayvok:anicamasMtig.Ja:p,cvalcccrlodoclla
~~~~1:~= dcooF:z-·m f'J'UY pomso. zona 00 dcbilid.a<I.
ROCK CORE
LOGGING FORM
BOREHOLE Nu
DS-11
Bit Type Broca
casing Depth (m) o.o
Tol al Oc p1h(m)· 61
co.-e Diameter (mm): 96.0
·§
! {
o .... o?:~Rlc
1, 1,1 ,1,
of 12
Flush· Agua S1ar1 Date : 23 novicmbrc de 2017
DTW: 29 noviembre de 2017 Finish Date : 26 noviembre de 2017
Waler Table (mbs) I: 3.82 / II: 3.79 Logged by c. Espinoza
Diame1er PVC (mm): l .1/4"
Discontinui!Y_ Data
8 f 0 0 J I
!
!
!
j I
1
K(cm/s)
.§ 1~q~~q~~
; :;,;,;,;,:",
UJ
Addit ional
comments
35.D0-49.10 m
Ambiente de
reduccl6n
~ I Well details
~ (Piezometers)
:: : : : : :•
=!iti:
:
::::: :::
:;:;:;:.
Discontinuity Types I Discontinuity Width (mm) I Types of infilling !Amount of infil ling I Surface Shape I Surface Roughness Spaclng(mm) Geol~ Des~nPlezometer
VN .. ,...,,,..,( <, .J~•tot)
N ,..,,_() ~ -2 Sm,n)
I SL s .... , .. z,.,,~
I Gy ~ -~"""
·••--·----~·1 • · .. .,~ .... ---- W .;_,~201~) cm) ..,_=?~-:..--=· ~ ::·;"','.':.;:;•=)
::-r-. . .;... ........ _...... ;;; ;:_:-. ~"')
-~•-,1
~ ~;
titi :::-~.,
Bi:c:l. -""""'"' • D n·o(j>o~.ei.o.o,-o••>
~~fu290
fl~ ~9l~Ji2_ns ~ ~
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraclones
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ):
Field Responstble (Day/Night): J. Choque
Il l!~1 ~i IE l*I l!II ~ ~ ~
Weatheringlndex I [)(!gl'(!eofalteratlon
wa SV,t1y w eo1>>0red
Wl M.,,;IWco•hC•
A-1 NoAn .. r<><'.'•l
A.2 Sl'llh"va1te,e<:1
"'-ode<a1el,AU.,.-e<:1
A,4 Ve,yAlt<, r•><I
A-S Com~t.,lyAU"'"''
i I i
i
c-•~-,
Client:
Nor1h (m) 7965756
East(m): 602857
Elevation{m): 4 427.00
Projec11on: UTM WGS 84 . Zona 18S
Rock Parameters
I ~ t f I =~ , -~ I ? ~2 - i=i .E o:G~:C§o:G~:C§ 5
, 1 1, 1, 1,1
V y
y y V
y y
y y V
y y y
V y
y y V
y y
y y V
t---------1 IV V I/
RockStre~th lndex
R S M<;,dlumSbOOQ
R S 5,,,_...,
R5 Very s~...-'11
V V
y y V
y y V
V V \Ii
V V
Y V V
V y
y y V
I/ I/ 1/1
Y V V
y y
v y V
v v vi
y y
V Y V
y y
y y V
y y y
V y
y y V
y y V
V V V __,,_.,
DIREMAR
Sila la - Bolivia
}
I
BOREHOLE INFORMATION
Azimut/Dip: 0 I -90
Bofedal Sur
Drilling Rig Versadrlll
Drilling Method OOH
Description
37.00- 40.00 m. verna1,re\JUlarcon <eHeoodesru1c1ta
secuni:1ar,a(r,:~nica)
39.00-40.00 "'· ZOO!I oonu)o i, ,~,gulai con ...~ 1cM"
""cundarla (local) Malrlz 60%, clastos 40 %. Claslos
alargaclosdear><lcsllasylavasba5alllcas.Oe39.00mon
adelan1eroca\lOlc3nlcaHuo:lal(planosdeHujo ,- 10")
Clas1ossubaogutososya1a,9t>dosde
40 .00-49.lOm. 40%declasto,;, mlxlll11coshas1a r;;~i,~0iu~';; ~;;:c:%r~alrl~ riod,-clUc:,
ROCK CORE
LOGGING FORM
BOREHOLE N"
Bit Type· Broca Flush · Agua
Casing Deplh {m): 0.0 DTW 29 noviembre de 2017
Total Depth (m) 61 Water Table (mbs): I: 3.82 / 11 : 3. 79
COfe Diame1er (mm): 96.0 I Diameter PVC (mm): 1.1/4"
Discontinuity Data
DS-11
of 12
Start Date : 23 novicmbrc de 2017
Finish Date: 26 noviembre de 2017
l ogged by: C. Espinoza
·ij K (cm/s) e
! {
o..., ~ ~~1 C
, 1,1, 1
~
0
!,
I
i
f 0
J
f 0 ;
!
1 I
I ! ,~:,:,:,;"~~
Additional
comments :;; I Well details ! (Piezometers)
;
JLJ Discontinuity Types I Oiscon1inuily Width (mm) I Types of infilling !Amount of infilling j Surface Shape I Surface Roughness Spacing{mm) Geolo_l!I Des'2_nPlezometer
I SL -·~ Z<_,N
I Gy Gyp,om
__ ".." -_-,..-.,.-_.~,,_ ·1 ew ,,...,.,,.,.,.,w;oo (,201co\l
•·., .. ~ .. -~--~_,,_ w
"'·~:-~~":.."':" ~
- ·- ·..._..:::;:,-.z \IC
~ )
~ f tifi !;:_~,
!"I.,..,_,.,
Bl <ao,.,•
ea
□ F""o' ~~=~= --
291
fl1 solutions :~:,-=
DIREMAR
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Dri!!irig Company Maldonado Exploraclones
Drillers (Day/Nigh!): V Gomez
Dr illers Helpers(Day/Nighl ):
Field Responsible {Day/Night): J . Choque
IIJlilll!I IJl!li
Weathefin~ Degreeofalleratlon
W 2 SlgnUyW<>O" >e<O<I
W J M<><l . W,;,ul"'-•~-d
A-1 No r ;··,-.)
A -2 S logt,Uyalr .. ,&d
A -3 r,Jode<al <>lyAU6<&d
A -• Ve,y A1tere<1
A ·5 C 0<>>pl" l" lyAlt"'""
j
1 g
c -• ~~Son
Client:
North (m) 7965756
East(m) 602857
Elevation(m)
Projection u ·1 M WGS 84 • Zona 18S
Rock Parameters
j i t I'I =~ 1-~ ~~ olG- 5!l!'§ol~G~l! l§ I F.5E
,1 1,1 ,1, 1,
E---
RockStre~thlndex
R a S 1<<>nu
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V ,,__,,_
DIREMAR
Si lala - Bolivia
~
1
BOREHOLE INFORMATION
Azimu\/Dip: 0 I -90
Bofedal Sur
Drilling Rig Versadrill
Dril ling Melhod: DDH
Description
45.nm. F<octu,a abie< la ,enena de arcila y Ox Fe. 1 cm <le
~bt>< IU< d. ~on <>Sl>I k dc!U<d st1 ""''""" .,1 , .. tumo cl,; "9'.fd
dU<ant.> la perla"3Ck'.H>
45.~ • ~ ~ X, ~r~ h,!',,,';:~';;,' ~ ~ '"' ';;')s °':'':8(gris
ROCK CORE
LOGGING FORM
BOREHOLE Nu
DS-11
Bit Type Broca
casing Depth (m) o.o
Tolal Ocp1h(m)· 61
co.-e Diameter (mm): 96.0
·§
! {
o .... o?: ~Rlc
1, 1,1 ,1,
of 12
Flush· Agua S1ar1 Date : 23 novicmbrc de 2017
DTW: 29 noviembre de 2017 Finish Date : 26 noviembre de 2017
Waler Table (mbs) I: 3.82 / II: 3.79 Logged by c. Espinoza
Diame1er PVC (mm): l .1/4"
Discontinui!Y_ Data
8
0
J
I
i
f 0 I
!
!
!
j I
1
K(cm/s)
.§ 1~q~~q~~
; :;,;,;,;,:",
Addit ional
comments ~ I Well details
~ (Piezometers)
I
<t=
Discontinuity Types Discontinuity Width (mm) T of infillin Amount of infil li Surface Rou hness Spaclng(mm) Geol~ Des~nPlezometer
VN .. ,...,,,..,(<,.J~•"t)
N ,..,,_() ~ -2Sm,n)
I SL s .... , .. z,.,,~
I G y ~ ·~' "'"
·••--·----~-1 · - .. .,~ .... ---- W ,;_,~201~) <"\I ..,_=?~-:..--=· ~ ::·;"','.':.;:;•=)
::-r-. . .;... ........ _...... ;;; ;::-. ~"')
-~•-,1
~ ~;
titi :;,:_~·-
Bi:c:l. -""""'" '• D n ·o(j>o~.ei. O.o<>•>)
~~fu292
fl~ ~9l~Ji2_ns ~ ~
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Maldonado Exploraclones
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ):
Field Responstble (Day/Night): J. Choque
IIJliljl!I IJl!li
Weatheringlndex I [)(!gl'(!eofalteratlon
wa SV,t1y w eo1>>0red
Wl M.,,;IWco•hC•
A-1 NoAn .. , ... :-,)
A-2 Sl'llh"va1te,e<:1
'-'-ode<Blel'tAU.,.-e(I
A-4 Ve,yAlte,-.,<1
A-S Com,-t .. lyAU"'"''
i I i
i
c-•~-,
Client: DIREMAR
Sila la - Bolivia
BOREHOLE INFORMATION
Nor1h (m) 7965756 Azimut/Dip: 0 I -90
East(m): 602857 Bofedal Sur
Elevation{m): 4 427.00 Drilling Rig Versadrlll
ROCK CORE
LOGGING FORM
BOREHOLE N"
Bit Type· Broca Flush · Agua
Casing Deplh {m): 0.0 DTW 29 noviembre de 2017
Total Depth (m) 61 Water Table (mbs): I: 3.82 / 11 : 3. 79
DS-11
10 of 12
Start Date : 23 novicmbrc de 2017
Finish Date: 26 noviembre de 2017
l ogged by: C. Espinoza
Projec11on: UTM WGS 84 . Zona 18S Drilling Method OOH COfe Diame1er (mm): 96.0 I Diameter PVC (m m): 1.1/4"
I
Rock Parameters
~ t
Discontinuity Data
;,: .§ g, 8. ~ K (cm/s)
>,~ £ i:5 'E~2'5.g, f ! Description ! o ~ ~ 8 ~ -g
5 ~ !, J ; j I ,;; II
V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V vi
V V
V V V
V V V
V V \Ii
V V
V V V
V V
V V V
I/ I/ ...,1
V V V
~'1..';'~:~·aE..'::::..~a~e,:~::i~naculferoconagua 45_79 80 MW CL.FE IR SR M
:~~;'~ Fractu<a abk,<ta ,.,11ena do, arclla 1 O,Fe, 0.5cm de
48 25m. Tramo de 4 cm muy pe,oso, zona de CICOiidad
47.(,5
47.72
w
"
CL.FE
" ~
~ r v v 49.00•50.36m. TramoslnrccupcraclOndcrr•.1<,,<1ra
1n<1;c1osoo,ocamuysua,,.,yblan!la,facllmen1e
dh,gr..gabl<,,l>ova<loduran:.,1aperforacl<lo
RockStre~th lndex
R 3 MedlumSlrOOQ
RS 5,,,_...,
R5 Very s~...-'11
V V V
v v vi
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V __,,_.,
50 40 - 61 .00 m, Coml<>nza aulotl<ecl\a <le riollla con clastos
rosaceo,;~uk:1alesya1.,.9a<los. Colorack'.lngrisrosaceacon
ql~. biol~a. fel<lespato po1as1co .. plagWXl!lsa SOdlca. roca
muy cornpacta e Impermeable. matrlz o1p1ocrlstaUna coo
dorr,lnloclclcklcsp
5-0.41!
5-0,59 "
'"
'"
'" JLJ Discontinuity Types I Oiscon1inuily Width (mm) I Types of infilling !Amount of infilling j Surface Shape I Surface Roughness Spaclng{mm)
I SL -·~ Z<_,N
IGy Gy"'""'
__ ".." -_-,..-.,.-_,~,,_ ·1 ew ,,...,.,,.,.,.,w;oo (,201co\l
•·., .. ~ .. -~--~_,,_ w
"'·~:-~~":.."':" ~
- ·- ·..._..:::;:,,:z \IC
~ )
Geolo_l!I
~ f tifi !;:_~,
Des'2_nPlezometer
!"I.,..,_,.,
Bl <ao,.,•
ea
□ F""o' ~~=~= --
293
fl~ ~9l ~.ti9_ns :~;..,--=
DIREMAR
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Drilling Company Maldonado Exploraclones
Drillers (Day/Night)· V Gomez
Drillers Helpers (Day/Night)
Fie ld Responsible (Day/Night): J. Choque
?l!11 l £ ~ IJl!li
Weathering Index I Degreeofaltef"atlon
Coo-tc<y
A-I NOA" "'"" ~-,)
A -2 SllghUy &1te<e<I
A -3 M otle<8le lyAUe,e<I
A-4 VeryAttere<l
A-5 Com pl@l .. lyA""'"''
i
l
~
i
l
c -• ~~,,,,.,
Client:
North{m) 7965756
East(m) 602857
Elevation(m) 4 427 .00
Projec tion UTM WGS 84 - Zona 18S
Rock Parameters
j g o ~ -o ~ ~ § 3 .~ I = N ~ ~ -"' I F
~ I I, I, I I, I, I, I, I
V V V
y y
V V Y
Iv v v
V V
V y y
E------1--, f Y V
V y y
Y V V
V V
V V Y
V y y
V V Y
V V
V V Y
y y V :v V V
V V
V V Y
V V Y
y V y
V V Y
y V
V y y
Y V V
V V
V y y
V Y V
V V V
:.'L',L
RockStre~th lndex
R3 M<;,dl....., S1'oog
R5 v~,y s~'-"'11
DIREMAR
Silala - Boliv ia
BOREHOLE INFORMATION
AzimuUDip: 0 I -90
Bofedal Sur
Dril ling Rig Versadrill
Drill ing Melhod OOH
i Description
~
50.40 m. r .-. oc ocuitc,ocorinanoo y a...-c"" = :~=~~~~o'!aoco;'/~0
~= osoe,oca
ROCK CORE
LOGGING FORM
BOREHOLE N"
Bit Type· Broca Flush· Agua
Casing Deplh (m) 0.0 DTW 29 noviembrc de 2017
Tol al Depth (m) 61 Waler Table (mbs) I: 3.82 /I I: 3.79
COfe Diame1er (mm): 96.0 I Diameter PVC (mm): 1 . 1/4'
Discontinuity Data
DS-11
11 of 12
Start Date: 23 novicmbrc de 2017
Finish Date: 26 noviembre de 2017
Logged by: C. Espinoza
·ij K (emfs) E
! ~ 0 .,, 2 ~i;;I C
, 1, 1,1
~
0
!
I
I
{
0
J
f 0 ;
!
1 i
I r [•· .. ••~
5t ;J,,J,J,J,,--
Additional
comments ;; I Well details l (Piezometers)
m
Jj
Discontinuity Types I Discontinuity Width (mm) [ Types of inlillinq !Amount of infilling I Surface Shape I Surface Roughness Spaclng(mm) Geol~ Des~nPlezometer •· .::::::;-·.....,.,1-: ';:;..-;:,,:::~~·~
~~~~~ ~ S@~~:~~) •• ::;,.·:.i::-·.::::=,-=...,,,1
~ 1!'
l::lfl '.:': - ~
·!"II·"•""""
~ ... "-
~ ~:~~-
294
fl1 solutions :~:,-=
DIREMAR
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Dri!!irig Company Maldonado Exploraclones
Drillers (Day/Nigh!): V Gomez
Dr illers Helpers(Day/Nighl ):
Field Responsible {Day/Night): J . Choque
IIJlilll!I IJl!li
Weathefin~ Degreeofalleratlon
w2 s,g,,uywcot""'""
W J M<><l . W,;,ul'"-•~-d
A-1 No r ;··,-.)
A -2 S logt,Uyalr .. r&d
A -3 t,J006fal<>lyAu..,e,,:,
A -~ V e<y Alte fed
A·5 C0<>>pl" l" lyAlt"'""
j
1 g
c -• ~~Son
Client:
North (m) 7965756
East(m) 602857
Elevation(m)
Projection u ·1 M WGS 84 • Zona 18S
Rock Parameters
j i t I'I =~ 1-~ ~~ olG- 5!l!'§ol~G~l! l§ I F.5E
,1 1,1 , 1, 1, 1
RockStre~thlndex
Ra s 1ronu
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V V
V V
V V V
V V V
V V V
V V V
V V
V V V
V V V
V V
V V V
V V
V V V
V V V
V V
V V V
V V V
V V V
V V
DIREMAR
Si lala - Bolivia
~
1
BOREHOLE INFORMATION
Azimu\/Dip: 0 I -90
Bofedal Sur
Drilling Rig Versadrill
Dril ling Melhod: DDH
Description
511.35-51>.35. Fract...-a irregular
511.67m r,acn..-.. c.,slloogitu<llnal.,l co,e. ,.biefta, ,e11,,na
dearcllla, oxlt>o<lellerro , mlde 58.00cmalolargo<lel
1C-S11gn
ROCK CORE
LOGGING FORM
BOREHOLE Nu
DS-11
Bit Type Broca
casing Depth (m) o.o
Tolal Ocp1h(m)· 61
co.-e Diameter (mm): 96.0
·§
! {
o .... o?: ~Rlc
1, 1,1 ,1,
12 of 12
Flush· Agua S1ar1 Date : 23 novicmbrc de 2017
DTW: 29 noviembre de 2017 Finish Date : 26 noviembre de 2017
Waler Table (mbs) I: 3.82 / II: 3.79 Logged by c. Espinoza
Diame1er PVC (mm): l .1/4"
Discontinui!Y_ Data
8
0
J
I
i
f 0 I
!
!
!
j I
1
K(cm/s)
.§ 1~q~~q~~
; :;,;,;,;,:",
Addit ional
comments ~ I Well details
~ (Piezometers)
. ·v
Discontinuity Types I Discontinuity Width (mm) I Types of infilling I Amount of infil ling I Surface Shape I Surface Roughness Spaclng(mm) Geol~ Des~nPlezometer
VN .. ,...,,,..,( <,.J~•tot)
N ,..,,_o ~ -2•m"')
I SL s .... , .. z,.,,~
I G y ~ ·~' "'"
·••--·----~-1 • · .. .,~ .... ---- W ,;_,~201~) cm) .... =?~-:..--=· ~ ::·;"','.':.;:;•=)
::-r-. . .;... ........ _...... ;;; ;::-. ~"' )
-~•-,1
~ ~;
titi ::: -~ ..
Bi:c:l. -""""'" '• D n ·o(j>o~.ei. O.O'O•>)
~~fu295
Centimetres
296
Cent/metros
297
Cent/metros
Centimetres
298
Centlmetros
299
Centimetres
300
Centlmetros
301
Geological record and piezometer installation design
DS-12
302
303
PIEZQMETRO
0
2
4
6
7
8
9
10
11
12
DS-12
Profundidad (m)
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
B
fw:::l
W]
Concreto
Relleno
Bentonita


9
Diametro Perforaci6n HO: 96 mm
Diametro Piez6metro: 2"
Relleno
Filtro (paquete de
grava)
12 12
Leyenda lnsta laci6n de Piez6metros
Filtro (paquete de grava)
PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
304
10 2!J 30 40 so 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centimetros
305
Geological record and piezometer installation design
DS-13
306
307
PIEZOMETRO
0
2
4
6
8
DS-13
Profundidad
(m)
PVC Ciego
Schedule 80
4.5
PVC
Ranurado
Slot 40
(1.00mm)
8.5
Concreto
[] Relleno
~ Bentonita
Diametro Perforaci6n HO: 96 mm
Diametro Piez6metro: 1 1 /4
9
Bentonita
Filtro (paquete de grava)
Leyenda lnstalaci6n de Piez6metros
0 Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
308
10 20 JO 40 50 60 70 80 90 100
Centimetros
10 20 JO 40 50 60 70 80 90 100
Centimetros
309
Geological record and piezometer installation design
DS-16
310
311
PIEZOMETRO
-2
-1
0
2
4
6
8
9
10
11
12
13
14
15
DS-16
Profundidad (m)
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
8 Concreto
Relleno
~ Bentonita
9
15


Diametro Perforaci6n HO: 96 mm
Diametro Piezometro: 2"
... ... ... ... ... ... ... ... ... . . . . . . . . .
-l32
.. ............ .. .. 0.5
4
15.5
Concrete
Bentonita
Filtro (paquete de
grava)
Leyenda lnstalaci6n de Piezometros
Filtro (paquete de grava) I I PVC Ranurado
PVC Ciego V Tapa inferior
Derrumbe
Grout
312
10 20 JO 40 50 60 70 80 90 100
Centimetros
10 20 JO 40 50 60 70 80 90 100
Centfmetros
313
10 20 30 40 50 60 70 80 90 100
Centfmetros
314
315
Geological record and piezometer installation design
DS-17
316
317
PIEZQMETRO
0
2
4
6
8
9
10
11
12
13
14
15
DS-17
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1 .00 mm)
Q Concreto
[] Relleno
~ Bentonita
Diiimetro Perforaci6n HO: 96 mm
Diiimetro Piez6metro: 1 1/4"
... ... ... ... ... ... ... ... ...
.. .. .. .. .. .. .. .. ..
.. ............... .
.. ............ .. ..
3
Relleno
Bentonita
PVC Ciego
Schedule 80
Filtro (paquete de
grava)
12.2
15.2
PVC
Ranurado Slot
40 (1.00 mm)
Leyenda lnsta laci6n de Piez6metros
D Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
318
10 20 40 50 60 70 80 90 100
Cent/metros
10 20 30 40 50 60 70 80 90 100
Centfmetros
319
10 20 30 40 so 60 70 80 90 100
Centfmetros
10 20 30 40 so 60 70 80 90 100
Centimetros
320
321
Geological record and piezometer installation design
DS-18
322
323
PIEZOMETRO
0
2
4
6
8
9
10
11
12
13
14
15
DS-18
Profundidad (m)
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
12
15
Diametro Perforacion HO: 96 mm
Diametro Piezometro: 2"
15
Bentonita
Filtro (paquete de
grava)
Leyenda lnstataci6n de Piezometros
Concreto D Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
Relleno D PVC Ciego V Tapa inferior D Grout
~ Bentonita
324
10 20 JO 40 50 60 70 80 90 100
Centimetros
10 20 JO 40 50 60 70 80 90 100
Centfmetros
325
10 20 30 40 50 "' 70 80 90 100
Centfmetros
326
327
Geological record and piezometer installation design
DS-23
328
329
PIEZOMETRO
0
2
4
6
8
9
DS-23
Profundidad (m)
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
5.9
8.9
Diametro Perforaci6n HQ: 96 mm
Diametro Piez6metro: 1 1/4"
... ... ... ... ... ... ... ... ... . . . . . . . . .
.. .. .. .. .. .. .. .. .. . . . . . . . . .
.. .. .. .. .. .. .. .. .. . . . . . . . . .
.. .............. ..
.. ............ .. ..
.. .............. ..
2
8.9
Leyenda lnsta laci6n de Piez6metros
Relleno
Bentonita
Filtro (paquete de
grava)
C Concreto [J Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
Relleno D PVC Ciego V Tapa inferior D Grout
~ Bentonita
330
CAJAS PORTATESTIGOS #
CAJAS PORTATESTIGOS #
FOTOGRAFIAS - TESTIGOS CORES
POZO DS 23
331
Geological record and piezometer installation design
DS-24
332
333
PIEZOMETRO
DS-24
PVC Ciego
Schedule 80
7.2
PVC
Ranurado Slot
4o (1.00 mm) 8.2
. . a D
nita
Diametro PerforacI.o.n PO.· 126 mm
Diametro Perfo raci6n HQ: 9. 6 "m m
Diametro P.ie zo metro. 2
DS-24P DS-24S

. .. .
■ . ·.·.·. · ...
. .
. . .. .
PVC Ciego
Schedule 80
2
PVC
Ranurado Slot
40 {1.00 mm)
4
Bentonita
Filtro (paquete de
grava)
4.2
Bentonita
6.5
Filtro (paquete de
grava)
9.2
Derrumbe
Derrumbe
Grout
334
Client:
ProjedNumber: 1175601
Recovery (%) ROD(%)
10
11
12
13
14
1S
Logged by: G. Claure
Draw by· J.Flores
Reviewed by: RaUIOrtiz
10
11
12
13
14
1S
Drilling and Piezometer lnslallation
[Frac1ure/ 30cm]
0 5 10 15 20
Water Level {mbgs)
~ Water Recovery {%) ~
§. s
0 25 50 75 100 £
l
10 10
11 11
12 12
13 13
14 14
1S 1S
Lithology
■ Nose recupera muestra QI GW G] SP
[a Dep6sitocuaternario
K(cm/s)
PIEZOMETER
DESIGN
Lithology
0 lfiA;-
1 ~/Yl
~.{~d<.
2 ··o ::o·
~.{~
3
10
11
12
13
14
1S
Piezometer
BOREHOLEN°:
DS-24
SHEET N°: 1 Of 1
Piezometer
Design
0.00
·.·.·.· 7.20
·. · · · 8.20
9.20
10.50
15.00
[I Concreto Q Filtro 3-5 mm. V Tapa inferior
llill Grava O PVC Ciego ~ Derrumbe
: Relleno l~I PVC Ranurado D Grout
~ Bentonita
335
fl~ ~9l~Ji2_ns ~ ~
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: SERGEOM IN
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ):
Field Responstble (Day/Night): A. Arancibia
IIJliljl!I IJl!li
Weathering lndex I Oeqreeoranera11on
wa SV,t1y w eo1>>0red
Wl ......,Wco•he•
A·1 NoAn .. r<><'.'•l
A.2 Sl'llh"va1te,e<:1
l,J.ode<alel'tAU.,.-e(I
A-4 Ve,yAlte,-.,<1
A-S Com,-t .. ly AU"'"''
i I i
i
c-•~-,
Client:
Nor1h (m) 7566309
East(m): 600864
Elevation{m): 4369.00
Projec11on: UTM WGS 84 - Zona 18S
Rock Parameters
I ~ t f I =~ , -~ I ? 2~ - i=i .E o:G~:C§o:G~:C§ 5
~ I I, I, I, I I, I, I, I, I
-
~
o--o }:,.~~:~
}~i
}I
l:.db~-~·
o-: 0
1:.db~-~:
;
'!;::-.
.
.
.
.
.. u .. .,_.
DIREMAR
Silala - Bolivia
}
I
BOREHOLE INFORMATION
Azimut/Dip: 0 I -90
Bofedal Sur
Drilling Rig Movll Drill - 80
Drilling Method: Dlamantlna
Description
0.00. 3.30m. MATERIAL 6RGAN1CO, colol negruzca.
p,e5eOC!adeNmo-; ~ arenas
3.30 . ,.som. ARENA POBREMENTE GRADUADA (SP):
=Ar<.:'fla- (~98%~). g ~ra,:o'~o ~~ano" ' .,....y ~no. muy su~~1a· Floos(2%) p,oceso de pertoraciOn. Mue-stra
480 · • .YOm. Nost,,ecup,,rarrue,,lra
4.9(1 • § 3pm. ARf NA P0RRf MfNTf GRAQIIAQACQN
RockS1re!:!11h lndex Frac:ure 0lscontlnultyTypes!DisconlinuityWid1h(mm)
R 3 M<;,dlumSbOOQ
RS 5,,,_...,
RS Vc,y s~...-'11
ROCK CORE
LOGGING FORM
Bit Type· Broca
Casing Deplh {m): 0.0
BOREHOLE N"
Agua
Total Depth (m) 15 Water Table (mbs): P: -0.78 / S : -0.46
COfe Diame1er (mm): 96.0 I Diameter PVC (mm): 50.80
Discontinuity Data
DS-24
of
Start Date 6 novicmbrc de 2017
Finish Date: 9 noviembre de 2017
l ogged by: G. Claure
K (cm/s) 1a
!
o..., ~ ~:S:I
~
0
!,
f 0
J
f 0 ;
!
1 I
I
I 1~~m~~ Additional
comments :;; I Well details ! (Piezometers)
, 1,1, 1
Amount of infilling / Surface Shape I Surface Rouqhness S~(mm)
__ ,....,...,._.,,_ ew ,,...,.,,.,..,w;oo (,201co\l
• · ., .. ~ .. -~--~_,,_ w "----~-1 "'':;P:'~~":.."':" ~
- ·- ·..._..:::;:,-.z \IC
~ )
Geo~
d,,C ··---
p s
'=
400 :•· :Ii
.D,e.s_~n Pi e~ometer lil <ao,., •
~ea =-
i.ooo<..-~> ~~=--
336
fl 1 ~91l} .t i9_n ~ :~;.,---=
DIREMAR
Client:
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
Dri!lirig company SERGEOMIN North(m) 7566309
Drillers (Day/Nighl): East(m) 600864
Dri llers Helpers(Day/Nighl ): Elevation(m)
Field Responsible {Day/Night): A. Arancibia Projection u ·1 M WGS 84 - Zona 18S
Rock Parameters
DIREMAR
Si lala - Bolivia
BOREHOLE INFORMATION
Azimu\/Dip: 0 I -90
Bofe dal Sur
Drilling Rig Movil Dr ill - 80
Drilling Melhod: Oiamantina
ROCK CORE
LOGGING FORM
Bit Type Broca
casing Depth (m) o.o
BOREHOLE Nu
Agua
Tolal0cp1h(m)· 15 Waler Table (mbs): P : -0. 7 8 / S: -0.46
COfe Diameter (mm): 96.0 Diameler PVC (mm): 50.80
Discontinu ity Data
DS-24
of
S1ar1 Date 6 n ovicmbrc de 2017
Finish Date: 9 noviembfe de 2017
Logged by G. Claure
! ~ I l E * 1 j ~ I .r <>00('<; _,_., ('I.) >, -~ = r,actorc "! & f f ,i ! ~ K (cm/s) Additiona l ~ Well details ,! e ~ ~ D ;; j o ~ -g, fl - i=i f ~ Description 8" 130cm S ~ ~ ~ 2; g_ -~ comments ,! (Piezorneters)
.,_ ~ ~ ~ ~ m I ~ Ji :t. 0 JG [i! ;':' § 0 :£l ~ ;':' § s ~ 0"' ;? >'.'R g J ! l j ~ Jr
0::0:: 3-: 0 ~ ,_ ] p 5
~
D~
l:::-.=.-·,
.}::··
6.30 · 7,80m. ARENA POBREMENTE GRADUADA CON
GRAV AS (SP): Arenas (55%). tinas, muy sucllas. col<>" gr!s
nogru«cas·Gravas(45%).svbsangvlosasasu1Jr"cdon<lcadas
~~posiCiOnnclC<OQCnea.conOiJmclrosmcno,csa
7.80 - 8.00m. GRAVAS BIEN GRADUADAS (CW)
Grnvas(q()'!(,),angulos;!srnn(lramctrosmcno,csa4cm
Arenas (10%), muy llnas. lavadas duranlc cl ,,.-occsodc
~~~o%n ARENA P06REMENTE GRADUAOA CON
GRAV AS (SP): G<avas(3S%). angvlos,,s C<lfl d!amclros
m<:norcs a 6<:m. Arenas (6~%). nuy Mas. coiorgr1s
negruzcas, mvysuelras
Sin presencia de
frac turamlento
zona de arenilla
lavada
120 : -·
s20 ::F
.....-,\ 1. ·. .· ·..·· 11 ,,, -_;;..,9,,. .., .•1 , ~~~~:-J
9,J l 1o l 1< I 2 l o,,s l MI o I o I WJ I Al I CJ I Rl I o II I I f/ •.: ~i'ilf_fJ_"
·:-: , .. i;::~~~
• -.-: ,~;-t~l
Weathering lndex.J. Oeoreeofalleralion I Hardness I RockStrengthlndex I fracture I Dlscontlnul!yTypes l OiscontinuityWidth(mm)I Tvoesotinfillino IAmountofinfillin I SurfaceShaoel SurfaceRou hness I Spaclng{mm) I Geology I OesignPiewmeter
W2 Slgt,UyWC<l<""' O<I
WJ """"-ww,.._•~-d
A-1 NoAn..,(l, ·st>)
A -2 Sl>gl>Uya " "'&d
A, 3 "OO<lfal<>lyAll"r&d
A•4 Vo.-yAtte,e<1
A·5 Comp"'l"lyAlt..-.....
VcrySon
~:; Son
R 1 srronu
,., p,..r,"", ··<• '" '"" '"')
r.2 r, ac,.,,~'<10 •5"'"'' -'m)
F-3 VoryFo <>CIU<od(6-10fmcUm)
•< hi F<od ... 00(1),:,0<,oel.11'1)
F·5 F,mo.,<0<!{>20"BCl -1m)
VN V..,,,N,,,ro,,,( <, .Jn"'t\
N NOf<OW03•2SfM1)
~ .. .:C,.,::.:z:• 1w-- ::~•-• •~
"'-~~=-~""=' ~ ::·;"',;':,:i•=) ~ ;:.:._-=:=-· •-:,,,,::.::~.,.,. ~ ... '.-":•·:·• Id,"
• ______,.,.,..,,.!-,1
"• "~"··· i::-:. - "'•
D a,,;.,,'P•~.ei.o."'•••)
a:::-;-:;:;, e ;:.~~:::""
337
fl~ ~9l~Ji2_ns ~ ~
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: SERGEOM IN
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ):
Field Responstble (Day/Night): A. Arancibia
IIJliljl!I IJl!li
Weathering lndex I Oeqreeoranera11on
wa SV,11yweo1>>0red
Wl ......,Wco•he•
A·1 NoAn .. r<><'.'•l
A.2 Sl'llh"va1te,e<:1
l,J.ode<alel'tAll.,.-e(I
A-4 Ve,yAlte"'<I
A-S Com,-t .. lyAU"'"''
i I i
i
c-•~-,
Client:
Nor1h (m) 7566309
East(m): 600864
Elevation{m): 4369.00
Projec11on: UTM WGS 84 - Zona 18S
Rock Parameters
I ~ t f I =~ , - ~ I ? 2~ - i=i .E o:G~:C§o:G~:C§ 5
~ I I, I, I, I I, I, I, I, I
f-
[
.. ·.·
··· ··
~:///:
f-
I- ·
1----'-.
[ .
·<-··:..·
::·/(:
DIREMAR
Silala - Bolivia
}
I
BOREHOLE INFORMATION
Azimut/Dip: 0 I -90
Bofedal Sur
Drilling Rig Movll Drill - 80
Drilling Method: Dlamantlna
Description
10.00 • 12.50m. ARENA f>OBREMENTE GRADUADA (SP)
Arenas(98%).granotlnoamooio,muysuel!ascolorgrls
""9'uLcas: Finns (2'1<,). Mucs1,~ ,ccogidaooca,,,uc t~
12.50· 13 80m. ARENAPOBREMENTE GRADUADACON
GRAVAS (SP): Gravas(40%), ar,gulosas con <1•ame1ros
menores a 4cm. Arenas (60%), 9rano lino a medlo. colO<
grisr.cgruLCas. muysvcUas
13.BO· 15.00m ARENAPOBREMENTE GRADUADA (SP)
Arenas (98%), grano flno a me<lio, muy sueltas coio< grls
n;:gruLCas·Flno,;(2%). Mucslrarccogldadccanalcla
ROCK CORE
LOGGING FORM
Bit Type· Broca
Casing Deplh {m): 0.0
BOREHOLE N"
Agua
Total Depth (m) 15 Water Table (mbs): P: -0.78 / S: -0.46
COfe Diame1er (mm): 96.0 I Diameter PVC (mm): 50.80
Discontinuity Data
DS-24
of
Start Date 6 novicmbrc de 2017
Finish Date: 9 noviembre de 2017
l ogged by: G. Claure
K (cm/s) 1a
!
o..., ~ ~:S:I
~
0
!,
f 0
J
f 0 ;
!
1 I
I
I 1~~m~~ Additional
comments :;; I Well details ! (Piezometers)
, 1,1, 1
V
•.
•'
p s
~ ,t,J
.. ,, .. - · ,~
:..J
.• :_.,;•
RockS1re!:!11h lndex Frac:ure Discontinuity Types I Discontinuity Wid1h (mm) j Types of infilling !Amount of infilling j Surface Shape I Surface Roughness S~(mm) Geo~ Des~n Pie~ometer
R3 MedlumSl,OOQ
RS 5,,, .....
RS Vc,y s~ .... '11
"----~·1 _ _ ,....,...,._.,,_ ew ,,...,.,.,..,w;oo (,201co\l
• - ., .. ~ .. -~--~_,,_ w
"'·~ :-~~":.."':" ~
- ·- ·..._..:::;:,,:z \IC
~ )
d,,C ··---
.,._ R e-,.,• ~ea =-
i. oo o<..-~> ~~=--
338
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-24 P
0 Suelo (Hz A): material suelto
limo•arenoso con abundan1e materia
- \ org~nica co~~~:~:~~~~~n horizon1e /
Suelo (Hz B) :Suelo limo arenoso de
- coloracion marron oscura con materia
orgilnica en su composiciOn y algunos
c1astosrocososdediferen1e
granu1ometria
-
2
-
3
4
-
5
-
6
- 7
- Arena Gravosa: Arenilladegranofino
8 con granos de Oz subredondeados,
claslos mil im€1ricos de plagioclasa
piroxeno yen menor grade de bio1ila,
precencia de bolones de andesita y de
ignimbri1a (de hast 10 cm) frecuente
9
presenciadegravadeentre 1 a 2cmde
diilme1rodediferente litologia
-
- 10
-
11
-
12
-
- 13
14
-
15
;tt••••••·················••·•·•·:: m**a**:*i*~**im***·
i*********** *··*·*•*•*: !**********************: ·.·.·.·.·.·.·.·.·.·.·.·
Fractu res/30 cm
"N' u, "r--'
0 c:i c:i ci
I I I ,I I
REFERENCIAS
[I] ArGrv
■ Sl (A) rn Sl (B)
339
SERGE~ MIN
ll!DMCIOOl!Ot.COicollllNmlO
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-24 S
0
0.2
04
0.6
0.8
1.2
14
1.6
1.8
2
2.2
24
2.6
2.8
3.2
34
3.6
3.8
4
Suelo (Hz A): material suelto limo-arenoso con
abundante materia orgtinica correspondiendo a
un horizon1e A de suelo (MWH)
Suelo (Hz B) :Suelo limo arenoso de coloraci6n
marr6noscuraconmatcriaorganicacnsu
composici6n y algunos clastos rocosos de
diferentegranulometria
Arena Gravosa :Arenilladegranofinocon
granosdcOzsubrcdondcados,clastos
milimetricos de plagioclasa piroxeno yen menor
grado de biolila, precencia de bolones de
andcsitay dcignimbrita (de hast 10cm)
frecuente presencia de grava de enlre 1 a 2 cm
dcdiclmctro dc difcrcnlclitologfa
Fractures/30 cm
"N' u, ",.._'
ocicici.-
REFERECIAS
[J] Ar Grv
■ Sl(A)
[TI Sl(B)
340
z i
- !!! :E l
~ j w~
C.:, lll
r::t: ~ ewn i~
11
i ~
FOIUIATO DE REGISillO GEOLOGICO DE TESTIGO DE ROCA
DDH (DIAJ.IElffl'.'iA) 1 Pozo de pE'rfornd6n ;\o.: _D..5 _ ,2-.::+- Y
I T:an;o!'\o., _____ j c,;•~"' D· ~;;_''fl, ,t.Q I HoJaNo.: _t de ..:3
I
. D-fOR.,lACI XDELco:-;TRATO --·--·- - r..FOR..\L\CIO:-.SOD1U:UPOZOD:CPERF6RAc16:-.. DIRFMAR --~--=--- -- N'i.n,,.rodeproy•c1,:,, --·--
c._ ompaniadepe.rforac~n.5/" ~ -"7 ,. N0t1e(,n): ;z._!;,-(-'.:(.:..-~!J.. ___ _ C?._~~nta~on!inc1.:0U:0~ - - f-0nc.._-~,.--------F===---""-'=-L-L--'---'--'-<-L~-I
•erforadores {d1alo.ocl1e): ~!i~~~~-·--- L111,:-ac10:1: .--- OTV'-1"
l~~,,!d>r): lE!e>~. ~.~' .6'<J. . :-. -.,.-.------.- !>i;i(;_uina.dc foraciOn· T~ir~:iric11 (rubns)-. r~T~~-~ ,--,m, .,,,, , ,, ~ cc _-L; -",_, "',,. - -_ -~ -+_,_ -=n.m.;· :::•=·•=v~,.,.,,~;-~;.======1·~-~,,:~~~~~~=~~~~=~=====j
! t I j I ··-··:··r i "~ .. :I DESCRIPCIO~ i·j 1 ni~r,trrrTTI"-T1t ii 1
§ § ' [ • ~ ~ ! I ! I - ,! ~ i ~ ~~ ~ t .fr
;.-. ;.,: <),( "" • ..S .... μ. ] ;;. F
l((,:,,n:,~ Comet"lta'>Os~• f~'!~o!;1tt~zo
1<15
, 1~-l':-1~ ~l 'ti'I;- 31 ~I ., 1~1 C
"
,,s
_,,.l~l"'J.-,1-l:;:l ·')J
' "
OJ > ':.-I ~I ::, 1~1"
·.3
~!'I
f.,
1-;;l~~H~I, "I 01 ·I ; 1 :;1:::
'1,Si
J.,,•~q~.: ~r-<';-i,--:- S."'-'/o ,,.,;.A• ,rrf't'r ,-n,,.~-~
~"rt. ,..,,, ee,//1'•/,.,.-,,,._ 'h'~f'la.1 ?'"To·rt'J Y P,;..,/,,)
~ fonr n•~,,,..1· :. --.o ai.,,fld:::i1'rJ, d • •. -;y,;
·9:-
..'.'
" 1- J
/"'.,_ /,jt'I, ,~, ,, ""/e,h'~ o,, I.~ /3
·L. , /,,,o,,., ),Jr.o A">•"·:_:,;:, , ,,,. ,,,
.'\ :, ;;i]r 11.-::.· r/ 7::0J O ~.,,f=c~ e ....
,. I t"> <t,Q n1 l-,~mn a u•r~$,-- W ,:;,cr,c
"'"d' ... I 1,,0 .-: " dr~" -J.,,./_ ,.:i.6,..,,.,,
c,ualn.Ld-~ ~ 2 ·m tYt. d')b.!'Af~ i, {,:,
ru- (ca1df~•fu e 'd""'"'°""'ic...r e,,, t)(IICI·
Drl .. t c•,.. o"Jt:tdor·,l'lr:..,, jenart:,J 1)1,1 j 't,•j•ut~-
Jl.S. Jo.. av,uff(',. ,:Jnt..sfl....,fa. c/,,.,fh di 6;J
,ub"t,lt~,:,r,./.,.,,1~ du4.c,,.~~ H-~.J p'::_u,Jc..l.'l'.S
dte~"'-1.-w: ~ /J,,.,.-;,tl'noJ. f•-cCJ nlfc,,,oc1ru
..=,,,._•/ 't. It 'll'M re (''T,.VCf:•
e.-lli.~~-o;! -: l&l ,zl ~ I -!- BH~lc~lii ! ; 1.·: :--;:-.. --1-,-i.- fR<looodo-1:, GradodeUff.lcioo ::;;/:..~ .. .-.... .....-
II.. ;,.~ ,,_ ""'
'('<_r~rd-.
I('<• -;, f<'"
1..1 a.,,_,,
f't,n 1,.,.,,
rit-vt.
l( """
No e.<1.1/rr. 4trr.,"
111t1,,,d:, -ff'..J
1~~:t.~ 11[~: .. !~=-l~~J[= [t~~- 1~ !l,~tf ;;~. r~ ii~~~~~ii-· w, !fa<a
..,..., ~~ :~~-
-~_:'•
[l\"•---- 1>:,Cl...-J
W•-{~-:~l<n) ~·:=.:;_~~;:.!.,-) ~=-:;~.. . ;~
341
z i
- !!! :E l
~ s wi C.::, l!J
ai= ~ wi u, ~
. ... FOR,LHO DE REGJsmo GEOL◊GICO DE TESTIGO DE ROCA T Pozo de prrforacl6n l'io.: D..5. 2 4 r
'.Z. de 3 ~ . If------- DDll (D_I ,\ :\1_E_:<_iT~:I<-_A_l ____________. ..j
D!RFl\lr\R~_""!.rodeproyttto: I T.>.tt:.::S:o., ___ ~=iClin1e: pif?ftY/48 I flojaNo. :
I
~ D: FoR.,lAC( ;,.:nEL CO'\TRATO IXFORi.'\IACl6:XSOBR.EJ::LPOZODEl'E.MQRACl6:-i _ _ -- _ _ --
1~amadeperforaci611 .s,C(? 0/$11,t NQr'l((μ,}c 156&.309 • ~p: --f.C.F=~""="'-=""=·•:..·.=.c....;:L.::..."-''-'.C'---1
~~~e) -- :~~:·.~~-fjf~---------- ~=;~;;tb-~•m;(n,)'10$ ~::U,.itica(mC-~- - ~:~~~~Q~~/L
~e&np<>(dia.nod>o!), ~VT/11· U/t;f'J:f r/tf S J/(l_ Di,e,n,:troPVS(p.,l.!PJ.u): R"° ~., ' ,. ' ' ,~o,&T I Lo_, -- - o==c,o, i 1~r171·11~,1T'1i~tl11«-.. "111
1
IH i 11:j;il .J, ] J I ... I 1-1 & ~ 1 .; 1-U Ii• i
C'omn,1aio,ac£oonale11~~
ij~~ ~½ "'-· -~-~ ~~ o
<:I e;~J-0,o,',;.
o.J' ti :; ~ o;[ ': :
~: o· "1
0 I ;• ~ ~ ~I ~ t,a,-,, > O"lt11o ,..,.,v'~f'l e,,,,-,, h.:,r;,11eJ de
o ,;.' .:;• :; Q< 1 .. •: •t""' "d,r, {,',,_ < 'l ,~v>, /"'- cl A,,/~ ::z:; 1.\ ~; '/. .a 2cm /,._ n--(_,.,. '/tL .dt en-1st""- .,,#{,-.fl ·, ... ~J
.. ,, -,_ ·, ~ r.J/' 11-,,...:.ie.
o I "" ..., <'' ~ •
~ "l:; ""-
"'?
"'I" I O 1-1 ,;: I';'! -I O I 7
1- l1t1"-'- o·~I ~- 1::
f,.-,,.;;j;_<_
,. P: i"'
~ , ~ -•;-rll'.
"~l:i "'\ ''I :-1 ~ ~l ~
~
~
5bl~I rl<'I ~; ~ I ~
ff'll(fr\Ll~ C!/';-Cot::ft ... ,st Ct'.>S of. r,df ·, ... ."e. ta,,,.1 ,i, .. dl ~-<ore J1/\o {D.1~~ .. ;e,~jtl.f_,,.
<::, I ,• ... (J,._f1fr.) r.,.,.,t r-nt:, ."t, .... vr .. J.J>-r~_,.i',-,,J
.. • .:i..._ "'"~'- '/,"''"' b,,,,1 1u·n... y Qr,d,•.r -1,cc....
••~• N, A,,/f\... -=-,,, ¢ Jrendo /4.. a.v,.,
c/1 lo"-.Q 17'1.n u-11
"
r,.,.f,,. .,,. I~ n. 11!'.-.,//c.,_ j""'": ~Ja... c .. .,..,
e/,:u-fo,. .r ..,L,...,odof\ Din,d' · r OU
l\ JJ.6·~---;.;-,:;.,;-~ .. .....,,d~I
f 90"
i,,vl 5( l""rC/t"t .,..C..i
"""· clt:ue
.,./ur.,,rrl,11c.,1.:/,
~ elM11 .. ...t, , _~,,:,.'/'~
k,,
t.. ho;iJQ at.t..
/4,, e.e-rtld.
·~n CU '7 c ...
7 ,,,.,, . .,,1~
•"',Fl.J..}",
~-n ch,r,,_,,i/,l'LAJJ/
---.,da... °"-..2.c
:-;'.!:.:.,~
~ Grado de ~lu,.-arun.
.... ,--~•:!••• .. )
C •--.. -'--hb--.C ,,,,._,"°..,._ ,.__.,,,_ _ '::;:}.!," .__,.,,.~
.., ,, """"'
:~~~
-~· r~==~~ !:!f:';.":':'-
Cal~i-.,-., ..
cc..i:oo. ......., -_,. .-._ . . (.\~--"'·
l!~l.~£61
F.l ............... l"r_...
~~ . 7- \~if= it~= 11~ !~~tr ~;i t~s;· l}::~~=f~~-
(I.!.~~·- YK•-,·....,...(-ca,;...,..;Ny,.._to~~
t.1'·------ t>.:X•l.,.)
W•-l'1·~•ll-,
:u --..-C::l ◄ l-) c:--c•.,.t~ ~=-:.:::'"'0~
342
---------
l l ~ I! f ,. > ;:, ;:.
1t'iU'1i i /3~ /2,,.J
hl- L ,. ,,,- /3,.R • ' I· Ill 11
2
i~IH~ t I o,,~
;L-ll' • &'o'.l ./f
1111if ~ o C 00 i ,~v f 0
v,/5 w3-~/5
nH! A~ -~ IH' C [ ,<
' r~ ,) r•o
1:-
? ...,
~ ~ t
"'-- ' ; '
" -;:
rn ,:,_ .. , ~ r"'
~ ~ ii
" ~
;--
SERGE~ MIN
m\lEIRl.~11«» l!lllEIC)ll.000«:IC) [ij]O!MIEIRl.lC)
D-1nudt la "'"""'
j
r
~
l
d1,
"!
l1--
1f i
:~ :
I~ !
z
~
i::J
343
Cendmetros
10 "' 30 40 so 60 70 80 90 100
Centimetros
344
345
Geological record and piezometer installation design
DS-25
346
347
PIEZQMETRO
DS-25
Diametro Perforaci6n HO: 96 mm
Diametro Piez6metro: 1 1/4"
0 Profundidad (m)
... ... ... ... ... ... ... ... ... . . . . . . . . . .. ............ .. ..
10
15
20
25
30
35
40
45
50
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
Concreto
Relleno
Bentonita
44.7
52.7
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
... ... ... ... ... ... ... ... ...
.. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. . . . . . . . . .
... ... ... ... ... ... ... ... ... . . . . . . . . .
... ... ... ... ... ... ... ... ...
.. .. .. .. .. .. .. .. .. . . . . . . . . .
... ... ... ... ... ... ... ... ... . . . . . . . . .
.. .. .. .. .. .. .. .. .. . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. . . . . . . . . .
.. ............ .. ..
.. ............ .. ..
.. ............ .. ..
... .................. ... ...
.. ............ .. ..
.. ............ .. ..
.. ............ .. ..
.. ............ .. ..
.. ............ .. ..
35.05
40
Leyenda lnstalaci6n de Piez6metros
Relleno
Bentonita
Filtro (paquete de
grava)


Filtro (paquete de grava)
PVC Ciego
I I PVC Ranurado Derrumbe
V Tapa inferior Grout
348
10
-~
~
DIREMAR
10
20
20
JO
CASE:
JO
40 50 60
Centimetros
DIREMAR
02 FROM (m):
40 50 60
Centfmetros
70 80 90 100
CORE: DS-25
6.69 TO (m): 16.00
70 80 90 100
349
10 20 30 40 50 60 70 80 90 100
Cent/metros
10 20 30 40 50 60 70 80 90 100
Centimetros
350
10 20 30 40 50 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centfmetros
351
10 20 JO 40 50 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centimetros
352
353
Geological record and piezometer installation design
DS-27
354
355
PIEZOMETRO
DS-27
0 Profundidad (m)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
Concreto
Relleno
Bentonita
21 .82
29.82


Diametro Perforaci6n HQ: 96 mm
Diametro Piez6metro: 1 1/4"
II
PVC Ciego
Schedule 80
9.04 ____ _
17.04
PVC
Ranurado Slot
40 (1 .00 mm)
------
Leyenda lnsta laci6n de Piez6metros
Filtro (paquete de grava) I I PVC Ranurado ~
PVC Ciego V Tapa inferior D
3
18
20
Relleno
Bentonita
Filtro (paquete de
grava)
Bentonita
Filtro (paquete de
grava)
Derrumbe
Grout
356
10 20 30 "" so 60 70 80 90 100
Centimetres
10 20 30 "" so 60 70 80 90 100
Centimetres
357
10 20 40 50 60 70 80 90 100
Centimetros
10 20 40 50 60 70 80 90 100
Centimetros
358
359
Geological record and piezometer installation design
DS-30
360
361
PIEZOMETRO
0
10
15
20
25
30
35
40
45
50
DS-30
Profundidad
(m)
PVC Ciego
Schedule 80
33
PVC
Ranurado
Slot 40
{1.00mm)
45
Concreto
[] Relleno
~ Bentonita
Diametro Perforaci6n HO: 96 mm
Diametro Piez6metro: 1 1 /4
24.3
27.5
50
Relleno
Bentonita
Filtro (paquete de grava)
Leyenda lnsta laci6n de Piez6metros
D Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado !5jl
V Tapa inferior D
Derrumbe
Grout
362
CAJAS PORTATESTIGOS #
CAJAS PORTATESTIGOS #
CAJAS PORTATESTIGOS #
CAJAS PORTATESTIGOS #
FOTOGRAFIAS - TESTIGOS CORES
POZO OS 30
4
363
CAJAS PORTATESTIGOS #
364
365
Geological record and piezometer installation design
DS-31
366
367
PIEZOMETRO
0
2
3
4
6
8
DS-31
Profundidad
(m)
~
PVC Ciego
Schedule 80
PVC
Ranurado
Slot 40
(1.00mm)
8
Concreto
Relleno
Bentonita
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
■ 1.56 y
6
8
Bentonita
Filtro (paquete de
grava)
Derrumbe
Leyenda lnstalaci6n de Piez6metros
□ Filtro (paquete de grava) I I PVC Ranurado ~
□ PVC Ciego V Tapa inferior □
Derrumbe
Grout
368
Client:
ProjedNumber:1175601
Recovery (%) ROD (%)
I ~ § I 0 ~ £ ~ 0 ~ £ ~ ! ,,,,,1,,,,1,,,,1,,,,1 1., .. 1.. ,,1, .. ,1., .. 1 i
1 -
2-
I
I 3 -
II 4- 4-
5 -
,-
7 - 7 -
Logged by: A.Hilkens
Draw by· J.Flores
Reviewed by: RaLllOrtiz
~
DIREMAR
Drilling and Piezometer lnslallation
[Frac1ure/ 30cm]
Water Level {mbgs) K (cm/s)
~ Water Recovery {%) ~
~ ~ ~ ~ ~ M N g g q q
0 5 10 15 20 0 25 50 75 100 £ w w
.. 1.. .. 1.. .. 1.. .. 1 ! .. 1.. ,.1. .I l "'""'" ""'"'" ""'""' 0
1 - 1 -
'9' 1.56
I
2- 2-
3 - 3 -
4- 4-
5 - 5 -
,- ,-
7- 7 -
Lithology
tJ SW GJ Tufo volc<l nico
PIEZOMETER
DESIGN
I i Lithology
1-:-:-:-:-:-:-:-:
,- 1111 I
3- .•.•,·.·.·.·.·.
4-????
. I! I
7 -
BOREHOLEN°:
Ds-31
SHEET N°: 1 Of 1
Piezometer
Design
0.00
1-_ _w 1.00
2-
3 -
4-
5 -
Piezometer
I] Concreto
Iii!! Grava
Relleno
~ Bentonita
Q Fillro 3-5 mm. V Tapa inferior
0 PVC Ciego ~ Derrumbe
l~I PVC Ranurado D Grout
369
fl~ ~9l~Ji2_ns :~;.,--=
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Explo Drill ing
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ): Ulises/Jorge
Field Responstble (Day/Night): A. Arancibia
Il l!~1 ~i IE l*I l!II ~ ~ ~
Weatheringlndex. I Degreeof alteratlon
WO SlghtlyWeDl>>Ol'ed
Wl M.,,;IWco•hC•
A-1 NoAn .. , ... :-,)
A-2 Sl'llh"va1te,e<1
'-'-006'8lel'tAll.,,-e(I
A-4 Ve,yAlter<><I
A-S Com,-t .. lyAU"'"''
i I i
i
c-•~- ,
Client:
Nor1h (m) 7565436
East(m): 600281
Elevation{m): 4290.00
Projec11on: UTM WGS 84 . Zona 18S
Rock Parameters
I ~ t f2 - i=i .E I =~ 1-~ I ?
~ 1,1,1,1,~ 1,1,1,1 ~ 5
~
I--
RockStre~thlndex.
R3 MedlumSlrOOQ
RS 5,,,_...,
RS Very s~...-'11
DIREMAR
Silala - Bolivia
}
I
BOREHOLE INFORMATION
Azimut/Dip: 0 I -90
Bofedal Sur
Drilling Rig Explo Drilling
Drilling Method: Dlamantlna
Description
0.00-5.95m. Arenablen gradadacongravas (SW)
A-as (60%), color gos a negruzcas. grano medlo a nno.
~11,-l1as: gr;,v;,s(3 7'l!,) <:lecomposi<:k>nheterog,',nea
(an<ksllas.~nimlJ<itas) colori,e;.arojluos. angulosasa
sub!>ngulosas. coo <11ame1ros <le 1cm a 7 cm. flnos(3%)
A-asyflnossel,wand,....,.nteelproce50deperf0<acl0n
ROCK CORE
LOGGING FORM
Bit Type· Broca
Casing Deplh {m): 0.0
Total Depth (m) Water Table (mbs):
COfe Diame1er (mm): 96.0 I Diameter PVC (mm):
Discontinuity Data
!
o..., ~ ~:S:I
, 1,1, 1
,~,
!,
f 0
J
,f,
;
!
1
BOREHOLE N"
Ds-31
of
Agua Start Date 3 novicmbrc de 2017
Finish Date: 5 noviembre de 2017
l ogged by: A.Hitkens
50.80
I K (cm/s) e
I
I 1~~m~~ Additional
comments :;; I Well details ! (Piezometers)
Re1orno 70%
grlspardo
Rctorno 60 %
grispardo
Retomo 30 %
grlspardo
I I
I
Discontinuity Types I Oiscon1inuily Width (mm) I Types of infilling !Amount of infilling j Surface Shape I Surface Roughness Spaclng{mm) Geolo_l!I 0 es'2_nPlezometer
I SL5tHo,~Z<-•N
IGy Gy"'""'
·'::,.-::,-~----·1 .. ., _ ,__ ,,_
.:.~"i=-,_-:_..,,., ~ I El "'---
•- ~-i - ·::..:::::,-:z YC ~ )
~=-- QriO<o(<>o-i."40' ...... , ~2.=---
370
fl1solutions :~:,-,=
DIREMAR
Project Number: 1175601 {FS)
CONTRACTOR INFORMATION
DriT!irigCompany Explo Drilling
Drillers (Day/Nigh!):
Dr illers Helpers(Day/Nighl ): Ullses/jorge
Field Responsible {Day/Night): A. Arancibia
?l!11
l J' ~ "iI 1 1%~1 .-cl? ~ ~
j
1 g
Client:
North (m) 7565436
East(m) 600281
Elevation(m)
Projection u ·1 M WGS 84 • Zona 18S
Rock Parameters
j i t I'I =~ 1-~ ~ - ~ I F.E ~ 1,1,1,1,~1, 1,1,1,~ 5
.-'- 1:; . .-
1:' , "
>-+-+-+--+--+----<- +--+- +-----<f--+- +----i ~ I----
1 ... 1, I I l • ., I ._ I . I . I . I ,. I __ I .. I ., I~ E---
Weathefin~ Degreeofalleratlon
w 2 Slgnuy w cot""'""
WJ M<><l . W,;,ul"'-•~-d
A-1 No r ;··,-.)
A -2 S logt,Uyalle ,&d
A -3 r,Jode<al<>lyAll"'ed
A .~ V e<y Alte fed
A·5 C 0<>>pl"l"lyAlt"'""
RockStre~thlndex
C ·• ~~Son
R a S 1<<>nu
I·'.
r-\~ _,·
DIREMAR
Si lala - Bolivia
~
1
BOREHOLE INFORMATION
Azimu\/Dip: 0 I -90
Bofedal Sur
Drilling Rig Explo Drill ing
Dril ling Melhod: Diamantina
Description
5.95-8.00m. lgnlmbrlta
Color mam)n ,oj ;za. coml>U<'Sla pa clas!os pollmlc11cos
(lgneas. volc;)nlc.as).le•luralne<1uigran.;..,, angulososa
[~n!.SJ:i{E;:~;!£=?Ji~~- :~':':::~t:.i:.to- Presencla de Ox~e rellern>ndo parckllmente
ROCK CORE
LOGGING FORM
Bit Type Broca
casing Depth (m) o .o
Tolal Ocp1h(m)·
co.-e Diameter (mm): 96.0
!
6 .30
6.3&
6,4!',
, .oo ,~
·§
{
o .... o?: ~Rl c
1, 1,1 , 1,
"" "
Waler Table (mbs)
Diame1er PVC (mm):
Oiscontinui!Y_ Data
8
0
J
I
i
~,
~, ~~,
f 0 I
,.
'"
'"
!
!
StFe
""
BOREHOLE Nu
Ds-31
of
Agua S1ar1 Date 3 n ovicmbrc d e 201 7
Finish Date : 5 noviembfe de 2017
Logged by A Hilkens
50.80
!
j I
1
K(cm/s)
.§ 1~q~~q~~
; :;,;,;,;,;,:'
Addit ional
comments ~ I We ll detai ls
~ (Piezometers)
C-3 Ex
C-3 E•
C -3 Ex
Ir F -~~~ - ~ Ex
Retorno 80%
pordo rojlzo
Retorno 60%
pardorojizo
□ -
, .oo
.(
~~~ - ~ - _L _ _L_ _ _j_ _ _j_ _ _j__j _ _J_.LJ._l.J_J_L_ ___ _J 8.00 .. ~
Discontinuity Types I Discontinuity Width (mm) I Types of infilling !Amount of infil ling I Surface Shape I Surface Roughness Spaclng(mm) Geol~ Des~nPlezometer
I SL s .... , .. z,.,,~
VN .. ,...,,,..,(<,.J~•"t)
N ,..,,_() ~ - ~ Sm,n)
I G y ~ -~'"'"
~ ... .:,.,:::J::'""lw-- ::~,-, ,~
"' •--.- - -:..~• M "'°"_" ,.·., (21-<, l an) ::ii..,;-- . C CIM<l(6-"1«YI) I ==iJ •n~... , ..-,,_Q
.. ~'7,1 ) < )
371
SERGE(©MIN ___ ....,
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-31
0
0.4
0.8
1.2
1.6
2
2.4
2.8
Dep6sitocuaternariodediferentegranulomelria
segun MHW limo con arena
Fragmentos de andesila de diferentes tamallos
(desde 0,05 m hasta 0,5 m) tone gris oscuro grano
medic a fine, se observan renooistales de
3.2 plagioclasahipocristalina. planosdefranctura
3.6
4
4.4
4.8
5.2
5.6
6
6.4
6.8
7.2
7.6
discernibles con relleno de arcilla y 6xidos de hierro
esporfldicos en su matrix
lgnimbrita marron rojiza oxidada, de 6 a 6.30 muy
porosa lixiviada por accion hidrica. de 6,30 a 6,90
m lgnimbrita oxidada mas compacta con feno
cristalesdehasta 5cm. fracturasrellenascon
limolitayoxidosdehierro. a los6.70 seobserva
una fractura rellena ( falla) por limos bastante
oxidada
Fractures/30 cm
"N'
N N "' N
REFERENCIAS
Qt
■ And
■ lgm
372
-~
~
DIREMAR
10
-~
~
DIREMAR
CASE:
20 30
CASE:
DIREMAR
01 FROM (m):
40 so 60
Centimetres
DIREMAR
02 FROM (m):
Centimetres
CORE: DS-31
0.00 TO (m): 4.10
70 80 90 100
CORE: DS-31
4.10 TO (m): 8.00
373
Geological record and piezometer installation design
DS-32
374
375
PIEZOMETRO
0
2
4
DS-32
Profundidad
(m)
PVC Ciego
Schedule 80
1.44
PVC
Ranurado
Slot 40
(1.00mm)
4.35
Concreto
Relleno
~ Bentonita
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
■ Bentonita
0.5
4.35
5
Filtro (paquete de
grava)
Derrumbe
Leyenda lnstalaci6n de Piez6metros
D Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
376
Client:
ProjedNumber:1175601
Recovery (%) ROD(%)
I ~ § I 0 ~ £ ~ 0 ~ £ ~ ! ,,,,,1,,,,1,,,,1,,,,1 ,, .. 1.. ,,1, .. ,1., .. 1 i
1- 1-
2-
f---
3 -
4 - 4-
5-
Logged by: A.Hilkens
Draw by· J.Flores
Reviewed by: RaLllOrtiz
~
DIREMAR
Drilling and Piezometer lnslallation
[Frac1ure/ 30cm]
0 5 10 15 20
.. 1.. .. 1.. .. 1.. .. 1
Water Level {mbgs) K(cm/s)
~ Water Recovery {%) ~
~ ~ ~ ~ ~ M N g g q q
0 25 50 75 100 £ w w
!
0
1-
2-
3-
4-
.. 1.. ,.1. .I
T o.a,
Lithology
G]sP(:Jsw
l "'""'" ""'"'" ""'""'
1-
2-
3 -
4 -
5 -
PIEZOMETER
DESIGN
I i Lithology
1-}}\\
2- ))i\
.._ ::.:.·.-.::··. .. :·•·,
:. -::· .
4 - :~·.-/~ ~)/_; _:.
... .. ..
BOREHOLEN°:
DS-32
SHEET N°: 1 Of 1
1-
2-
3 -
4 -
Piezometer
Design
0.00
.@ 0.50
Piezometer
I] Concreto
Iii!! Grava
Relleno
~ Bentonita
Q Filtro 3-5 mm. V Tapa inferior
0 PVC Ciego ~ Derrumbe
l~I PVC Ranurado D Grout
377
fl~ ~9l~Ji2_ns :~;.,--=
OIREMAR
Project Number: 1175601 (FS)
CONTRACTOR INFORMATION
Drilling Company: Sergeomin
Dri!lers{Oay/Nighl)
Drillers Helpers (Day/Nighl ): Ulises/Jorge
Field Responstble (Day/Night): A. Arancibia
IIJliljl!I IJl!li i I i
i
Client:
Nor1h (m) 7565432
East(m): 600269
Elevation{m): 4290.00
Projec11on: UTM WGS 84 . Zona 18S
Rock Parameters
I ~ t f I =~ , -~ I ? 2~ - i=i .E o:G~:C§o:G~:C§ 5
~ I I, I, I, I I, I, I, I
..---J
[
[ p ·
.·: .·.·
-··.·.·. 1::-:-: .
DIREMAR
Silala - Bolivia
BOREHOLE INFORMATION
ROCK CORE
LOGGING FORM
BOREHOLE N"
DS-32
of
Azimut/Dip: 0 I -90 Bit Type· Broca Agua Start Date 31 oc1ubrc de 2017
}
I
Bofedal Sur Casing Deplh {m): 0.0 1 noviembrc de 2017 Finish Date: 1 noviembre de 2017
Drilling Rig lngetrol
Drilling Method: Dlamantlna
Description
Arenas blen gradadas con gravas (SW)
O.OQ.3.00m.Arnnas(60%), colorgrlsarw,gruzcas,grano
me<llo a Ono. weltas grava~(37'll.) de composlciOn
r.o1crogaoca(aooosi!as. lgnlmll<llas). C010rgrlsaro;;,as
an[tUk>sasasubangulosas, l•7cmo llnos(3%) Arer,asy
Onosselavand<.O"an:eelprocesodepetlornclOn
Arenas pobremcnte gradadas(SP)
3.00• • .2om.fvenas(1>7%).colorgrisanegruzcas.grano
medK>aOoo. muysuellas<lecorrposick,nvul<;!nica
tlnos(3%), plas,icld"'1nul~(ma1eflarecupern<IOencan,,le!a)
Total Depth (m) Water Table (mbs):
COfe Diame1er (mm): 96.0 I Diameter PVC (mm):
Discontinuity Data
!
o..., ~ ~:S:I
, 1,1, 1
~
0
!,
f 0
J
f 0 ;
!
1
50.80
I
I
l ogged by: A.Hitkens
K (cm/s) I 1~~m~~ Additional
comments
retorno de agua
80%colorgrls
pardo tlempo de
corrida Smin
retorno de agua
80%colorgrls
pardo tiempo de
corrida 15
relorno de agua
90 % color grls
pardo tiempo de
corrlda 401 500
bary soo
rotacion
Arenas blen gradadas con g rava (SW)
~k> ~-~:: .'::er,;~· ~~tcm:i ~\~~~- grano I relorno de agua
heterogenea(andesltas. lgnlmbr~as). color grls a rojlzas 90 % color grls
anguk>sasasuban~ulosas. 1.7 cmo flnos(3%). Arc,,asy pardo tlempo de
Hnosselavand<.O"an,eelprocesodepeffc.-aclOn corrida 37
:1;a; I Well details ! (Piezometers)
0.00 ¼'.
~
~
o.so f
Weathering Index De ree of alteration Hardness Discontinuity Types Discon1inuily Width (mm) T s of infill in Amount of infilli Surface Rou hness Spacing {mm) Geology
wa SV,t1y w ea1>>0red
Wl ......,Wco•he•
A·1 NOAU .. r<><'.',)
A.2 Sl'llh"va1te,e<:1
"'-ode<alel'tAll.,..e(I
A-4 Ve,yAlte"'<I
A-5 Com,-t .. ly AU"'"''
c-•~-,
R S M<;,dlumSlrOOQ
RS 5,,._...,
RS Very s~...-'11
I SL5tHo,~Z<-•N
IGy Gy"'""'
·----~·1 __ ,....,...,._,,,_ ew ,,...,.,,.,..,w;oo (,201co\l
• · ., .. ~ .. -~--~_,,_ w
"'·~:-~~":.."':" ~
- .... ·..._..:::;:,-.z \IC
~ )
~=-- QciO<o(<>o-i."40' .... ,
e3 :c ~2.=--~
378
SERGE~ MIN
82L'IYICDO!!OI.OmcollllNaG
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-32
0 Cobertura de material
cuaternario de diferente
granulometria
0.4
0.8
1.2
Clastos rodados de hasta
0,5 m de andesita gris
negruzca de grano fino con
1.6 algunos horizontes
arenaceos ocacionalmente
clastos ignimbrfticos de
hasta 0, 1 m de diametro
2
2.4
2.8
3.2
Arena Tobacea: material
de grano fino a media
producto de la
3.6 meteorizaci6n y posterior
lixiviaci6n hidrica de la
ignimbrita, abundancia de
Oz y de oxidaciones de Fe
4
4.4
Rodados de roca
andesitica de grano fino y
muy fragmentada
4.8
5.2
Fractures/30 cm
"~' ~ "r--':
0 0 0 0 .-
. •· .•
REFERENCIAS
Qt
■ And
Ar Tb
379
SERGE ~ MIN
a~ GIE101L.<OOIIIICCCl i.llD~alO)
),,) '!' = ~ ~
1-J ~ t:I ~;
~ !
D11m.1.S.la --i
r
l
d
!i ~1
~
f
7. • rp, •• • • IP 1 i "' !<
!, ~:::.
-::::-~
~~i
~ 1''
I I
380
.:.:..:. :.:- : ==---------------Drillhole
DS-32 (DDH-1)
SERGEOMIN
CASE: 01
SERGEOMIN
CORE:
0.00
CORE:
CASE: 02 FROM (m): 4.50
SERGE~ MIN
~IELWIICU©l <GllE(Q)IL.OOUC@ IMJOIIIIIE~(Q)
DS-32
TO Ill: 4.50
DS-32
TO m): 5.00
381
Geological record and piezometer installation design
DS-35
382
383
PIEZOMETRO
DS-35
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
Profundidad
(m)
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
62
78
Diametro Perforaci6n HQ: 96 mm
Diametro Piez6metro: 1 1/4"
II
... ... .... .... .... ...... .... .... .... ... ..... . . .• , .• .. .. .. .. .. .. .. .. ... ... .. . . .. . .. .. . .. . .. . .. . .. . .. . .. . . ... ,·.. .. ... . .. ... ... .. ... ... .. .. . ... .. . . . . . . . . . . . .
... ... ..... .. ... ... .. ... ... .... ... ... .... ... .. ..... ... ... .. ... . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ,·.. . ... ..... ... ... ... .. .. .. .. .. .... .. ... . .. ... ... .. ... ... .. .. . ... .. .. ... .• , .• .. .. .. .. .. .. .. .. , · ........ . ... ... .... . .. ... .. ... ... .. ... .. ... .. ... .. ... .. ... .. ... .. .. . . .• .., .• ... . ... ... . .... ... . .... ... . . .. . . . . . . . . ... ... .... . .. ... .. ... ... .. ... .. ... .. ... .. ... .. ... .. ... . ... .. .. ... .. .. .. . ...
.. .. .. . . .. . . .. . . .. . . .. . . .. . . .. .. .. . . .. .. .. . . ... . ... . ... . ... . .. .. .. . . .. .. .. . . .. . . .. . . .. . . .. . . .. . . .. .. ... . .. .. .. .. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. .. .. .. . .. .. .. .. . . .. .. .. . . .. .. .. . . .. .. .. . . .. ... .. ... . . ... .. ... . . ... .. ... . . ... .. ... .. ... .. ... .. ... .. ... . . ... . . ... . . .... . ... .. ... . .. .. .. ... . . ... .. ... . . ... .. ... . . ... .. ... .. .... . ... . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... ... .. .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... ... .... ... ... .. .... ... .. ... ... ... ... ... ... ... ... ... .... ... .. .... ... ... .. ... ... . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .... .. .. .... .. .. .... .. .. .... .. .. .... .... .... .... .... .... .... .... .. .. .... .. .. .... .. .. .... .. .. .... .. .. .... . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ... .. ... . . ... .. ... . . ... .. ... . . ... .. ... .. ... .. ... .. ... .. ... . . ... . . ... . . .... . ... .. ... . ... . .. ... . . ... .. ... . . ... .. ... . . ... .. ... .. .... . ... .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. .. . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .... . .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... . .. . .. . .. . .. . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. .... . ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. . .. .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. .. .. . . .. .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. ..... ... ... ... ... ... ... .. .... .. .... ... ... ... ... ... ... ... ... ... ... ... ... ... .. .... . .. . . .. . . .. . . .. . . .. . . .. .. .. .. .. .. . . .. . . .. . . .. . . .. . . ..
26
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
------
Leyenda lnsta laci6n de Piez6metros
2
28
33
54
59
80
86
110
Relleno
Filtro (paquete de
grava)
Bentonita
Relleno
Bentonita
Filtro (paquete de
grava)
Bentonita
Relleno
ffl Concreto D Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
Relleno D PVC Ciego V Tapa inferior D Grout
~ Bentonita
384
10 20 "' so 60 70 80 90 100
Centimetres
10 20 30 "' so 60 70 80 90 100
Centimetres
385
1:,;· -·~.-~-r • r"'', • -~) f ~J :',; •'; ~· : ~ .f\~, '7-.-r· ·,';.. ~1-~:;, J :,~ .. '1~.cJ,. \, ~, · \~
• • \, • - ~ • ,.. 4,
. . • • ,t;. "'-'· • • .... • • •
.;_ ._...,;~, ~. • f,f/) ~1 J¥:-,·'}'f,~' I I ,,.,.. ,-( • t..• ~-.J~ ; ," ?,::~ :i ¾
J ' ' .. . • ' ' ' , j • ~ ~ . : • • ...
10 20 30 40 so f,() 70 80 90 100
Centimetros
10 20 30 40 so f,() 70 80 90 100
Centfmetros
386
10 20 30 40 so 60 70 80 90 100
Centimetros
10 20 30 40 so 60 70 80 90 100
Centfmetros
387
DIREMAR CORE: DS-35
10 20 30 40 so 60 70 80 90 100
Centfmetros
10 20 30 40 50 60 70 80 90 100
Centfmetros
388
10 20 "' so 60 70 80 90 100
Centimetres
10 20 30 "' so 60 70 80 90 100
Centimetres
389
10 20 30 40 so f,() 70 80 90 100
Centimetros
10 20 40 so f,() 70 80 90 100
Centlmetros
390
10 20 30 40 50 60 70 80 90 100
Centfmetros
10 20 30 40 50 60 70 80 90 100
Centfmetros
391
10 20 30 "' 50 60 70 80 90 100
Centimetros
10 20 30 "' 50 60 70 80 90 100
Centfmetros
392
10 20 30 40 50 60 70 80 90 100
Centfmetros
10 20 30 40 50 60 70 80 90 100
Centimetros
393
10 20 "' 50 60 70 80 90 100
Centimetres
10 20 30 "' 50 60 70 80 90 100
Centimetres
394
10 20 "' so 60 70 80 90 100
Centimetres
10 20 3-0 "' so 60 70 80 90 100
Centimetres
395
10 20 30 40 so 60 70 80 90 100
Centfmetros
396
397
Geological record and piezometer installation design
DS-37
398
399
PIEZOMETRO
0
2
4
6
8
9
10
11
12
13
14
15
DS-37
Profundidad (m)
PVC Ciego
Schedule 80
PVC
Ranurado Slot
40 (1.00 mm)
7.15
10.15
Diametro Perforaci6n HQ: 96 mm
Diametro Piez6metro: 1 1/4"
3
10.15
15
Leyenda lnstalaci6n de Piez6metros
Relleno
Bentonita
Filtro (paquete de
grava)
Derrumbe
(Arenas - Limos)
C Concreto D Filtro (paquete de grava) I I PVC Ranurado ~ Derrumbe
Relleno D PVC Ciego V Tapa inferior D Grout
~ Bentonita
400
10 20 "" so 60 70 80 90 100
Centfmetros
10 20 3(1 "" so 60 70 80 90 100
Centfmetros
401
402
403
Geological record and piezometer installation design
DS-38S
404
405
PIEZOMETRO
0
2
4
DS-38S
Profundidad
(m)
PVC Ciego
PVC
Ranurado
Concreto
[] Relleno
~ Bentonita
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
Io.2
1.5
2.15
4.15
5.1
Bentonita
Filtro {paquete de
grava)
Derrumbe
Leyenda lnstalaci6n de Piez6metros
D Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
406
Client:
ProjectNumlx!r:1 175601 Drilling and Piezometer Installation
[Fracture/ 30 cm]
Water Level {mbgs)
Logged by: A.Hilkens
Draw by: J.Flores
Lithology
GJ SP [;) lgnlmbrlta
Reviewed by: Rat.ii Ortiz
K (cm/s)
PIEZOMETER
DESIGN
Piezometer
BOREHOLE N°
DS-38S
SHEETN°: 1 of 1
Piezome1er
Design
[] Concreto D Filtro 3-5 mm V Tapa inferior
1111 Grava D PVC Ciego lflj Derrumbe
[] Relleno l~I PVC Ranurado D Grout
~ Bentonila
407
fl~ solutions
Project Number: 1175601 (FS)
~
DIREMAR
CONTRACTOR IN FORMATION
Drilling Company: Sergeomin
Drillers (Day/Nigh!):
Drillers Helpers (Day/Night)·
Field Responsible(Day/Nig ht) :
fi l I~l e~: l~l I I~ I IfI 1181 8l
~ g & a: a:
j r i
0
i
l
Client:
North(m): 7565840
East (m) 602930
Eleva11on(m): 4416.00
Projection: UTM WGS 84 - Zona 18S
Rock Parameters
j
~
I
I .§a I ~=" I ~--" ' I 0a ' 2 11111111i 11111111i !j
DIREMAR
Sila la - Boliv ia
g
j
BOREHOLE INFORMATION
Azlmu1/0lp· 0 I -QO
l ocation: Bofedal Sur
Drilling Rig lngetrol
Dri lling Method: Dlamant lna
Descript ion
Materlaldecobertura
0.00m•0.30m: Arc,,as d~g,anomc<li0afino,con !imos
lgnlmbrltarlolftlca
0.30m - 1.80m: Gravascompucslasporclaslos.dcroca ~~=:· ~°'faO~~r,saceo, suore<IO<><INc!as con
lgn lm b rlta llxiuladay metoorlzada
1.90m. 3.60m: Roca lgnlmbr"a· moder80a a fuem, =1:~o/r=:;~~=f~1a?~ No
3.60m - 5.10m: Roca lgnimbr ~a. le <l,..-aarenosa, cokw gris
;~~l':,;.';'°""rnd.a mclcorl~~clon. nn"" obsc,v~n ~,.,..,, de
Weathering Index I Degree of alteration Hardness RockStre~th lndex Discontinuity Types I Discontinuity Width (mm)
:;,=::;
1\. 1 No A .. ..-<>d(l, eSl'I)
A-~ Sl""'"Y Hll'-'•~<l
A •J Modor.>lc lyA11orc<I
A-4 v.,,yl\11.,,<Kl
A -5 CQff>f>lclclyAltcrcd
UerySolt
0,3 Me<llumS1,ong
R 4 St<ong
F -1 Puo<F!..Ct.,, ... (<1 .. 'm)
, '"'' """'" ( 1· 5 • •• \) r : ve,yr,,,. .. ,., ( ,o""'- )
F -4 fx! och[11. ,01,a.ct./m)
F F, ,..,._,,..,..c, :,,o,,.act.lm)
v .. " ""'''""'(• ... )
N N,-mw(1l-2,Smm)
MW ~fi~2 Jmm.)
W """" {12.7-c;,}8,...,,)
ROCK CORE
LOGGING FORM
BOREHOLE N"
DS-38S
of
Bit Type Broca Agua Start Date 28 oclubre de 2017
Casing Depth (m)· o.o
Total Depth (m) 5.1
Core Diameter (mm): 96.0
I
ltl1 l1l1
DTW 28 octubre de 2017
Waler T able {mbs)
Diame ter PVC (mm)
Discontinu!_!y Data
"0"
!
I
~
f
~
~
j
~" '
0
!
J"1
j
0 .20
50.80
I
j
Finish Date : 28 octubre de 2017
Logged by A Hilkens
Rev
K (emfs) I 1~~~~~~~
1111111111111
Addit ional
comments
Retorno l 00%
coloraclongrls
pardo, tlempo de
corrlda 6 mlnu1os
Retorno de 90%
liempo de
corrida 4.28
mlnutos A l (X)Q
pci ro taciOn 500
presiOn
Retorno d el 100
% tiempo de
corrida 4.43
minutos.
atravlesa nivel
de arenas
negruzcas
Retorno del 70%
tlempo de
corrida 3.58
minu1os
e
~ I Well details ! (Piezometers)
:a;,
Types of Infilling ]Amount of Infilling I surface Shape j Surface Roughness Spaclng(mm) Geo~ Design Plezometer .. 7"~:::--·~--1':; '~=:~e'.;."""
:If',-..,--...... <: ... -.o-:(6·2;=, )
"•""?".::".':''"%-~/4 ;: ;"'•=/2·6oo;)
VR•':'::.,"";:r..':-".:-"',_."!.>00;
!,,ii :; •.•..•
;:::::-~:. __ ,.,,.'
V '~"~',.
408
SERGE~ MIN
NIMCIOGl!CILOGico-.itO
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-38 S
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
3.6
4
4.4
4.8
5.2
eluvion, arenasdegrano
media a fino. Seglln MWH
limo con arena
gravas compuestas por
clastos de roca ignimbrita
semi redondeadasde
coloracion gris rosacea, de
4a2cmdediametro
roca ignimbtita bastante
lixiviada poraccion hidrica
de coloracion gris rosacea,
fenocristalesdehasta
2mmde lavavolcanica
misma roca, lixiviada por
accionhidrica ,nose
observanfracturas,
intercalada con un
horizontegravosode3a2
cm de espero sub
redondeados(Falla?)
rocaignimbritadetextura
arenosagnsro11za, porosa
lixiviada poraccion hidrica,
noseobservanplanosde
fractura
Fractures/30 cm
"~' ~ "r--':
0 0 0 0
REFERENCIAS
0 Elv
■ Grv
■ lgm
409
----------- SERGE~MIN
21E~ICO(O) ~IElOlll.00~ 11!11D~IEIR!l0l
-" I
'
,., ' ' ·BO 0 ?~
5. '"
3 ,n ,. (-. I Q.,
"' 0 "'
O '1'-I n ,o 0 , 10 ,.a
---- .,,,,.,.- ./ ----
-----
.,,,,., / ,<,., ~ K ------~ p L, " >:: ~ ;:, ~ ': ; \:.
n I ,", .''. ~
l).nudtla
.,.........., ~ f ~
Hp
t t ~
f i ~ .
1 ,, ·>.' ~ lo ll;'.'. ,f,
4.'.: ,_-:-
If 1-,,., r . ' ~
~1 (,
410
----------- SERGEC MIN
~!Effl9UICD©> lt)IEIOllLOOUICIOl ll,lJU~IEIR!IOl
411
Centfmetros
412
413
Geological record and piezometer installation design
DS-39P
414
415
PIEZOMETRO
0
2
4
6
8
9
10
11
12
13
14
15
DS-39P
Profundidad
(m)
PVC Ciego
9.18 -----
PVC
Ranurado
14.1 -----
Diametro Perforaci6n PO: 12.6 mm
Diametro Perforaci6n HO: 9.6 mm
Diametro Piez6metro: 2"
4
7
14
15
Relleno
Bentonita
Filtro (paquete de
grava)
Derrumbe
Leyenda lnstalaci6n de Piez6metros
H Concreto
[] Relleno
~ Bentonita
0 Filtro (paquete de grava)
□ PVC Ciego
I I PVC Ranurado ~
V Tapa inferior D
Derrumbe
Grout
416
Client:
ProjectNumlx!r:1 175601
10 10
11 11
12 12
13 13
14 14
15 15
Logged by: A.Hilkens
Draw by: J.Flores
Reviewed by: Rat.ii Ortiz
Drilling and Piezometer Installation
[Fracture/ 30 cm]
Water Level {mbgs)
10 10
11 11
12 12
13 13
14 14
15 15
Lithology
[a Dep0sitocua1ernario GJ Tufo volctinico
K (cm/s)
PIEZOMETER
DESIGN
Piezometer
BOREHOLE N°
DS-39P
SHEETN°: 1 of 1
Piezome1er
Design
[] Concreto D Filtro 3-5 mm V Tapa inferior
1111 Grava D PVC Ciego lflj Derrumbe
[] Relleno l~I PVC Ranurado D Grout
~ Bentonila
417
fl~ solutions
Project Number: 1175601 (FS)
~
DIREMAR
CONTRACTOR IN FORMATION
Drilling Company: Sergeomin
Drillers (Day/Nigh!): Jorge Valdez
Drillers Helpers (Day/Night)·
Field Responsible(Day/Nig ht):
fi l I~l e~: l~l I I~ I IfI 1181 8l
~ g & a: a:
j r i
0
i
l
Client:
North(m): 7565838
East (m) 602929
Eleva11on(m): 4416.00
Projection: UTM WGS 84 - Zona 18S
Rock Parameters
j
~
I
I .§a I ~=" I ~--" ' I 0a '
~ o~S!ie§o~S!:e§ 5
l1l1lil1 l l1l1 l1l1l
DIREMAR
Sila la - Boliv ia
g
j
BOREHOLE INFORMATION
Azlmu1/0lp· 0 I -QO
l ocation: Bofedal Sur
Drilling Rig Movll Dri ll - 80
Dri lling Method: Dlamantlna
Description
EluvlOn : Ma1erlal suelto, composlclOn
heterogenea. (SP)
lgnlmbrlta : To ba soldada (lgnlmbrlta) con c lastos
r1olltlcos a rlod.lcrtl cos, angulosos a
fr~~:~~,,'~f:it;; ~ir~ ~of~~:; relleno
limos, OMFc yMangancsocn
:::,a~:;:! ~~acturamiento moderado, meteorizacion
r---7r---7-t-+--+--+--+-t--+--+--+-+----il=
r---7r---7-t-+--+--+--+-t--+--+--+-+----i l"" f---r-
I--
Arena Tob,locea: Material de grano fine a medic,
p.-oducto de la meteorlzacl6n de la roca madre (la
lgnlmbrlta)
Tramoa<eNlOOO<lcg,anomedloaflnoslen<loesta
i><udoctodelallxMaciOnh(drk:a delalgnln>blna, ooe•lsten
ra,;4Josestruc1<-'1'ales.
Weathering Index I Degree of alteration Hardness RockStre~th lndex Discontinuity Types I Discontinuity Width (mm)
:;,=::;
1\. 1 NoA .. ..-<>d(f, eSl'I)
A-~ S1-,l>"y Hll"•~<l
A•J Modor.>lclyA11orc<I
1\-4 v.,,yAU.,, <Kl
A -5 CQff>f>lclclyAltcrcd
VerySolt
"" ..-...... s,,ong
R4 St<ong
F-1 Puo<F!..Ct.,, ... (<1 .. 'm)
, '"''"""'" ( 1-5 • •• \) r : ve,y r,, .. .-,., ( ,o""'- )
F.4 rx,och[JJ. ,01,a.ct./m)
F F, ,..,._,,..,..c,:,oo-act.lm)
"'" 1100,,·,, ... ( . ... )
" ,.,.-mw(1l -2,Smm)
MW ~fi~2Jmm.)
W ..... do{12.7-W8..-.n)
ROCK CORE
LOGGING FORM
BOREHOLE N"
DS-39P
of
Bit Type Broca Agua Start Date 30 oclubre de 2017
Casing Depth (m)· o.o DTW 28 octubre de 2017 Finish Date 30 octubre de 2017
Total Depth (m) 15 Waler T able {mbs) 0 .18 Logged by A Hilkens
Core Diameter (mm): 96.0 Diameter PVC (mm) 50.80 Rev
Oiscontinu!_!y Data
~ I »~•-· I
! ,,::=~~
0. 70
0.00
,1,,1,0
205
2.10
2.15
l1 l1 l1l1
Types oflnfllllnq
%
m
" %
.". w
"0"
!
I
~
MW
MW
' MW
Amount oflnfilllnq
f
~
~
j
~" '
0
!
o=,
Sp I No
~ I S~z
~ FclQ,: o,
~
sur face Shape
" K (emfs)
J1
j I
j
I 1~~~~~~~ Addit ional
comments
""
"" "
w
C
_____ ,.___,_,
1111111111111
Atu vi6n con
pobre desarrollo
desuelo
Nivel arenaceo
sm rasgos
estructura les, un
paquele de
I qrava de 30 cm
Spaclng(mm) Geology
e
~ I Well details ! (Piezometers)
\} E=
H!H
::;::
I=
H!H
1\l )l
H!H
H) i=,,
::;::
:::: :1 i :::: :: ;::
II Design Plezometer
~i~~ I~'g~ ~:-lee. ~~,"~,-~. ; :::::.~:._.,., .. '
VR• ':'::.,"";:r..':-'.:-"',_."!.-; V '~"~',.
418
fl~ solutions
Project Number: 1175601 (FS)
~
DIREMAR
CONTRACTOR INFORMATION
Drill ing Company: Sergeomin
Dfillers(Day/Night): JorgeVal~z
Drillers Helpers (Day/Nlgh1)·
Field Responsible (Day/N ight)
flfl!lillli\ Ill§ ~~~ .li~ j "•
j
f
i
I
i
Client:
Nor!h(m): 7565838
East (m) 602929
Eleva11on(m) 4416.00
Projection· UTM WGS 84 - Zona 185
Rock Parameters
j
~
' I ="• I ·-"· I ~ .2 - ~ 0 ~ o ~S!~§o~ S! ~ § :S
weatherlnglnde• I Deqreeoralleration Hardness RockStre~thlnde•
A. 1 NoAl:e,-<!(1 (1, . Sl'I)
A -,t Sll<jr,Uy1,1!v,L-<l
A -3 Modo<a lc lyAl!c,cd
1\-~ V"'y/\U"'""
A.5 C """>lc,1c,lyA1tc,,e<:1
" 3 M-um S lfOO\I
R4 S l<ong
DIREMAR
Si lala - Boliv ia
g
I
BOREHOLE INFORMATION
A 2lrnul/Olp· 0 I -90
Location: Bofedal Sur
Drilling Rlg Movll Drill - 80
Drilling Method: D iam;;intina
Description
==:e..:u~:'~a~~,:' .:,~~s;o; ~~ados a
lgnlmbrlta : roca de composlcl6n .1clda con
c lastos llllcos de composlcl0n heterogenea,
fracturamlento moderado a leve, presencla de
limos y Oxfe en las fracturas, meteorlzaclOn
modcrada.Algo de alt. Argmca
Arena Tob.1ceil: Material de grano flno a medlo
produclodelameteorlzacl0nymeteorlzacl0nde
larocamadre(lgnlmbrlla)
DlscontlnultyTypesjDlscontlnultt_Width(mm)
\IN V••vN••ww (< .....,.)
N t ' ,ow (1. 3 -2.S ~•")
MW ~"''J.'~~2 7 m m .)
W Wldo (1 27-,0 8n-.n)
ROCK CORE
LOGGING FORM
BOREHOLE N°:
Bit Type Broca
Casing Depth {m) o .o
Tolal Oepth(m): 15
COfe Diameter (mm): 96.0
I
~
,, ., 2 :!! ~I ~
,1 , 1,1
Agua
OTW: 28 octubre de 2017
Water Table (mbs)
Oiameler PVC (mm)
Discontinuity Data
"0"
f
I
~
i
'I"
~"
0
!
J"1
j
0 .18
50 .80
!
I
DS-39P
of
Start Date 30 oc1ubre de 2017
Finish Date 30 octubre de 2017
l ogged by A.Hilkens
Rev·
K (cmls) I 1~~ ~~ ~~~ Additiona l
comments
a1os3,5m
Tramosln
rasgos
estructurales
rnconocibles
O1ronivel de
arenastobaceas
de grano l ino
;e; I Well details ! (Piezomelers)
Type$ of Infilling !Amount of Infilling I SUrface Shape I Surface Roughness Spaclng(mm) Geolo,2t Des1.2,nPlezometer ::=~-:=::-::=0~.,1~' ';"-:~:: -~•0·~" ",' " I~ =~~,--- I'"••·--····--·
VT ... -••·· ··
419
fl~ solutions ~
DIREMAR
Client: DIREMAR
Project Number: 11 75601 (FS)
CONTRACTOR IN FORMATION
Drilling Company: Sergeomin
Dril lers (Day/Nigh!) : Jorge Valdez
Drillers Helpers (Day/Night)·
Field Responsible(Day/Nig ht) :
fi l I~l e~: l~l I I~ I f 8 8 II 111 l
~ g & a: a:
Weathering Index I Degree of alteration
:;,=::;
1\. 1 No A .. ..-<>d(f, eSl'I)
A-~ Sl""'"Y Hllc,•~<l
A •J Modor.>lc lyAflorc<f
A-4 v .,,yAU.,, <Kl
A -S CQff>f>lclclyAltcrcd
j r i
Sila la - Boliv ia
BOREHOLE INFORMATION
North(m): 7565838 Azlmu1/Olp· 0 I -QO
East (m) 602929 l ocation: Bofedal Sur
Eleva11on(m): 4416.00 Drilling Rig Movll Dri ll - 80
Projection: UTM WGS 8 4 - Zona 18S Dri lling Method: Dlama nt lna
Rock Parameters
i I • 0 ~
t$ • I
Hardness
Very Solt
I
I .§a I ~= " I ~--" ' I 0a '
~ o~S!ie § o~S!:e§ 5
l1!1lil1 l l1l1 l1l1l J
.,_,
h......J
RockStre~th lndex
g
j Descript ion
lgnlmbrlta : roca de composlcl0n tlc lda con
clastos llticos de composlcl0n heterogenea,
subredondeados, fracturamlento moderado,
~ ! ,':,~~=c~~~;=J,~;:.e en las fracturas,
Discontinuity Types I Discontinuity Width (mm)
F - 1 Puo<F!..Ct .,, ... (<1 .. 'm)
"" ..-....., s,,ong
R 4 S t<ong
, ' " ''"""'" ( 1-5 • •• \) r : ve,yr,, .. .-,., ( ,o""'-)
F .4 r x , och[JJ. ,01,a.ct./m)
F F, ,..,._,,..,..c,:ooh-act.lm)
" " \/o, yl '0<,..(< ..,)
N N,.-mw (1 l -2,Smm)
MW ~fi~2 J m m .)
W ""do{12.7-W8 ..-.n)
ROCK CORE
LOGGING FORM
BOREHOLE N"
DS-39P
of
Bit Type Broca Agua Start Date 30 oclubre de 2017
Casing Depth (m)· o.o DTW 28 octubre de 2017 Finish Date 30 octubre de 201 7
Tota l De pth (m) 15 Waler T able {mbs) 0 .18 Logged by A Hilkens
Core Diameter (mm): 96.0 Diame ter PVC (mm) 50 .80 Rev
Oiscontinu!_!y Data
J 1 130cm ~11 0 ~ ! ~
l tl 1l tl1
Types oflnfllllnq Amount oflnfilllnq
f
~
~
j
~" '
0
!
surface Shape
eI I lj
'S ~
V, j
K (emfs) I 1~~~~~ ~~
1111111111111
Spaclng(mm) _____ ,,___,__,
Addit ional
comments
lgnimbrita
meteorlzada
cuyos rasgos
estructurales
comolas
frac turas no son
reconoclbles por
eslarllxlvlados
Geo~
e
~ I Well details ! (Piezometers)
Design Plezometer
~i~~ I~ 'g~~',. lee. ~~,"~,-~.
; :::::,~:._ ... ,,.'
VR•':'::.,"";:r..':-'.:-"',_."!,_; V '~"~ ' ,.
420
SERGE~ MIN
8E'IVICIO~l&il:!DIO
COLUMNA LITOLOGICA Y FRECUENCIA DE FRACTURAMIENTO DEL POZO DS-39 D
Fractures/30 cm
0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Sedimento suelto de diferente granulometrfa
y composici6n litol6gica formado in situ
(eluvi6n), el desarrollode suelo es pobre
que por su granulometria y seglln la
clasificaci6n de MWH corresponderia a un
limoarenoso
Toba soldada (ignimbrita) con clastos
rioliticos a riodaciticos angulosos a
subangulosos grano medic a grueso
fracturamiento moderado a fuerte con
relleno limolitico y oxidaciones de Fe y Mn
los primeros metros; aumentando el
fracturamentoyelgradodemeteorizaci6n
con la profundidad, estando las lracturas
rellenadas con mas oxidaciones que con
limos
Trame arenaceo de grano medic a fino
siendoestaproductodela lixiviaci6nhfdrica
delaignimbrita, noexisten rasgos
eslruclurales
Horizontedenaturalezagravosadeclastos
redondeados a subredondeados con
di8metrosenlre1a3cm
lgnimbritamuymeteorizadadetextura
arenosa y lixiviada moderadamente
profundizando se vuelve mas compacta
notando algo de alteraci6n argilica
fracturamiento moderado con relleno de
limos yen me nor grado 6xidos de Fe,
llegando a los 9 m aumenta la meteorizaci6n
hidrica donde los rasgos estructurales como
las fracturas estan poco discernibles
Trame arenaceo de grano medic a fine
subanguloso productode lixiviaci6nhidrica
delaignimbrita , presenciadeoxidaciones
ferrosas
Trame que comienza con la misma
ignimbrita meteorizada moderadamente (0,7
m ) apareciendo un horizonte gravoso de
unos 30 cm de clastos riodaciticos
subredondeados contuniando la misma
ignimbritaenprofundidadaumentandoel
grade de meteorizaci6n la textura arenacea
seacenttiadondelosfracturamientos
naturales son poco o nada discernibles por
efectodela lixiviaci6ndelaroca,
abundanciade6xidosdeFe
0 N
-

- REFERENCIAS
ArTb
Elv
■ Grv
■ lgm
421
10 20 30 40 so 60 70 80 90 100
Centfmetros
~ DIREMAR CORE: DS-39P
DIREMAR CASE: 02 FROM (m): 6.00 TO (m): 13.70
10 20 30 40 so 60 70 80 90 100
Centfmetros
422
-~
~
DIREMAR
10 20
CASE:
30
DIRE MAR CORE:
03 FROM (m): 13.70
"" 50 60 70
Centfmetros
DS-39P
TO (m): 15.00
80 90 100
423
Danish Hydraulic Institute (DHI), Study of the Flows in the
Silala Wetlands and Springs System, 2018
Annex F: Hydrogeology
Appendix b: Packer Test Analyses
424
425
D~
APPENDIX b
Packer Test Analyses
426
427
Date Listed
Well ID mE mN TOC (m asl)
Well Depth Bottom Bore
Test Type
Test Interval (mbgl)
in Doc (mbgl) (masl) Top Bottom
11 /20/2017 DS-05P 603354 7565861 4421 100 4321 Packer Lefranc 6 19
11 /20/2017 DS-05P 603354 7565861 4421 100 4321 Packerlefranc 33.5 52
11 /20/2017 DS-05P 603354 7565861 4421 100 4321 Packer Lefranc 51.5 70
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packerlefranc 3 7
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packerlefranc 6 10
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packerlefranc 9 13
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packerlefranc 12 16
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packerlefranc 15 19
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packerlefranc 18 22
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packerlefranc 18 28
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packerlefranc 28 46
12/5/2017 DS-11 602857 7565756 4414 300 4114 Packer Lefranc 44 61
11 /20/2017 DS-05P 603354 7565861 4421 100 4321 Packerlugeon 16 34
11 /20/2017 DS-05P 603354 7565861 4421 100 4321 Packerlugeon 68 85
11 /20/2017 DS-05P 603354 7565861 4421 100 4321 Packerlugeon 82.5 100
Not Listed .. .. DS-27 600599 7566351 4388 29 4359 Packerlugeon 13.0 19.0
Not Listed .. .. DS-35 600325 7565480 4290 250 4040 Packerlugeon 10.0 25.0
428
Test Interval (m asl) Hydraulic Conductivity
HGU Lithology
Top Bottom (mid)
4415 4402 5.48E+00 HGU5 Porous ignimbrite
4387.5 4369 1.01 E+00 HGU5 Porous ignimbrite
4369.5 4351 1.11E+00 HGU5 Porous ignimbrite
4411 4407 4.53E-01 HGU3 Rubblized igneous rock
4408 4404 2.50E-01 HGU3 Rubblized igneous rock
4405 4401 3.58E-01 HGU3 Rubblized igneous rock
4402 4398 5.02E-01 HGU3 Rubblized igneous rock
4399 4395 1.35E-01 HGU3 Rubblized igneous rock
4396 4392 8.97E-01 HGU3 Rubblized igneous rock
4396 4386 2.01E-01 HGU5 lgnimbrite
4386 4368 1.47E+00 HGU5 lgnimbrite
4370 4353 1.46E+00 HGU5 lgnimbrite
4405 4387 2.71E-01 HGU5 lgnimbrite
4353 4336 1.84E-01 HGU5 lgnimbrite
4338.5 4321 1.67E-01 HGU6 Lower lgnimbrite
4375 4369 1.68E-01 HGU5 lgnimbrite
4280 4265 1.40E-01 HGU6 Lower Igneous conglomerate
429
430
431
Danish Hydraulic Institute (DHI), Study of the Flows in the
Silala Wetlands and Springs System, 2018
Annex F: Hydrogeology
Appendix c: Slug Test Analyses
432
433
D~
APPENDIX c
Slug Test Analyses
434
435
Date Listed
Well ID mE mN TOC (m asl)
Well Depth Bottom Bore
Test Type
in Doc (mbgl) (m asl)
11 /20/2017 DS-04S 603291 7565924 4421 10 4411 Slug
11 /20/2017 DS-05S 603354 7565861 4421 10 4411 Slug
11 /20/2017 DS-06 603480 7565738 4421 10 4411 Slug
11 /20/2017 DS-07 603067 7565846 4422 6 4416 Slug
11 /20/2017 DS-08 603206 7565791 4419 6 4413 Slug
11 /20/2017 DS-09 603374 7565691 4419 6 4413 Slug
11 /20/2017 DS-24P 600864 7566309 4369 15.3 4353.7 Slug
11 /20/2017 DS-24S 600864 7566309 4369 4 4365 Slug
11 /20/2017 DS-38S 602930 7565840 4416 4 4412 Slug
11 /20/2017 DS-39P 602929 7565838 4416 15 4401 Slug
12/5/2017 DS-04S 603291 7565924 4421 10 4411 Slug
12/5/2017 DS-05S 603354 7565861 4421 10 4411 Slug
12/5/2017 DS-06 603480 7565738 4421 10 4411 Slug
12/5/2017 DS-06 603480 7565738 4421 10 4411 Slug
12/5/2017 DS-07 603067 7565846 4422 6 4416 Slug
12/5/2017 DS-07 603067 7565846 4422 6 4416 Slug
12/5/2017 DS-08 603206 7565791 4419 6 4413 Slug
12/5/2017 DS-09 603374 7565691 4419 6 4413 Slug
12/5/2017 DS-24P 600864 7566309 4369 15.3 4353.7 Slug
12/5/2017 DS-24S 600864 7566309 4369 4 4365 Slug
12/5/2017 DS-38S 602930 7565840 4416 4 4412 Slug
12/5/2017 DS-38S 602930 7565840 4416 4 4412 Slug
12/5/2017 DS-39P 602929 7565838 4416 15 4401 Slug
12/5/2017 DS-39P 602929 7565838 4416 15 4401 Slug
Not Listed .. DS-01-I 605496 7566807 4549 142 4407 Slug
Not Listed .. DS-01-I 605496 7566807 4549 142 4407 Slug
Not Listed .. DS-01-II 605496 7566807 4549 142 4407 Slug
Not Listed .. DS-01-II 605496 7566807 4549 142 4407 Slug
Not Listed .. DS-02-I 603531 7566112 4433 22 4411 Slug
Not Listed .. DS-02-I 603531 7566112 4433 22 4411 Slug
Not Listed .. DS-03-I 603662 7565997 4432 21 4411 Slug
Not Listed .. DS-03-I 603662 7565997 4432 21 4411 Slug
Not Listed .. DS-05P-I 603354 7565861 4421 100 4321 Slug
Not Listed .. DS-05P-I 603354 7565861 4421 100 4321 Slug
Not Listed .. DS-05P-I 603354 7565861 4421 100 4321 Slug
Not Listed .. DS-05P-I 603354 7565861 4421 100 4321 Slug
Not Listed .. DS-05P-I 603354 7565861 4421 100 4321 Slug
Not Listed .. DS-05P-II 603354 7565861 4421 100 4321 Slug
Not Listed ... DS-05P-II 603354 7565861 4421 100 4321 Slug
Not Listed .. DS-05P-II 603354 7565861 4421 100 4321 Slug
Not Listed .. DS-05P-II 603354 7565861 4421 100 4321 Slug
Not Listed .. DS-10-I 603084 7565635 4423 12 4411 Slug
Not Listed .. DS-10-I 603084 7565635 4423 12 4411 Slug
Not Listed .. DS-11-I 602857 7565756 4414 300 4114 Slug
436
Not Listed .. DS-11-I 602857 7565756 4414 300 4114 Slug
Not Listed .. DS-11-I 602857 7565756 4414 300 4114 Slug
Not Listed .. DS-11-I 602857 7565756 4414 300 4114 Slug
Not Listed .. DS-11-II 602857 7565756 4414 300 4114 Slug
Not Listed .. DS-11-II 602857 7565756 4414 300 4114 Slug
Not Listed .. DS-12-I 602554 7565830 4415 9 4406 Slug
Not Listed .. DS-12-I 602554 7565830 4415 9 4406 Slug
Not Listed .. DS-13-I 602583 7565685 4415 9 4406 Slug
Not Listed .. DS-13-I 602583 7565685 4415 9 4406 Slug
Not Listed .. DS-16-I 601817 7566050 4408 15 4393 Slug
Not Listed .. DS-16-I 601817 7566050 4408 15 4393 Slug
Not Listed .. DS-17-I 601875 7566101 4398 9 4389 Slug
Not Listed .. DS-17-I 601875 7566101 4398 9 4389 Slug
Not Listed .. DS-18-I 601751 7565991 4400 11 4389 Slug
Not Listed .. DS-18-I 601751 7565991 4400 11 4389 Slug
Not Listed .. DS-23-I 601039 7566380 4383 7 4376 Slug
Not Listed .. DS-23-I 601039 7566380 4383 7 4376 Slug
Not Listed .. DS-25-I 600809 7566489 4402 38 4364 Slug
Not Listed .. DS-27-I 600599 7566351 4388 29 4359 Slug
Not Listed .. DS-27-I 600599 7566351 4388 29 4359 Slug
Not Listed .. DS-27-11 600599 7566351 4388 29 4359 Slug
Not Listed .. DS-30-I 600938 7566208 4381 48 4333 Slug
Not Listed .. DS-30-I 600938 7566208 4381 48 4333 Slug
Not Listed .. DS-35-I 600325 7565480 4290 250 4040 Slug
Not Listed .. DS-35-I 600325 7565480 4290 250 4040 Slug
Not Listed .. DS-35-II 600325 7565480 4290 250 4040 Slug
Not Listed .. DS-37-I 600639 7565903 4345 15 4330 Slug
Not Listed .. DS-37-I 600639 7565903 4345 15 4330 Slug
437
Test Interval (mbgl) Test Interval (m asl) Water Level Water Level (m
Top Bottom Top Bottom (mbgl) asl)
5.5 10 4415.5 4411 4.460 4416.540
4 9.8 4417 441 1.2 4.240 4416.760
4 10 4417 4411 3.645 4417.355
2.3 5.3 4419.7 4416.7 1.970 4420 030
9 14.5 4410 4404.5 0.355 4418.645
4.5 10.1 4414.5 4408.9 1.038 4417.962
7.2 8.2 4361.8 4360.8 -0.750 4369.750
2 4 4367 4365 -0.263 4369.263
2.15 4.15 4413.85 441 1.85 0.288 4415.712
9.18 14 4406.82 4402 0.175 4415.825
5.5 10 4415.5 4411 4.5 4416.540
4 9.8 4417 4411.2 4.2 4416.760
4 10 4417 441 1 3.6 4417.355
4 10 4417 4411 3.6 4417.355
2.3 5.3 4419.7 4416.7 2.0 4420.030
2.3 5.3 4419.7 4416.7 2.0 4420.030
9 14.5 4410 4404.5 0.4 4418.645
4.5 10.1 4414.5 4408.9 1.0 4417.962
7.2 8.2 4361.8 4360.8 -0.8 4369.750
2 4 4367 4365 -0.3 4369.263
2.15 4.1 5 4413.85 4411 .85 0.3 4415.712
2.15 4.15 4413.85 4411.85 0.3 4415.712
9.18 14 4406.82 4402 0.2 4415.825
9.18 14 4406.82 4402 0.2 4415.825
117.92 137.9 4431.08 4411.1 41 .893 4507. 107
117.92 137.9 4431.08 4411.1 41 .893 4507. 107
54.04 70.04 4494.96 4478.96 41 .874 4507.126
54.04 70.04 4494.96 4478.96 41 .874 4507.126
17 21 4416 4412 14.433 4418.567
17 21 4416 4412 14.433 4418.567
16 20 4416 4412 14.853 4417.147
16 20 4416 4412 14.853 4417. 147
86 98 4335 4323 5.001 4415.999
86 98 4335 4323 5.001 4415.999
86 98 4335 4323 5.001 4415.999
86 98 4335 4323 5.001 4415.999
86 98 4335 4323 5.001 4415.999
36 48 4385 4373 4.97 4416 030
36 48 4385 4373 4.97 4416.030
36 48 4385 4373 4.97 4416.030
36 48 4385 4373 4.97 4416.030
11 15 4412 4408 10.165 4412.835
11 15 4412 4408 10.165 4412.835
44 60 4370 4354 3.69 4410.310
438
44 60 4370 4354 3.69 4410.310
44 60 4370 4354 3.69 4410.310
44 60 4370 4354 3.69 4410.310
6 10 4408 4404 3.67 4410.330
6 10 4408 4404 3.67 4410.330
9 12 4406 4403 8.905 4406.095
9 12 4406 4403 8.905 4406.095
4.5 8.5 4410.5 4406.5 1.82 4413. 180
4.5 8.5 4410.5 4406.5 1.82 4413. 180
9 15 4399 4393 1.225 4406.775
9 15 4399 4393 1.225 4406.775
12.2 15.2 4385.8 4382.8 7.92 4390.080
12.2 15.2 4385.8 4382.8 7.92 4390 080
12 15 4388 4385 10.19 4389.810
12 15 4388 4385 10.19 4389.810
5.9 8.9 4377.1 4374.1 1.11 4381.890
5.9 8.9 4377.1 4374.1 1.11 4381.890
44.7 52.7 4357.3 4349.3 32.767 4369.233
21.82 29 .82 4366.18 4358.18 7.52 4380.480
21.82 29.82 4366.18 4358.18 7.52 4380.480
9.04 17.04 4378.96 4370.96 7.507 4380.493
33 45 4348 4336 27.245 4353.755
33 45 4348 4336 27.245 4353.755
62 78 4228 4212 18.045 4271.955
62 78 4228 4212 18.045 4271.955
14 26 4276 4264 17.915 4272.085
7.15 10.15 4337.85 4334.85 1.554 4343.446
7.15 10.15 4337.85 4334.85 1.554 4343.446
439
Hydraulic Conductivity
HGU Lithology
(mid)
1.62E+01 HGU7 lgnimbrite
8.73E-01 HGUS lgnimbrite
3.17E+00 HGUS lgnimbrite
6.61 E+00 HGU7 lgnimbrite
1.27E+01 HGU3 Porous ignimbrite
2.78E+00 HGU3 Porous ignimbrite
1.07E+00 HGU7 Rubblized igneous rock/ bofadel
1.95E+00 HGU7 Rubblized igneous rock/ bofadel
6.93E+00 HGU7 lgnimbrite
2.21 E+00 HGU7 Porous ignimbrite
1.83E+01 HGU7 Porous ignimbrite
3.24E+01 HGUS Porous ignimbrite
2.07E+00 HGUS Porous ignimbrite
1.16E+00 HGU7 Porous ignimbrite
3.57E+00 HGU3 Porous ignimbrite
3.48E+00 HGU3 Porous ignimbrite
8.54E+00 HGU7 Volcanic Sands
2.00E+00 HGU7 Volcanic Sands
1.02E+00 HGU7 Rubblized igneous rock/ bofadel
1.93E+00 HGU7 Volcanic sands, bofadel
4.30E+00 HGUS Porous ignimbrite
4.13E+00 HGU6 Upper Porous ignimbrite
1.81 E+00 HGU6 Upper Porous ignimbrite
1.67E+00 HGU7 Porous ignimbrite
1.56E+00 HGUS Extrusive rocks
1.21E+00 HGUS Extrusive rocks
3.29E+00 HGU6 Upper Extrusive rocks
1.44E+00 HGU6 Upper Extrusive rocks
4.S0E+00 HGUS lgnimbrite
2.66E+00 HGUS lgnimbrite
6.47E-02 HGU6 Upper lgnimbrite
1.0SE-01 HGU6 Upper lgnimbrite
2.82E+00 HGU6 Lower lgnimbrite
3.46E+00 HGU6 Lower lgnimbrite
2.SSE+00 HGU6 Lower lgnimbrite
5.02E+00 HGU6 Lower lgnimbrite
2.41E+00 HGU6 Lower lgnimbrite
8.24E+00 HGUS lgnimbrite
3. 18E+00 HGUS lgnimbrite
6.13E+00 HGUS lgnimbrite
3.62E+00 HGUS lgnimbrite
1.10E+00 HGUS lgnimbrite
1.11 E+00 HGUS lgnimbrite
6.13E+00 HGUS Extrusive rocks
440
6.02E+00 HGU5 Extrusive rocks
4.26E+00 HGU5 Extrusive rocks
6.66E+00 HGU5 Extrusive rocks
1.50E+00 HGU3 Rubblized igneous rock
1.52E+00 HGU3 Rubblized igneous rock
3.60E-01 HGU1 lgnimbrite
4.35E-01 HGU1 lgnimbrite
1.36E+00 HGU3 lgnimbrite
1.35E+00 HGU3 lgnimbrite
2.31E+01 HGU7 lgnimbrite
2.12E+01 HGU7 lgnimbrite
5.77E-01 HGU5 lgnimbrite
5.95E-01 HGU5 lgnimbrite
8.99E+01 HGU7 lgnimbrite
8.81 E+01 HGU7 lgnimbrite
7.53E+00 HGU5 lgnimbrite
6.64E+00 HGU5 lgnimbrite
2.18E+01 HGU5 lgnimbrite
2.83E+01 HGU5 lgnimbrite
1.57E+01 HGU5 lgnimbrite
9.07E+00 HGU5 lgnimbrite
4.31E+00 HGU5 Rubblized igneous rock
7.59E+00 HGU5 Rubblized igneous rock
5.18E-02 HGU6 Lower lgnimbrite
6.1 6E-02 HGU6 Lower lgnimbrite
1.77E-01 HGU6 Lower lgnimbrite
5.81E+01 HGU7 lgnimbrite
5.55E+01 HGU7 lgnimbrite
441
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-04S-I Test Well: DS-04S
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 11 .00 m
ID/CD [s)
0 4 8 12 16 20
1
),,_ -- '
- ~ - ~ ~ ... "' \.
0.1
- ~
~ II.. - f-
0 .s: ~ ~
0.01 ~
-"'- ~
f- ,. ,. -
"'- -.·-■. ,., .'lil'V .... !!li•,.t,i.ni.~l~ ..........· ......,"ii: -
0.001 ~-
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-04S 1.87 X 104
442
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-05S-1 Test Well: DS-05S
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 10.00 m
ID/CD [s)
0 20 40 60 80 100
1 - - - ~
- -
0 :.cc 0.1
I

I
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-05S 4.63 X 104
443
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: Slug Test 1 Test Well: Well 1
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 11 .30 m
ID/CD [s)
0 20 40 60 80 100
1
- ~ - ~ ~

0.1
;._
'- - f-
0 .s:
~
\ -.. :---... 0.01
- '\- ~ f- --
I'\
'\ -
0.001 \
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
Well1 3.67 X 10·'
444
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: Slug Test 2 Test Well: Well 1
Test Conducted by: Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 11 .30 m
Time[s)
0 20 40 60 80 100
1E0 - - - ~
- -
I
i!.
\.
0 ~ J: 1E-1 J:
\
\
\
\
1E-2 \
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
Well1 3.79x 10·5
445
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-07-1 Test Well: DS-07
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 6.00 m
ID/CD [s)
0 20 40 60 80 100
1
I - ~ - ~ ~
0.1 \
~ - - f-
0 '" .s:
~
0.01 ~
~ f-
~
' \ -
0.001 \
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-07 7.6Sx 10·5
446
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-08-1 Test Well: Well 1
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 14.00 m
ID/CD [s)
0 20 40 60 80 100
1
ii
0.1 ' --..
.0c \ • 1~ :c 0.01 -
\ • - ~
\ - .. ~- 0.001 -
\
0.0001
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
Well1 1.47 X 104
447
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-09-1 Test Well: Well 1
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 9.00 m
ID/CD [s)
0 36 72 108 144 180
1 -
- ~ - ~ ~
"-
0.1 \.
~ - - f-
0 '" .s:
~
0.01 ~
- \ -
\- -- f--
~
\ - -
\ ~ ~ 0.001
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
Well1 3.22 X 10·'
448
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-24P-1 Test Well: DS-24P
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 9.00 m
ID/CD [s)
0 64 128 192 256 320
1 ~ --= - - ~
-
~ ---.........__
......... .........
0 ~ ..... :.cc 0.1
----~--- ----~ ~ --------- ~.,
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-24P 1.24 X 10·'
449
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-24S-1 Test Well: DS-24S
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 5.00 m
ID/CD [s)
0 24 48 72 96 120
1 : - ~ ~
- ~ - ~

~■ .
0 ~ .c 0.1
~ ..•
■ ,_
- -- -
~
! "' ;__~_ ■ - l•, .•. . • .
~ .. - - --• ~ -.• r
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-24S 2.26 X 10·'
450
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-38-1 Test Well: Well 1
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 3.00 m
ID/CD [s)
0 20 40 60 80 100
1 - - - ~
- -
I
--■ •
\.
0 ' .c 0.1 :c ---\
-
\ ........
\ ............
\ ~ -
0.01 \
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
Well1 8.02 X 10·'
451
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-39D-1 Test Well: Well 1
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 13.00 m
ID/CD [s)
0 20 40 60 80 100
1E0 - - f-
1E-1 -----.... -
1E-2 ------ 0
J: - ~ - f------- ~ J:
1E-3 - f- ------ ----
- ~ ~ ---- 1E-4
1E-5
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lcm/s]
Well1 2.56 X 1o·J
452
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-01-I lnyecci6n Test Well: DS-01 -I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 97.00 m
ID/CD [s)
0 20 40 60 80 100
0.20
0.10 ~
i \\ 0.00
I : ~ r w
0 • .c: :i:: •
-0.10 •
-0.20

-0.30
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-01-1 5.89 X 10·1 1.80 X 10·5 9.89 X 10·1
453
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-01-I_Extracci6n Test Well: DS-01-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 97.00 m
ID/CD [s]
0 20 40 60 80 100
0.20
• ••
0.10 • li • •• r -~
0.00 .
I • - w - 0 • .c: • :i:: • -0.10 1J
-0.20 T
-0.30
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-01-1 3.96 X 10·1 1.40 X 10·5 8.50 X 10·1
454
f I ct §9.)k~ ~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-01-11 lnyecci6n Test Well: DS-01 -I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 97.00 m
Time [s]
0 0.8 1.6 2.4 3.2 4
1.000
~ ---= ~ ~
~ - ~ ~ ---- ------ • . ........_
• •"'---.... -~-la --....
~ 0 .s: 0.100
~
--....
........_
• ........._
• ........______
- ~
0.010
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-01-1 3.81 X 10·'
455
f I ct ~2)k~~s!2e~;~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-01-11 Extracci6n Test Well: DS-01-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 29.00 m
ID/CD [s)
0 20 40 60 80 100
0.70
0.61
0.51

0.42 •
:[ ••
0 0.33 '
.r:. ::c l
0.23
0.14
0.04 ~
\,-
-0.05
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
m/s
DS-01-1 6.21 X 10·1 1.67 X 10-S 1.34 X 10°
456
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-02-I lnyecci6n Test Well: DS-02-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 7.00 m
Time [s)
0 2.4 4.8 7.2 9.6 12
1
~ - ~ ~
- ~ - ~ --"<la
I'«<.•· ~-.
~•
0 ~ .c 0.1
~ -~ "L ....
••i.-.. •• -~ ... ;---.,
•• ~ •• 0.01 ••
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-02-1 5.21 X 10·'
457
f I~ ~2)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-02-I Extracci6n Test Well: DS-02-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 97.00 m
Time[s]
0 2.4 4.8 7.2 9.6 12
1 - - - -
- -- - -
---.... ~ - - - ---- ....
0 ~ ~
:~c 0.1 - -- - --=---~-- ---~ ~-- ~
------
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis)
DS-02-I 3.08 X 10-S
458
f I ct ~2)k~~s!2e~;~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-03-I lnyecci6n Test Well: DS-03-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 6.00 m
Time [s)
0 40 80 120 160 200
1
.-..
-- 0
:.cc 0.1 - ~ - ~
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-03-I 7.49 X 10·1
459
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-03-I Extracci6n Test Well: DS-03-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 6.00 m
Time[s)
0 40 80 120 160 200
1 •-- - - - - - - .... . -__,.
~
.0c ~ * :c 0.1
-.,.,
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-03-1 1.21 X 10~
460
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-I lnyecci6n1 Test Well: DS-05-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 94.00 m
ID/CD [s)
0 32 64 96 128 160
0.30
~ 0.14 \ -- -0.03 4 "'
-0.19
I ' C
0 -0.35
.c:
:i:
-0 .51 •
-0.68
-0.84
-1.00
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-05-1 4 .29 X 10·1 3.26 X 10·5 7.13 X 10·1
461
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-I-lnyecci6n2 Test Well: DS-05-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 94.00 m
ID/CD [s)
0 32 64 96 128 160
0.30
~ 0.04
j ~

-0.22 I • 0
.c:
:i::
-0.48
-0.74
-1.00
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-05-1 4.89 X 10·1 4 .01 X 10·5 6.61 X 10·1
462
f I ct ~2)k~~s!2e~;~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-I-Extracci6n2 Test Well: DS-05-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 94.00 m
ID/CD [s)
0 32 64 96 128 160
1.00
0.84
0.67
0.51
:[
0 0.35
.c
:i:: ' 0.19
0.03
,,,.,,.
l/ ._ ....
-0 .14 V
-0.30
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
m/s
DS-05-1 4 .29 X 10·1 2.95 X 10·5 7.89 X 10-l
463
f I~ ~2)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-l-lnyecci6n3 Test Well: DS-05-I
Test Conducted by: JO Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 94.00 m
ID/CD [s)
0 32 64 96 128 160
0.50
0.30
~
0.10
I .0c l ~ -
:i:: • -0.10 :
-0.30
-0.50
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
m/s
DS-05-I 4.94 X 10·1 5.81 X 10·5 4.61 X 10·1
464
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-I-Extracci6n3 Test Well: DS-05-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 94.00 m
ID/CD [s)
0 32 64 96 128 160
1.00
0.74
I 0.48 I
0
.c:
:i:
0.22
~ - -0.04 V
-0.30
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-05-1 3.76 X 10·1 2.79 X 10·5 7.31 X 10·1
465
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-11 lnyecci6n1 Test Well: DS-05-11
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 44.00 m
ID/CD [s)
0 20 40 60 80 100
0.70
0.50
0.30 I
0
.c:
:i:: &.
0.10 .7v~
-0.10
-0.30
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-05-11 7.67 X 10·1 9.54 X 10·5 4.10 X 10·1
466
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-11 Extracci6n1 Test Well: DS-05-11
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 44.00 m
ID/CD [s)
0 20 40 60 80 100
1.00
0.74
0.48 I
0
.c:
:i:
0.22
A - -0.04 \I
-0.30
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-05-11 6.48 X 10·1 3.68 X 10·5 8.98 X 10·1
467
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-11-lnyecci6n2 Test Well: DS-05-11
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 44.00 m
ID/CD [s)
0 20 40 60 80 100
0.20
~
0.10 ' 4 •
" \A,_-.... 0.00 . I •• w- - 0
.c:
:i::
-0 .10

0
-0 .20
-0.30
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-05-11 8.53 X 10·1 7.10 X 10·5 6.13 X 10·1
468
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-05-11-Extracci6n2 Test Well: DS-05-11
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 44.00 m
ID/CD [s)
0 20 40 60 80 100
0.70
0.50
0.30 I
I ' 0 .c: ' :i: ' 0.10 C• • I'. ,,. --
-0.10 \I
-0.30
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-05-11 5.30 X 10·1 4 .19 X 10·5 6.45 X 10·1
469
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-10-I lnyecci6n Test Well: DS-1 0-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 5.00 m
Time[s)
0 4 8 12 16 20
1 -- - - - ~
-~
-
-~ --- ____,___
-_,, ~
~
0 ~
:.cc 0.1
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-10-1 1.27 X 10·'
470
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-10-I Extracci6n Test Well: DS-10-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 5.00 m
Time [s)
0 4 8 12 16 20
1 --=-- - ~ ~
~ - ~
-.: =-<a»...
~~ ____,, -- ~
~~
-._
~ 0 .c 0.1
~
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-10-1 1.28 X 10·'
471
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-11-I lnyecci6n1 Test Well: DS-1 1-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 57.00 m
ID/CD [s)
0 28 56 84 112 140
1.00
0.66
0.32 I
0 l ~ .c:
:i:: • - -0.02 • ~ -
-0.36
-0.70
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-11-I 7.88 X 10·1 7.10 X 10·5 4.20 X 10·1
472
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-11-I Extracci6n1 Test Well: DS-11 -I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 57.00 m
ID/CD [s)
0 28 56 84 112 140
1.00
0.66
'
0.32 : & I •• 1, • 0 • ~ .c: • \ ~ :i: • - -0.02 • V ~
• - -
I •
-0.36 !
I
~
-0.70
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-11-1 5.30 X 10·1 6.97 X 10·5 2.88 X 10·1
473
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-11-I lnyecci6n2 Test Well: DS-1 1-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 57.00 m
ID/CD [s)
0 28 56 84 112 140
0.50
0.20 1
i , ,A - ~ -
-0.10 I V
0
.c:
:i:: I
-0.40
-0.70
-1.00
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-11-I 6.05 X 10·1 4.93 X 10·5 4.65 X 10·1
474
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-11-I Extracci6n2 Test Well: DS-11 -I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 57.00 m
ID/CD [s)
0 28 56 84 112 140
1.00
0.66

0.32 A
I • ~ i
0 • ~ .c: :i: I• \ ~ - -0.02 • V f-)V - -
i
I
-0.36 a
i ~
-0.70
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-11-1 5.30 X 10·1 7.71 X 10·5 2.60 X 10·1
475
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-11-11 lnyecci6n Test Well: DS-1 1-11
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 97.00 m
Time[s)
0 3.2 6.4 9.6 12.8 16
1 - - - ~
- - • ~
- ---=-
.0c ---= :c 0.1
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-11-11 1.74 X 10·'
476
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-11-11 Extracci6n Test Well: DS-11 -11
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 97.00 m
Time [s)
0 4 8 12 16 20
1 -· - ~ ~
~ - ~
~
~
~
~
~
~- 0 .c 0.1
~
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-11-11 1.76 X 10·'
477
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-12-I lnyecci6n Test Well: DS-1 2-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 4.00 m
Time[s)
0 32 64 96 128 160
1 - - - ~
- - \ ..... --- ------ ---
~
0 :.cc 0.1
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-12-1 4.17 X 10~
478
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-12-I Extracci6n Test Well: DS-12-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 4.00 m
Time [s)
0 32 64 96 128 160
1 - - ~ ~
\ - ~ - ~ -------..
0 ------------------~ .c 0.1
~
~ ----
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-12-1 5.03 X 10~
479
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-13-I lnyecci6n Test Well: DS-1 3-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 7.00 m
Time[s)
0 16 32 48 64 80
1
~ - - - ~
- -
~ -- ......_,,___
~
0 -~
:.cc 0.1
- __,._
,~
~~
~
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-13-1 1.57 X 10·'
480
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-13-I Extracci6n Test Well: DS-13-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 7.00 m
Time [s)
0 16 32 48 64 80
1
~ - ~ ~
~ - ~
~ -..
-..........
~
0 '-- .c 0.1
~ - --"8i/ii &..
~
~ -
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-13-1 1.56 X 10·'
481
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-16-I Extracci6n1 Test Well: DS-1 6-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 14.00 m
ID/CD [s)
0 20 40 60 80 100
0.70
0.54
0.38 I
0
.c:
:i::
0.22
'
0.06
-0.10 V'-
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-16-1 9.71 X 10·1 2.67 X 104 8.58 X 10·1
482
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-16-I Extracci6n2 Test Well: DS-16-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 14.00 m
ID/CD [s)
0 20 40 60 80 100
0.70
0.54
0.38 I
0
.c:
:i:
0.22
0.06
-0.10 ~
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-16-1 9.75 X 10·1 2.45 X 104 9.39 X 10·1
483
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-17-I lnyecci6n Test Well: DS-17-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 8.00 m
Time[s)
0 30 60 90 120 150
1
~ - - - ~
- -
---=:::: - ----~ ii.;;:,__ -------
.0c - :c 0.1 ----
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-17-1 6.68 X 10~
484
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-17-I Extracci6n Test Well: DS-17-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 28/12/2017
Aquifer Thickness: 14.00 m
Time [s)
0 30 60 90 120 150
1
~ - ~ ~
- ~ - ~
---- .._ - ............
I~
--....... ~ 0 .c 0.1
~
---- --- ---- c~
---- -
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-17-1 6.89 X 10~
485
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-18-I Extracci6n1 Test Well: DS-1 8-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 5.00 m
ID/CD [s)
0 8 16 24 32 40
0.03
0.02
0.02 I
0 .c: •
:i::
0.01
~ i!t 0.00 ~ ~ .... -· - lb. - -
, ~~ "' -.,_,~ y -7 ~w·-• ... - .. ,.. ._...,,.. r--;· ....
\ .
-0.01
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-18-1 1.94 X 10° 1.04 X 1o·J 7.13 X 10·1
486
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-18-I Extracci6n2 Test Well: DS-18-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 29/12/2017
Aquifer Thickness: 5.00 m
ID/CD [s)
0 8 16 24 32 40
0.03
0.02
0.02 I
0 ' .c:
:i: 0.01 ' •,'.
~ /fl-.. ..tM • ..m I.J .. ~"""- .. ,_ -- - -- CL.-m- ..._ A_ ••J
0.00 V ~- .... --.. - - . .... - .
-0.01
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-18-1 2.10 X 10° 1.02 X 10·J 7.89 X 10·1
487
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-23-I Extracci6n1 Test Well: DS-23-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 28/12/2017
Aquifer Thickness: 8.00 m
Time[s)
0 2.4 4.8 7.2 9.6 12
1
~ ---= - - ~
-
~ = ....,,__
-.........
-~
-~
!M,,,.._
0
:.cc 0.1 ---.::~ -
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-23-1 8.71 X 10·'
488
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-23-I Extracci6n2 Test Well: DS-23-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 28/12/2017
Aquifer Thickness: 8.00 m
Time [s)
0 2.4 4.8 7.2 9.6 12
1 '-""• - ~ ~
~ e~.
- ~ - ~
~
"""'-
- ~
I~
0 ~ ~ .c 0.1
~
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-23-1 7.68x 10·5
489
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-25-I Extracci6n Test Well: DS-25-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 29/12/2017
Aquifer Thickness: 20.00 m
ID/CD [s)
0 28 56 84 112 140
0.70
0.52
0.34 I
0
.c:
:i:: n 0.16 : i;
•• A - • -0.02 • ~ -

-0.20 1~
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-25-1 7.88 X 10·1 2.52 X 104 5.98 X 10·1
490
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-27-I lnyecci6n Test Well: DS-27-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 28/12/2017
Aquifer Thickness: 23.00 m
ID/CD [s)
0 20 40 60 80 100
1.00
0.70
•• ••• 0.40 i I ,,
0 0
.c: :i: . ' I 0.10 ' : ~ - :
-0.20
w
-0.50
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-27-1 1.19 X 10° 3.28 X 104 2.70 X 10·1
491
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-27-I Extracci6n Test Well: DS-27-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 29/12/2017
Aquifer Thickness: 23.00 m
ID/CD [s)
0 20 40 60 80 100
1.00
0.70
0.40 I l " 0 .c: (
:i:: I .... 0.10 1 ,~ \ --
-0.20 -
-0.50 ~
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-27-1 7.16 X 10·1 1.82 X 104 2.93 X 10·1
492
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-27-11 Extracci6n Test Well: DS-27-11
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 29/12/2017
Aquifer Thickness: 10.00 m
ID/CD [s)
0 16 32 48 64 80
0.70
0.54
0.38 I
0
.c:
:i:
0.22
'
0.06
-0.10 ·r
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-27-11 1.37 X 10° 1.05 X 104 8.50 X 10·1
493
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-30-I lnyecci6n Test Well: DS-30-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 28/12/2017
Aquifer Thickness: 18.00 m
Time[s)
0 2.4 4.8 7.2 9.6 12
1
~ - - - ~
- -
____.,
• -8'
---""---- - ·"· _, ...................... _
• ••• ...
~
... • .... 0 • .. ... _
.c 0.1 - --~
:c - •• '- ·- . '
• ' "'-
• ~
0.01 ~
Calculation using Hvorslev
Observation Well Hydraulic
Conductivity
[mis]
DS-30-1 4 .99 X 10·'
494
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-30-I_Extracci6n Test Well: DS-30-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Butler High-K Analysis Date: 29/12/2017
Aquifer Thickness: 18.00 m
Time [s]
0 28 56 84 112 140
1.00
0.74
:[
ai
>
~ 0.48
~
!
"~'
.!:
" 0.22
t":'
."c' u ~
-0.04
• y
-0.30 1
Calculation using Butler High-K
Observation Well ID/I Hydraulic CD
Conductivity
mis
DS-30-1 1.30 X 10° 8.78 X 10·' 7.13 X 10·1
495
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-35-I lnyecci6n Test Well: DS-35-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 28/12/2017
Aquifer Thickness: 60.00 m
Time[s)
0 40 80 120 160 200
1 ............... - - - ~
- -
~ .._ ....
---..........
............. ........
------..... ............ 0 :.cc 0.1
--... --
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-35-1 5.99 X 10·7
496
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-35-I Extracci6n Test Well: DS-35-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 28/12/2017
Aquifer Thickness: 60.00 m
Time [s)
0 40 80 120 160 200
1
~ - ~ ~
- ~ - ~ - -- ............ ---..___
0 ~- .c 0.1
~ --..__, .,.__
-,.
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-35-1 7.13 X 10·7
497
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-35-11 Extracci6n Test Well: DS-35-11
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 28/12/2017
Aquifer Thickness: 9.00 m
Time[s)
0 10 20 30 40 50
1 • - - - ~
- - • .
~
~ ----~ ---~ 0 :.cc 0.1
~ -..... -
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-35-II 2.05 X 10~
498
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-37-I lnyecci6n Test Well: DS-37-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 28/12/2017
Aquifer Thickness: 9.00 m
Time [s)
0 1.6 3.2 4.8 6.4 8
1 - ~ ~
- ~ - ~ •
'-""• " ~ ••••••• 1e••·········· ••••••••••••• 0 •••••••••••• .c 0.1 -··· ~
' '-"
""
0.01 ~
Calculation using Hvorslev
Observation Well Hydraulic
Conductivity
lm/s]
DS-37-1 6.72 X 104
499
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Maldonado-Bolivia
Number: 1175601
Client: Diremar
Location: Bolivia I Slug Test: DS-37-I Extracci6n Test Well: DS-37-I
Test Conducted by: JQ Test Date: 28/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 28/12/2017
Aquifer Thickness: 13.00 m
Time[s)
0 2 4 6 8 10
1 y- - - - ~
- -
\ •
- ~
~
.0c \ ..... , ······•- :c 0.1 <eec .-· •-•-•·-·· ., -••···••◄ •••·•·••••••-•u._
.\ -·.,. -· .- ~•
\
0.01 \
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-37-1 6.42 X 104
500
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-04S-I Test Well: DS-04S
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 11 .00 m
ID/CD [s)
0 2.4 4.8 7.2 9.6 12
1 " -
! ~ - ~ - ~ ~ ---~·-- "-.... ... -. "-.... .....
0.1 ['-..__ ···- •••
~ - •~- - f-
0 •• .s: ~ ••• ~ •.
~ • •• 0.01 -
- ~ "-.-~. . f--
" I'.... • • .. ~ • •
0.001 ..
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-04S 2.12x 104
501
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-05S-4 Ext Test Well: DS-05S
Test Conducted by: JQ Test Date: 04/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 04/12/2017
Aquifer Thickness: 11 .30 m
ID/CD [s)
0 1.6 3.2 4.8 6.4 8
1
~ ,,,
•"-
0.1 . ""-
~
'
• •-"
•1>,_ -· .· -•---•~•-•-•-•----·~ • -• · - · -• ·• · · . - • -• -• 41 .. •-•-•-·-· •-•-.-•-•-
w~ • .0c • :c 0.01 • •~---·
' ' '-
0.001 "
' " 0.0001 ""-
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-05S 3.75 X 104
502
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-06-1 Test Well: DS-06
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 11 .30 m
ID/CD [s)
0 16 32 48 64 80
1 - •-• - ~ - ~ ~ "-".'. ...
"'e,._
0.1 '--
~~ - f-
0
~ .s:
~
~ 0.01 ' ~ ~"'- ~ f-
..... = ~
........ -_,_
........._ ...,.-"'"'-- 'lo-.
~I'-.. -....· ,. ,
0.001 ·, -- -
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-06 2.40 X 10·'
503
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-06-2 Test Well: DS-06
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 11 .30 m
Time[s)
0 12 24 36 48 60
1E0 - - - ~
- - ... •
~
~
~ ~ 0
----- J: 1E-1 J: ------ ---..._
.........__
---..._
----- ~
~
~ 1E-2
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-06 1.34 X 10·'
504
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-07-1 Test Well: DS-07
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 6.00 m
ID/CD [s)
0 20 40 60 80 100
1 f - ~ ~
- ~ - ~
"'' ' \. " 0
-~
.c 0.1
~ -
"
'\ -
"\
\ - -~
0.01 \
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-07 4.13 x 10·5
505
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-07-2 Test Well: DS-07
Test Conducted by: JQ Test Date: 20/11 /2017
Analysis Performed by: GC I Bouwer& Rice Analysis Date: 20/11 /2017
Aquifer Thickness: 8.10 m
Time[s)
0 16 32 48 64 80
1
~ - - - - - -
'Q.
" ~ 0 ' ~ ---- :.cc 0.1
- " ' " ""
""' "
0.01 ~
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-07 4.03 X 10·'
506
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-08-1 Test Well: DS-08
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/1 1/2017
Aquifer Thickness: 15.50 m
ID/CD [s)
0 4 8 12 16 20
1 - ~ ~ ,_ - ~ - ~
"1-,
'<o..
~ 0 "'' ~ .c 0.1
~
"', ._ - - ...... •
~ . .. "'-.' ··"""'~-
I'---
0.01 ~
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-08 9.88 X 10·'
507
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-09-1 Test Well: DS-09
Test Conducted by: JQ Test Date: 16/11 /201 7
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 10.50 m
ID/CD [s)
0 36 72 108 144
1 -
'\.... - - - - -
' ' 0.1 " --
0 .s: :c ~----- 0.01
+---------l\-\
...
180
0.001~-------~-----\~~~------~-------~-------·~
Calculation using Bouwer & Rice
Observation Well
DS-09
Hydraulic
Conductivity
[mis]
2.32 X 10·'
508
f I ct §9)k~~s!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Ulluni-Bolivia I Slug Test: DS-24P-1 Test Well: DS-24P
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 15.00 m
ID/CD [s)
0 64 128 192 256 320
1 ~ - ~ ~
- ~ - ~
~
,-.
...........
........... ....._
0 ~~ .c 0.1
~
.~;:,-._ --------~.--.... .......... ""-
7
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
lm/s]
DS-24P 1.18 X 10·'
509
f I ct §9.)k~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-24S-1 Test Well: DS-24S
Test Conducted by: JQ Test Date: 16/11 /2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11 /2017
Aquifer Thickness: 15.00 m
ID/CD [s)
0 24 48 72 96 120
1 - - - ~
- - - •
• ·:n-
0 ;\\_ :.cc 0.1 ... .. --- -
':::' - - '• "' ~ •. .l • a•. • " A
~
. ~ ... . -' ., _ ..- ... '$ ~ 't i' - ~ ....
0.01
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mis]
DS-24S 2.23 X 10·'
510
f I~ ~9L~~s!2e~i§
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-38S-1 Test Well: DS-38S
Test Conducted by: JQ Test Date: 16/1 1/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11/2017
Aquifer Thickness: 5.10 m
ID/CD (s)
0 20 40 60 80 100
1 ,-.
'- '",
"' ~ 0 .c 0.1 J: ' ' ' "" " ~ ~
0.01 ~
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mi s]
DS-38S 4.98 X 10-S
511
f I ct ~2L~ ~.!2e~i~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-38S-2 Test Well: DS-38S
Test Conducted by: JQ Test Date: 04/12/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 04/12/2017
Aquifer Thickness: 5.10 m
ID/CD [s)
0 20 40 60 80 100
1
\.
""' ' "-' "' ~ ~ C)
.c 0.1 :i::
'-
'-
" "' "" -~
"" 0.01 ~
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[mi s]
DS-38S 4.78 X 10-S
512
f I ct ~9L~ ~s!2e~;~
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 1175601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-39P-1 Test Well: DS-39P
Test Conducted by: JQ Test Date: 16/1 1/2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 16/11/2017
Aquifer Thickness: 15.00 m
ID/CD [s]
0 20 40 60 80 100
1 ., -' ' " 0 "" .c 0.1 :i:: ' -----
~ ~ ---- 0.01
,11 .......
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[m/s]
DS-39P 2.09 X 10·5
513
f I~ ~9)k~ ~.!2e~i§
Slug Test Analysis Report
Project: Silala-Bolivia
Number: 11 75601
Client: Diremar
Location: Uyuni-Bolivia I Slug Test: DS-39P-2 Test Well: DS-39P
Test Conducted by: JQ Test Date: 20/11 /2017
Analysis Performed by: GC I Bouwer & Rice Analysis Date: 20/11 /2017
Aquifer Thickness: 15.00 m
Time[s)
0 20 40 60 80 100
1 ~
~
'-' - ~
~ -
0 :.cc 0.1 '
"-:::: '-. -
.....___ --- ~ --0:-. .. - -
~ -- 0.01
I'-.,_
Calculation using Bouwer & Rice
Observation Well Hydraulic
Conductivity
[m/s]
DS-39P 1.93 X 1Q"5
514
515
Danish Hydraulic Institute (DHI), Study of the Flows in the
Silala Wetlands and Springs System, 2018
Annex F: Hydrogeology
Appendix d: Pumping Test Analyses
516
517
D~
APPENDIX d
Pumping Test Analyses
518
519
0.1
-S
c
Q)
E
Q)
(.)
cu
Q. 0.01 r/)
0
"O
Q)
t5
I!!
0
0
0.001
1.0E-4 ~~~~-~~~~~~~~~~~~~~
1.0E-4 0.001 0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumi:iing Test\Anal~ses\DS-3 theis.agt
Date: 01 /29/18 Time: 15:35:23 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpin<:1 Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I O DS-3 603662 : 7565997 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Theis --
T = 1.354E+4 m2iday s = 0.00326
Kz/Kr = 0.1 b = 95. m - -
520
0.16
I
c
(I) E 0.12
(I)
(.)
rn
C.
!/)
i5
"O
~ 0.0799
~
0
u
0.0399
-1 . 0 E-4 L_.l......l.ctl..llw.J,____a1_.>..h.docU!lru~~ _l_uJ..UL__1_J.L.i_u_u.!L__L_J_u_Ul.LJ
1.0E-4 0.001 0.01 0.1 1. 10.
Adjusted Time (day)
WELL TEST ANALYSIS
Data Set: C:\Users\mmg\Documents\Projects\Sialia\Pumi:iing Test\Analyses\DS-3 cj late.agt
Date: 01 /29/18 Time: 15:35:56 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
AQUIFER DATA
Saturated Thickness: 95. m Anisotropy Ratio (Kz/Kr): .!.: -
WELL DATA
Pumoino Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I O DS-3 603662 : 7565997 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Cooi:ier-Jacob
T = 1475. m2/day S = 0.006093
521
0.1
I
c
Q)
E 0.01 Q)
(.)
ro
Q_
(/)
0
0.001
1.0E-4 ~~~~~~~~~~~~~~~~~~~
1.0E-4 0.001 0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\Users\mmg\Documents\Projects\Sialia\Pumi:iing Test\Analyses\DS-4P DS3Moench.agt
Date: 01 /29/18 Time: 15:39:32 --- ---
PROJECT INFORMATION
Company: OHi Water & Environment
Client: Diremar
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
AQUIFER DATA
Saturated Thickness: 95. m Slab Block Thickness: 2.m - -
WELL DATA
Pumoinq Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I □ DS-3 603662 : 7565997 :
SOLUTION
Aquifer Model: Fractured Solution Method: Moench w/slab blocks
K = 42.94 m/day Ss =1 .998E-5m-1
K' = 0.001585 m/day Ss' = 2.512E-5 m-1
Sw =0. Sf =-0.--
r(w) = 0.3048 m r(c) = 0.2032 m
522
0.1
I
c
Q)
E
Q)
()
cu
C. en 0.01
0
"O
~
~ ! 0
0 •' I
0.001 '
""'
. . - ... .
C<DOCll<JDD .
1.0E-4
0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pum~ing Test\Analtses\DS-4S.agt
Date: 01 /29/18 Time: 15:13:55 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpinq Wells Observation Wells
I Well Name I X(m) I Y (ml I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I : 0 DS-4S 603291 : 7565924 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Theis --
T = 1474.7 m2iday s = 0.1064 --
Kz/Kr = 0.05 b = 95. m - -
523
0.1
-S
c
Q)
E
Q)
(.)
cu
Q. 0.01 r/)
0
"O
Q)
t5
I!!
0
0
0.001
1.0E-4 ~~~~-~~~~~~~~~~~~~~
1.0E-4 0.001 0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumi:iing Test\Anal~ses\DS-4P 5S Theis .agt
Date: 01 /29/18 Time: 15:14:31 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpin<:1 Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I : 0 DS-5S 603354 : 7565861 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Theis --
T = 1778.4 m2iday s = 0.005134
Kz/Kr = 0.1 b = 95. m - -
524
0.24
I
c
Q) E 0.18
Q)
(.)
ro
C.
(/)
0
"O
~ 0.12
~
0
0
0.06
0. L__l__LJ...L.llill~L...L..LWJ,bll,...JIL.Ll..llULI.L__l__LJU.U.llL_j__j_j__Li_WJ
1.0E-4 0.001 0.01 0.1 1. 10.
Adjusted Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumping Test\Analtses\DS-4P 5ScjLate.agt
Date: 01 /29/18 Time: 15:15:27 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
AQUIFER DATA
Saturated Thickness: 95. m Anisotropy Ratio (Kz/Kr): QJ_ -
WELL DATA
Pumoino Wells Observation Wells
I Well Name I X(m) I Y (ml I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I : 0 DS-5S 603354 : 7565861 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Cooper-Jacob
T = 1323.7 m2iday S=0.03117 --
525
0.1
-S □
'E
Q) □
E 0.01 □
Q)
(,)
ro
C. □
en
0
0.001 □i [D
□o

1.0E-4
1.0E-4 0.001 0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumi:iing Test\Anal~ses\DS-4P 5PI Theis.agt
Date: 01 /26/18 Time: 10:28:21 --- ---
PROJECT INFORMATION
Company: DHI Water & Environment
Client: Diremar
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpin<:1 Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I : □ DS-5P-I 603346 : 7565864 :
SOLUTION
Aquifer Model: Confined Solution Method: Theis --
T = 2336.3 m2iday s = 0.001855
Kz/Kr = 0.1 b = 95. m - -
526
0.32
-S 0.24
c Q)
E
Q)
(.)
ro
C.
(/J 0.16 0
0.0798


-2.0E-4 L.1.....J!:JL.llwb.,:::L.ll:J..l.d:[mmt:tmm!_i_-1...UJ..UL__1___l_l_u_u.tl__L_J_u_Ul.LJ
1.0E-4 0.001 0.01 0.1 1. 10.
Adjusted Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumping Test\Analt ses\DS-4P 5PI cj latel.agt
Date: 01 /29/18 Time: 15:22:10 --- ---
PROJECT INFORMATION
Company: DHI Water & Environment
Client: Diremar
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
AQUIFER DATA
Saturated Thickness: 95. m Anisotropy Ratio (Kz/Kr): QJ_ -
WELL DATA
Pumoino Wells Observation Wells
I Well Name I X(m) I Y (ml I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I : □ DS-5P-I 603346 : 7565864 :
SOLUTION
Aquifer Model: Confined Solution Method: Cooper-Jacob
T = 1505.6 m2iday S = 0.01013 --
527
0.1
+
-S +
'E
Q) +
E 0.01 +
Q)
(,)
ro C. +
en
0
0.001
+
+ t
1.0E-4 ~~~~~-~~~~-~~~~~~~~
0.001 0.01 0.1
Time (day)
WELL TEST ANALYSIS
1. 10.
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumi:iing Test\Anal~ses\DS-4P 5Pll.agt
Date: 01 /25/18 Time: 14:37:23 --- ---
PROJECT INFORMATION
Company: DHI Water & Environment
Client: Diremar
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpin<:1 Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m)
I DS-4P I 603291 I 7565924 I : + DS-5P-II 603346
SOLUTION
Aquifer Model: Confined Solution Method: Theis --
T = 2254.7 m2iday s = 0.002171
Kz/Kr = 1. b = 95. m - -
I: 75Y6(5m86) 4 I:
528
-S
c Q)
E
Q)
(.)
ro
C.
(/J
0
0.32
0.24
0.16 ;(
r 0.0798 T
+
-3.0E-4 '---'-----'--J....JJ..d&~"""'=,LL_-'-...L...L..LJ...1..J.L _ _L_L...L.L..L.Ll..LL_L__L__L_l_LLllJ
0.001 0.01 0.1
Adjusted Time (day)
WELL TEST ANALYSIS
1. 10.
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumping Test\Analt ses\DS-4P 5PI cj latel.agt
Date: 01 /26/18 Time: 09:47:55 --- ---
PROJECT INFORMATION
Company: DHI Water & Environment
Client: Diremar
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
AQUIFER DATA
Saturated Thickness: 95. m Anisotropy Ratio (Kz/Kr): 1 -
WELL DATA
Pumoino Wells Observation Wells
I Well Name I X(m) I Y (ml I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I : + DS-5P-II 603346 : 7565864 :
SOLUTION
Aquifer Model: Confined Solution Method: Cooper-Jacob
T = 1555. m2iday S = 0.009361
529
0.1
-S
c
Q)
E
Q)
(.)
cu
Q. 0.01 r/)
0
"O
Q)
t5
I!!
0
0
0.001
1.0E-4 ~~-~~~~-~~~~~-~~~~~
0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumi:iing Test\Anal~ses\DS-4P DS 6Theis.agt
Date: 01 /29/18 Time: 15:16:07 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpin<:1 Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I O DS-6 603478 : 7565726 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Theis --
T = 3359.4 m2iday s = 0.004723
Kz/Kr = 0.05 b = 95. m - -
530
0.24
c
~ 0.18
Q)
(.)
ro
C.
(/)
0
"O
~ 0.12
~
0
0
0.06
0. ="""'-'=--'----'-'-L.l...L_l..l__L.L__j__l_L.LJ_LLl _ ___J__L_L__l_J_L.l_LJ
0.01 0.1 1. 10.
Adjusted Time (day)
WELL TEST ANALYSIS
Data Set: C:\ ... \DS-4P DS 6CJ LateAndRecovel}'.agt
Date: 01 /29/18 Time: 15:17:17 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
AQUIFER DATA
Saturated Thickness: 95. m Anisotropy Ratio (Kz/Kr): 0.05 -
WELL DATA
Pumoino Wells Observation Wells
I Well Name I X(m) I Y (ml I I Well Name
I
X(m)
I DS-4P I 603291 I 7565924 I O DS-6 603478
SOLUTION
Aquifer Model: Unconfined Solution Method: Cooper-Jacob
T = 1405.6 m2iday S = 0.00739 --
: 7565726 : I Y(m) I
531
0.1
-S
c
Q)
E
Q)
(.)
cu
Q. 0.01 r/)
0
"O ';,I Q)
t5
I!! +* 0 .,,.
0 + /
0.001 +++
++
+ +
1.0E-4
0.001 0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumi:iing Test\Anal~ses\DS-8 Theis.agt
Date: 01 /29/18 Time: 15:18:11 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpin<:1 Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I + DS-8 603206 : 7565791 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Theis --
T = 6016.5 m2iday s = 0.01043 --
Kz/Kr = 0.1 b = 95. m - -
532
0.072
I
c
Q) E 0.054
Q)
(.)
cu
Q.
Cf)
ci
"O
~ 0.036
~
0 ~t + 0
0.018 +/
I+
~(.
J .;+* 0.
0.001 0.01 0.1 1. 10.
Adjusted Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumping Test\Analt ses\DS-8 cjLate.agt
Date: 01 /29/18 Time: 15:18:37 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
AQUIFER DATA
Saturated Thickness: 95. m Anisotropy Ratio (Kz/Kr): QJ_ -
WELL DATA
Pumoino Wells Observation Wells
I Well Name I X(m) I Y (ml I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I + DS-8 603206 : 7565791 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Cooper-Jacob
T = 3746.5 m2iday S = 0.04747 --
533
0.1
-S
'E
Q)
E 0.01 Q)
(,)
ro
C.
en
0
0.001
1.0E-4 ~~~~~~~-~~~~~-~~~~~
0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumi:iing Test\Anal~ses\DS-4P DS9.agt
Date: 01 /25/18 Time: 15:15:35 --- ---
PROJECT INFORMATION
Company: DHI
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpin<:1 Wells Observation Wells
I Well Name I X(m) I Y (m) I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I O DS-9 603374 : 7565691 :
SOLUTION
Aquifer Model: Confined Solution Method: Theis --
T = 1.047E+4 m2iday s =0.009113
Kz/Kr = 0.1 b = 95. m - -
534
0.16
I
c
Q) E 0.12
Q)
(.)
cu
ci.
Cl)
ci
'O
~ 0.0799
~
0
0
0.0398
-2.0E-4 """"'==-.l..__.l-'-L.L.l_l..l__--'---L.L-'-L.LJ-1..Ll _ ____L_L_L--'--'--1...L.J...J
0.01 0.1 1. 10.
Adjusted Time (day)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumping Test\Analtses\DS-4P DS9CJLate.agt
Date: 01 /29/18 Time: 15:21 :09 --- ---
PROJECT INFORMATION
Company: OHi
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
AQUIFER DATA
Saturated Thickness: 95. m Anisotropy Ratio (Kz/Kr): QJ_ -
WELL DATA
Pumoino Wells Observation Wells
I Well Name I X (m) I Y (ml I I Well Name
I
X(m) I Y(m) I
I DS-4P I 603291 I 7565924 I O DS-9 603374 : 7565691 :
SOLUTION
Aquifer Model: Unconfined Solution Method: Cooper-Jacob
T = 1479. m2/day S = 0.01363 --
535
0.32
-S 0.24
"E
Q)
E
Q)
(.)
cu
Q.
Cl) 0.16 0
0.0798
-3.0E-4 ~-~-~~~~~~--~-~~~~~
10. 100. 1000.
Radial Distance (m)
WELL TEST ANALYSIS
Data Set: C:\Userslmmg\Documents\Projects\Sialia\Pumi:iing Test\Anal~ses\DS-4P Tests distDraw.agt
Date: 01 /25/18 Time: 14:28:34 --- ---
PROJECT INFORMATION
Company: DHI Water & Environment
Client: Diremar
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumpin<:1 Wells Observation Wells
I Well Name I X(m) I Y(m) I Well Name X(m) Y(m)
I DS-4P I 603291 I 7565924 I □ DS-3 603662 7565997
□ DS-5P-I 603346 7565864
+ DS-5P-II 603346 7565864
o DS-5S 603354 7565861
o DS-6 603478 7565726
□ DS-9 603374 7565691
SOLUTION
Aquifer Model: Confined Solution Method: Theis --
T = 1696.8 m2/day s = 0.007317
536
0.1
I
c
(])
E
(])
(.) Q"en'. 0.01
0
'O
(])
t5
~
0
0
0.001
1.0E-4 ~~~~~~=~~~~~~~~~~~
1.0E-4 0.001 0.01 0.1 1. 10.
Time (day)
WELL TEST ANALYSIS
Data Set: C:\ ... \DS-4P TheisMultiMatch.agt
Date: 01 /29/18 Time: 15:30:44 --- --
PROJECT INFORMATION
Company: OHi
Client: Silala
Project: 41803755
Location: Silala Test Area
Test Well: DS-4P
Test Date: Dec 29, 2017
WELL DATA
Pumoina Wells Observation Wells
I Well Name I X(m) I Y/ml I Well Name X(m) Y (m)
I DS-4P I 603291 I 7565924 1 0 DS-3 603662 7565997
0 DS-5P-I 603346 7565864
· DS-5P-II 603346 7565864
0 DS-5S 603354 7565861
0 DS-6 603478 7565726
, DS-8 603206 7565791
0 DS-9 603374 7565691
SOLUTION
Aquifer Model: Unconfined Solution Method: Theis --
T = 3365. m2/day s = 0.00167
Kz/Kr = 0.01941 b = 95. m -- -
537
Danish Hydraulic Institute (DHI), Study of the Flows in the
Silala Wetlands and Springs System, 2018
Annex F: Hydrogeology
Appendix e: Water Quality Data for Silala Spring System
538
539
D~
Appendix e
Water Quality Data for Silala Spring System
540
541
A B C D E F G H I J K L M N 0 p Q R s T u
1 Cl S04 Ca Mg EC lab N03 Si Na K HC03
2 Date Organization Country Sample Name Water type re pH lab mg/L mg/L mg/L mg/L (μ5/cm) mg/L mg/L mg/L mg/L mg/L pmc ± la TU ± la
3 dec-16 Arca dis Ch ile R-512-16 River 17,50 8,67 2,34 5,92 9,90 4,10 204,80 0,19 18,80 19,74 2,50 91,62 26,66 0,13
4 dec-16 Arca dis Chile R-Rio 1-16 River 14,50 8,09 4,55 7,40 9,80 4,01 175,70 0,25 21,90 18,07 2,78 93,82
5 dec-16 Arca dis Ch ile SP-511-16 Spring 15,20 7,76 2,13 6,11 10,34 4,29 189,70 0,33 22,00 16,75 2,96 92,72
6 dec-16 Arca dis Chile SP-5105-16 Spring 20,30 7,01 1,28 8,26 3,93 0,65 88,30 0,27 21,40 10,37 2,91 30,38 76,86 0,35
7 dec-16 Arca dis Chile PW-DQN-51-16 Groundwater 20,70 7,58 1,86 9,80 21,89 10,30 315,00 0,32 30,70 21,09 5,07 170,31
8 dec-16 Arca dis Ch ile PW-BO-A-16 Groundwater 18,90 7,80 5,86 9,80 24,99 13,90 382,00 0,35 29,30 26,70 5,11 206,91
9 dec-16 Arca dis Chile PW-BO-B-16 Groundwater 17,70 7,38 5,36 11,03 24,90 12,70 354,00 0,30 28,00 24,79 4,99 201,18 9,93 0,08 <0.05 0,23
10 dec-16 Arca dis Chile CW-BO-A-16 Groundwater 16,90 7,53 7,29 13,69 21,57 11,89 356,00 0,58 29,60 26,12 4,90 181,78
11 dec-16 Arca dis Ch ile CW-BO-B-16 Groundwater 16,00 7,49 6,48 17,13 22,09 11,66 345,00 0,56 29,10 26,51 4,81 179,22
12 dec-16 Arca dis Chile PW-UQN-A-16 Groundwater 19,40 7,48 2,19 10,35 23,11 10,47 321,00 0,28 32,80 21,97 5,61 183,85
13 dec-16 Arca dis Chile PW-UQN-B-16 Groundwater 20,10 7,56 4,65 11,33 22,99 10,44 327,00 0,31 32,20 21,73 5,55 187,51 14,54 0,09 0,07 0,23
14 dec-16 Arca dis Chile MWL-UQN-A-16 Groundwater 20,30 7,46 5,35 11,57 22,69 10,02 319,00 0,31 32,10 21,31 5,39 181,78
15 dec-16 Arca dis Chile PW-DQN-A-16 Groundwater 17,40 7,47 3,50 17,75 16,32 7,57 255,60 0,31 25,80 21,12 4,16 128,34
16 dec-16 Arca dis Chile PW-DQN-B-16 Groundwater 17,70 7,34 3,39 19,00 16,45 7,30 262,30 0,29 27,20 20,50 4,23 129,93 0,22 0,23
17 dec-16 Arca dis Chile MW-DQN-A-16 Groundwater 19,50 7,41 2,58 11,73 20,93 9,24 288,30 0,29 28,50 22,06 5,22 167,14
18 feb-17 Arca dis Chile R-51-2-17 River 17,10 8,60 2,36 6,27 8,37 3,63 186,70 0,22 22,10 17,44 2,01 95,60 0,16 0,23
19 feb-17 Arca dis Chile R-51-3-17 River 18,30 7,90 2,31 6,48 9,29 3,66 181,30 0,23 19,80 16,56 2,44 91,60 45,97 0,27
20 feb-17 Arca dis Chile R-51-4-17 River 20,80 8,60 1,99 7,89 16,04 7,16 260,30 0,24 25,90 18,39 3,74 133,00
21 feb-17 Arca dis Ch ile R-51-7-17 River 18,40 8,70 1,92 9,33 14,42 6,41 243,90 0,19 25,30 17,16 3,55 115,00
22 feb-17 Arca dis Chile SP-51-1-17 Spring 15,20 7,60 2,12 6,64 9,96 4,11 182,90 0,35 21,70 15,97 2,71 100,00
23 feb-17 Arca dis Chile SP-51-5-17 Spring 20,20 7,80 1,24 8,19 3,79 0,56 88,20 0,29 21,90 9,41 2,57 34,00
24 feb-17 Arca dis Chile SP-51-8-17 Spring 19,20 7,20 1,18 11,50 3,95 0,49 95,30 0,24 20,40 10,66 2,25 31,00 78,39 0,24 <0.05 0,2
25 feb-17 Arca dis Chile SP-51-9-17 Spring 18,50 7,20 1,09 9,72 4,24 0,53 92,10 0,21 21,10 9,77 2,58 32,00
26 feb-17 Arca dis Chile SP-51-10-17 Spring 13,60 7,90 2,16 14,88 14,63 6,29 228,40 0,22 30,60 11,86 6,68 99,00 30,06 0,15 <0.05 0,11
27 feb-17 Arca dis Ch ile SP-51-15-17 Spring 15,60 7,90 2,09 6,24 8,45 3,09 161,20 0,35 19,70 14,88 2,36 76,00 32,41 0,15 0,31 0,29
28 feb-17 Arca dis Ch ile SP-51-16-17 Spring 15,50 7,90 2,09 5,94 7,06 2,55 150,90 0,36 23,00 13,52 2,04 73,00
29 feb-17 Arca dis Chile SP-51-17-17 Spring 15,10 7,90 2,06 5,81 6,54 2,12 136,50 0,34 18,60 13,66 2,12 68,00 <0.05 0,31
30 feb-17 Arca dis Chile SP-Sl-18-17 Spring 15,60 7,80 2,06 6,08 6,12 2,18 140,40 0,34 22,90 12,91 1,96 62,00
31 feb-17 Arca dis Chile SP-51-19-17 Spring 16,10 7,80 2,04 5,94 6,60 2,46 139,80 0,34 19,60 13,35 2,06 66,00
32 feb-17 Arca dis Chile SP-51-27-17 Spring 16,60 7,80 2,03 6,52 7,66 3,11 158,70 0,33 23,80 14,02 2,18 74,00
33 feb-17 Arca dis Chile SP-51-28-17 Spring 11,50 7,60 2,13 7,10 9,60 3,91 176,30 0,34 22,00 15,45 2,63 87,00
34 feb-17 Arca dis Ch ile SP-51-29-17 Spring 21,50 7,60 2,01 6,28 8,59 2,76 167,30 0,31 19,60 14,81 2,81 78,00
35 feb-17 Arca dis Chile SP-51-31-17 Spring 19,10 7,90 2,32 6,55 8,73 2,91 192,70 0,44 26,60 16,17 3,71 82,00
36 mar-00 Diremar Bolivia Laguna Khara Lake 10,00 8,30 112,38 16,50 11,83 19,61 715,00 0,10 54,00 136,00 27,00 110,26
37 okt-16 VRHR-MMAya Bolivia 51-1 Spring 15,00 8,64 6,94 7,29 7,70 2,28 115,20 2,41 17,37 8,80 1,90 31,41
38 okt-16 VRHR-MMAya Bolivia 51-lR Spring 15,90 8,58 6,75 7,43 7,20 2,31 112,90 2,39 16,52 8,60 1,80 29,78
39 okt-16 VRHR-MMAya Bolivia 51-2 Spring 15,60 8,04 7,98 9,81 18,47 6,79 244,00 2,67 21,32 17,00 2,80 115,24
40 okt-16 VRHR-MMAya Bolivia 51-3 Spring 14,50 7,91 7,32 10,05 17,10 8,07 254,00 2,55 22,44 17,00 2,95 118,50
41 okt-16 VRHR-MMAya Bolivia 51-4 Spring 15,50 8,80 7,60 7,33 16,67 6,49 229,00 2,75 20,19 17,00 2,70 109,81
42 okt-16 VRHR-MMAya Bolivia 51-5 Spring 9,20 8,64 6,18 9,81 19,90 9,49 285,00 1,34 22,26 17,00 3,71 127,44
43 okt-16 VRHR-MMAya Bolivia 51-6 Spring 16,60 8,51 7,13 6,61 7,93 1,72 113,80 2,30 17,27 8,70 2,00 24,16
44 okt-16 VRHR-MMAya Bolivia 51-7 Spring 16,10 8,53 6,46 9,60 8,74 2,64 128,60 2,39 23,38 9,80 2,10 37,79
542
A B C D E F G H I J K L M N 0 p Q R s T u
45 okt-16 VRHR-MMAya Bolivia 51-8 Spring 16,15 7,69 8,55 10,02 29,87 15,57 394,00 2,30 31,65 17,00 5,21 210,19
46 okt-16 VRHR-MMAya Bolivia 51-9 Spring 15,00 8,57 6,84 7,74 9,73 3,14 123,50 2,39 17,46 9,60 2,00 47,72
47 okt-16 VRHR-MMAya Bolivia 51-10 Spring 14,20 8,23 6,08 7,12 6,87 1,95 96,40 1,85 23,01 7,50 2,60 36,24
48 okt-16 VRHR-MMAya Bolivia 51-11 Spring 15,50 8,61 5,42 8,36 6,21 1,97 85,80 1,71 16,99 6,50 2,10 24,16
49 okt-16 VRHR-MMAya Bolivia 51-1 Spring 5,82 8,87 6,94 11,74 6,53 9,40 191,60 2,58 16,19 13,68 1,34 76,95
50 okt-16 VRHR-MMAya Bolivia 51-lA Spring 16,20 8,85 6,75 10,53 5,75 1,45 113,30 1,91 13,99 13,52 1,94 36,36
51 okt-16 VRH R-MMAya Bolivia Sl-2A Spri ng 15,60 8,48 7,98 10,77 14,33 6,19 237,00 2,05 17,69 21,08 2,93 115,00
52 okt-16 VRHR-MMAya Bolivia Sl-3A Spring 15,50 8,45 7,32 13,43 15,63 7,06 253,00 2,13 18,13 23,18 3,13 125,15
53 okt-16 VRHR-MMAya Bolivia Sl-4A Spring 15,70 8,57 7,60 11,62 10,18 5,59 228,00 2,30 17,78 22,07 2,83 101,47
54 okt-16 VRH R-MMAya Bolivia SI-SA Spring 16,70 9,62 6,18 3,53 15,95 8,80 294,00 0,04 18,66 24,07 4,63 120,08
55 okt-16 VRHR-MMAya Bolivia Sl-6A Spring 16,60 9,06 7,13 10,17 5,33 1,34 115,20 1,99 15,84 13,85 1,94 45,66
56 okt-16 VRHR-MMAya Bolivia Sl-7A Spring 16,20 9,10 6,46 12,22 6, 18 1,78 127,30 1,88 16,11 15,38 1,94 54, 12
57 okt-16 VRHR-MMAya Bolivia SI-BA Spring 16,60 8,32 8,55 20,99 30,47 15,68 410,00 2,24 30,73 24,24 5,73 208,02
58 okt-16 VRHR-MMAya Bolivia Sl-9A Spring 15,50 9,16 6,84 11,49 5,95 1,67 122,70 1,99 15,05 14,83 1,84 51,58
59 okt-16 VRHR-MMAya Bolivia 51-lOA Spring 14,70 9,06 6,08 9,81 4,08 0,90 99,30 1,66 14,52 11,95 1,94 37,21
60 okt-16 VRHR-MMAya Bolivia 51-llA Spring 15,50 9,31 5,42 10,77 6,06 1,23 85,20 1,66 16,11 8,89 1,94 33,82
61 jun-00 SERGEOMIN Bolivia Sil ala Boca toma (cana l) Spring N/A 7,65 7, 16 9,05 10,8 4,85 176 N/A N/A 23 2,5 106
62 jul-00 SERGEOMIN Bolivia Si lala Sur Ca nal Sur Spring N/A 7,7 7,16 7,82 6,6 1,09 112 N/A N/A 20 1,9 68,93
63 aug-00 SERGEOMIN Bolivia Si lala Norte Ca nal Norte Spring N/A 7,9 8,95 9,47 12,8 6,43 207 N/A N/A 25,8 2,9 131,76
64 sep-00 SERGEOMIN Bolivia Si lala Sur Pozo Groundwater N/A 7,7 7,16 11,11 6,6 1,82 124 N/A N/A 20 1,9 69,93
65 okt-00 SERGEOMIN Bolivia Si lala Norte Pozo Groundwater N/A 8,35 7,16 4,12 6,4 1,7 95 N/A N/A 15 2 50,02
66 nov-00 SERGEOMIN Bolivia Silala Norte Vertiente Spring N/A 7,4 7,1 9,05 5,4 2 96 N/A N/A 18 2 56,12
67 dec-00 SERGEOMIN Bolivia Si lala Norte Vertiente Spring N/A 7,7 7,16 9,47 6,4 1,82 120 N/A N/A 23 2 75,03
68 jan-01 SERGEOMIN Bolivia Si lala Sur Bofedal Spring N/A 7,5 7,16 13,99 25,4 13,71 340 N/A N/A 30 5,1 218,99
69 feb-01 SERGEOMIN Bolivia Sil ala Sur Pozo Groundwater N/A 7,55 7,52 11,94 11,4 4, 12 237 N/A N/A 29 3,1 150,06
70 nov-17 SERGEOMIN Bolivia DS-24P Groundwater 13,9 8,94 4,6 13,47 8,65 1,13 104,7 1,7 1 17,5 9,26 1,36 91,622
71 nov-17 SERGEOMIN Bolivia DS-45 Groundwater 12,9 8,81 7,54 10,36 17,85 4,26 249 3,29 0,93 20,87 2,05 93,818
72 nov-1 7 SERGEOMIN Bolivia DS-8 Groundwater 12,7 8,8 11,41 12,74 20,09 9,93 293 4,89 22,73 25,78 2,35 92,72
73 nov-17 SERGEOMIN Bolivia DS-245 Groundwater 12,6 8,64 7,67 19,46 8,53 3,97 132,6 2,5 18,26 12,8 1,26 30,378
74 2004 Diremar Bolivia Site 2 Spring 25,67 0,26 0 0,13
75 2004 Diremar Bolivia Si te 4 Spring 30,67 0,27 0 0,13
76 2004 Diremar Bolivia Site 6 Spring 86,29 0,83 0 0,14
77 Viceministerio de Recurses Hid ricos y Riego del Ministerio de Media Ambiente y Agua (VRHR - MMAyA)

Document Long Title

Volume 4 - Annex 17

Links